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Abstract

The classical two-phase Stefan problem as well as its weak variational formulation model the connection between the
di1erent phases of the considered material by interface conditions at the occurring free boundary or by a jump of the
enthalpy. One way to treat the corresponding discontinuous variational problems consists in its embedding into a family
of continuous ones and applying some standard techniques to the chosen approximation problems. The aim of the present
paper is to analyze a semi-discretization via Rothe’s method and its convergence behavior in dependence of the smoothing
parameter. While in Grossmann et al. (Optimization, in preparation) the treatment of the Stefan problem is based on the
given variable, i.e. the temperature, here 8rst a transformation via the smoothed enthalpy is applied. Numerical experiments
indicate a higher stability of the discretization by Rothe’s method. In addition, to avoid inner iterations a frozen coe:cient
approach as common in literature is used. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 35K55; 35R35; 49M15; 65N12; 90C30
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1. Formulation of the problem

Parabolic problems with discontinuities require speci8c techniques for its numerical treatment.
One of these methods is based on a parametric embedding of the original problem into a family of
smooth ones. However, the original discontinuity causes an asymptotically singular behavior of the
embeddings. In particular, some continuity modules cannot be uniformly bounded as the smoothing
parameter tends to its supposed limit. This phenomenon requires an appropriate modi8cation of the
convergence theory of the methods for the smoothed variational equations.
In the present paper we deal with a discontinuous parabolic problem which e.g. arises from the

enthalpy formulation of two-phase Stefan problems and apply a parametric smoothing of the jump
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in the enthalpy. Such a behavior of the enthalpy occurs in phase transitions like melting or freezing
and causes naturally a discontinuity of the problem at critical temperatures (cf. [2,5,14,16]).
As essential tool for the analysis as well as for the numerical treatment of the problem we apply

Rothe’s method of semi-discretization. However, unlike in [8,9] we do not concentrate upon a direct
treatment of the equation for the temperature, but study a transformed problem expressed in terms
of values of the smoothed enthalpy. Further, to avoid inner iterations we use a frozen coe:cient
approach instead of the originally implicit scheme by Rothe which would lead to a system of
nonlinear elliptic problems.
For given v0, f, g let us consider the nonlinear parabolic problem

@
@t

H (u)−Iu= f a:e: in 	T ;

H (u(·; 0)) � v0(·) a:e: in 	;

u|�T
= g; (1)

where 	 ⊂ Rm, m ∈ N, is a bounded region with smooth boundary �. Properties assumed for v0; f; g
will be speci8ed later. Further, with T ¿ 0 we denote I := (0; T ), 	T :=	× I and �T :=�× I . The
function H (·) is de8ned by

H (z) =




a(z) for z¡ 0;

[0; �] for z = 0;

a(z) + � for z¿ 0

(2)

with a monotonically increasing, smooth function a : R→ R and some constant �¿ 0. The mapping
H (u(·; ·)) can be interpreted as enthalpy related to the temperature u(·; ·) of the underlying heat
transfer process and � stands for the latent heat occurring in phase transition.
Due to the discontinuity of H (·), as a rule, we cannot expect that a classical solution of problem

(1) exists. But a related weak formulation provides the framework to extend existence and stability
results also to problems with discontinuities. Following Friedman [6], Alt and Luckhaus [1] a pair
u ∈ W 1;0

2 (	T ), v ∈ L2(	T ) is called a weak solution of (1) if it satis8es

u− g ∈ 0
W 2
1;0(	T );

v ∈ H (u) a:e: in 	T ;∫
	T

(
−v

@
@t

’+�u�’
)
d!=

∫
	T

f’ d!+
∫
	
v0(x)’(x; 0) dx;

∀’ ∈ 0
W 2

1;1(	T ) with ’= 0 a:e: in 	 × {T}: (3)

Before we continue, let us indicate the connection to the classical formulation of two-phase Stefan
problems (cf. [6]). We assume u to be a solution of the considered problem. Suppose 	T can be
splitted into two parts 	T = 	1

T ∪ 	2
T by means of two connected regions

	1
T := {(x; t) ∈ 	T | u(x; t)¡ 0}; 	2

T := {(x; t) ∈ 	T | u(x; t)¿ 0}:
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Suppose further that the set of points in 	T where the phase transition takes place is a hyper-surface
which can be represented by some smooth function � : Rm+1 → R via

�∗ = {(x; t) ∈ 	T |�(x; t) = 0}:
Obviously �∗ = 	1

T ∩ 	2
T . Hence, it is not a priori known but is a free boundary depending on the

solution u.
Let us introduce the sets 	1 := {x ∈ 	 | u(x; 0)¡ 0} and 	2 := {x ∈ 	 | u(x; 0)¿ 0}. Further we

use the abbreviations �i
T := @	i

T ∩ �T , ui := u|	i
T
, fi :=f|	i

T
, gi := u|�i

T
and zi :=H−1(v0) on 	i for

i=1; 2. Then the boundary value problem (1) corresponds to the classical two-phase Stefan problem

@
@t

a(u1)−Iu1 = f1 on 	1
T ;

u1|�1T = g1; u1|	1 = z1;

@
@t

a(u2)−Iu2 = f2 on 	2
T ;

u2|�2T = g2; u2|	2 = z2;

u1|�∗ = u2|�∗ ;

�
@�
@t
= (�u1 −�u2;��) on �∗;

(4)

where (·; ·) denotes the standard scalar product in Rm+1. Note that a function u which is su:ciently
smooth in the subdomains 	1

T ; 	
2
T and satis8es (4) can be completed by an appropriate v ∈ H (u)

to a weak solution of (3). Conversely, if a solution u; v of the weak formulation (3) is regular
enough and if the free boundary �∗ has the indicated properties then the related restrictions u1; u2
of u satisfy the classical Stefan problem (4). Indeed, by means of integration by parts applied to
the subdomains 	1

T and 	2
T of 	T we obtain∫

	T

(
@H
@t
(u)−Iu

)
’ d!=

∫
	1T

(
@H
@t
(u)−Iu

)
’ d!+

∫
	2T

(
@H
@t
(u)−Iu

)
’ d!

=
∫
	T

(
−H (u)

@’
@t
+�u�’

)
d!+

∫
	
v0(x)’(x; 0) dx

+
∫
�∗
(H (u1) (n1; em+1) + H (u2) (n2; em+1))’ d!

−
m∑
i=1

∫
�∗

(
@u1
@xi
(n1; ei) +

@u2
@xi
(n2; ei)

)
’ d� (5)

for all ’ ∈ 0
W 2

1;1(	T ) satisfying ’(·; T ) = 0, where ni denote the outside normals of 	1
T at �

∗ and
ej ( j = 1; : : : ; m + 1) are the unit vectors of the cartesian coordinate system in space and time. By
this setting we have n2 =−n1. According to the assumptions on �∗ the vector n = (��; (@=@t)�)T

is normal at �∗ and without loss of generality we can assume, that it points outward of 	1
T . Thus
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n1 = n=|n|. Let now u be a solution of (1) and let v ∈ H (u) be such that u; v solves the weak
problem (3). Then from (2), (3) and (5) it follows∫

�∗
�
@
@t

�’ d�+
∫
�∗
(�u1 −�u2;��)’ d�= 0 ∀’ ∈ 0

W 2
1;1(	T ) (6)

and according to the smoothness of u this implies that the Stefan condition

�
@�
@t
= (�u1 −�u2;��) on �∗ (7)

is satis8ed. For further studies on Stefan problems we refer e.g. to [4,5,14–19].

2. Regularization and weak formulation

For the sake of simpli8cation of the presentation in the sequel we assume that H (·) has the
speci8c form

H (z) =




z for z¡ 0;

[0; �] for z = 0; z ∈ R
z + � for z¿ 0

(8)

with some constant �¿ 0. In particular, this means that we assume the same heat conduction co-
e:cient in both phases and that the phase transition takes place at u= 0. We investigate a penalty
type smoothing replacing H by

H�(z) = z +
�
2

(
1 +

z√
z2 + �

)
; z ∈ R: (9)

Here �¿ 0 denotes a parameter which controls the approximation of H by H�, in particular, for
� → 0+. In case H (·) has not only a jump but also the one-sided derivatives are discontinuous,
then the technique can be applied in a similar way. To illustrate this, let us consider a slightly more
general situation with di1erent heat conductivities in the two phases which is characterized by

H (z) =




a1z for z¡ 0;

[0; �] for z = 0; z ∈ R;
a2z + � for z¿ 0;

(10)

with constants a2 ¿ a1¿ 0. In this case the jump in the enthalpy at z = 0 could be smoothed
similarly by using the function

H�(z) = a1z +
a2 − a1
2

(z +
√

z2 + �) +
�
2

(
1 +

z√
z2 + �

)
: (11)

Notice that the maximal monotone graph of the enthalphy H (·) can be represented as the subdi1er-
ential of the convex function

�(s) =
∫ s

0
a(!) d!+ �max{0; s}; s ∈ R: (12)

For a further study of the extended smoothing technique (11) in Stefan problems we refer to [20].
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Unlike H the mapping H� de8ned by (9) is single valued and even C∞. So instead of the
discontinuous problem (1) we obtain a classical nonlinear parabolic problem

@
@t

H�(u�)−Iu� = f a:e: in 	T ;

H�(u�(·; 0)) = v0(·) a:e: in 	;

u�|�T
= g (13)

depending on the smoothing parameter �¿ 0.
In di1erence to [8], we transform problem (13) by expressing the temperature u� via the smoothed

enthalpy v� :=H�(u). This yields the nonlinear parabolic boundary value problem

@
@t

v� −�(q�(v�)�v�) = f in 	T ;

v�(·; 0) = v0(·) in 	;

v�|�T
= H�(g) (14)

with

q�(z) :=
1

H ′
� (H

−1
� (z))

∀z ∈ R; (15)

which is equivalent to the regularized problem (13). From the properties of H� we immediately
obtain

�1=2

�1=2 + �=2
6 q�(z)6 1; ∀�¿ 0; ∀z ∈ R: (16)

We put

�(�) :=
�1=2

�1=2 + �=2
:

Obviously, �(�) behaves asymptotically like �1=2 as � → 0+.
Throughout the paper ‖ · ‖; ‖ · ‖1 and ‖ · ‖∗ denote the norms in L2(	), W 1

2 (	) and the dual
space H−1 = (W 1

2 (	))
∗, respectively, 〈·; ·〉 and (·; ·) denote the scalar product in L2(	), and the

evaluation of an element of the dual space H−1 applied to an element of W 1
2 (	), respectively. For

brevity we write v instead of v� and for any function z : 	× I → R we denote by z(t) the function
z(t; ·) : 	 → R for any 8xed time t ∈ I .

In the sequel we concentrate on a weak formulation of problem (14). A function v ∈ 0
W 2

1;0(	T )
with (@=@t)v ∈ L2(I; H−1) is called a weak solution of (14) if(

@
@t

v(t); ’
)
+ 〈q�(v(t))�v(t);�’〉= 〈f(t); ’〉; ∀’ ∈ 0

W 2
1(	);

v(0; ·) = v0(·) in 	

(17)

for almost every t ∈ I .
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In order to guarantee appropriate a priori estimates for the weak solution throughout the paper
we assume that the domain and the occurring boundary data of problem (1) and (3), respectively,
satisfy the following conditions (cf. [6,12,14]):
(i) In the case 	 ⊂ Rm; m¿ 1 there exist two simply connected domains G1; G2 ⊂ Rm with

G1 ⊂ G2 such that 	 = G2 \ NG1. Hence, the boundary � is split into two separated parts
�i :=� ∩ @Gi; i = 1; 2; which are smooth. In the case 	 ⊂ R1 the sets �1; �2 denote the two
endpoints of the interval 	.

With this splitting for the boundary function g we assume

inf
(x; t)∈�1×[0;T ]

g(x; t)¿ 0 and sup
(x; t)∈�2×[0:T ]

g(x; t)¡ 0;

i.e. near �1 we suppose a liquid phase while near �2 a solid phase is located.
(ii) Boundary and initial conditions can be extended to a function % ∈ C2+�;1+�=2( N	T ) with some

HOolder exponent �¿ 0, i.e.

%|�T = g and H (%)|	×{0} = v0;

and the right hand side f satis8es f ∈ C0+�;0+�=2( N	T ).

Note that according to assumption (ii) the boundary function g is continuous and according to
assumption (i) there exists an extension b ∈ L∞(I; W 1

2 (	)) with
@
@t b ∈ L∞(	T ) of the boundary

function b|�T
= H (g). Further the smoothness of H� guarantees the existence of smooth functions

b� : N	T → R with trace b�|�T
= H�(g) such that b� → b in L∞(I; W 1

2 (	)) and (@=@t)b� → (@=@t)b
in L∞(	T ) as � → 0+. We notice that the existence of such an extension essentially depends on
the fact that no phase transition is allowed at a Dirichlet boundary. If also Neumann conditions are
given, then (i) may be relaxed.
We remark that in [12] the existence of the unique solution of (14) in C2+�;1+�=2( N	T ) is proved

under the given assumptions on g and v0. Concerning the existence and uniqueness of the weak
solution of (17) we refer to [13]. There under slightly milder assumptions the author shows the
existence of the unique solution v ∈ L2(	T ) ∩ L∞(I; H−1(	)) for the weak formulation of problem
(14) without any preceding regularization. For the proof, unlike our approach, in [13] via the unique
solution w ∈ L2(	T ) ∩ L∞(I; H−1(	)) of〈

@
@t

w; ’
〉
+ 〈A(w); ’〉= 〈f̃; ’〉 for all ’ ∈ L2(	);

with a functional 〈A(w); ’〉 := 〈H−1(w); ’〉 the author applies a Galerkin technique with the eigen-
functions of −I as basic functions to show that v solves also the original problem. In our approach
the uniqueness result of [13] will be of importance.

3. Rothe’s method applied to smoothed problems

Next we apply a semi-discretization to derive analytical properties of the given problem as well
as to prepare a numerical treatment. Let an equidistant grid {tk}N

k=0 with step size + = T=N over
the time interval I be chosen, i.e. tk = k+; k = 0; : : : ; N . Then we consider a linearly implicit Euler
scheme of (17) with coe:cients q� frozen at the previous time level. This yields
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Find vk ∈ W 1
2 (	); vk |� = H�(g(tk)); k = 1; : : : ; N such that〈

1
+
(vk − vk−1); ’

〉
+ 〈qk−1�vk ;�’〉= 〈fk; ’〉; ∀’ ∈ 0

W 2
1(	); (18)

with given initial value v0, boundary conditions and the abbreviations qk−1 := q�(vk−1)andfk :=f(·; tk)
for k = 1; : : : ; N . Due to continuity g(tk) and fk are well-de8ned. The strong formulation of the
semi-discretization (18) corresponding to (14) reads as follows

1
+
(vk − vk−1)−�(qk−1�vk) = fk (19)

for k = 1; : : : ; N . With the bilinear forms

ak( ; ’) := 〈 ; ’〉+ +〈qk−1� ;�’〉; ∀ ; ’ ∈ 0
W 2

1(	); k = 1; : : : ; N;

system (18) is equivalent to

ak(vk ; ’) = +〈fk; ’〉+ 〈vk−1; ’〉; ∀’ ∈ 0
W 2

1(	): (20)

These problems (20) are linear elliptic and by standard arguments posses unique solutions vk ∈
H 1(	); k=1; : : : ; N . Indeed, the right-hand sides of (20) are linear and continuous in ’ ∈ 0

W 2
1 while

the mappings ak(·; ·) :H 1(	) × H 1(	) → R are bilinear, continuous, and on
0
W 2

1(	) ⊂ H 1(	) are
elliptic. In particular, we have

ak(’;  )6 max{1; +}‖’‖1‖ ‖1; ∀’;  ∈ H 1(	);

min{1; +�(�)}‖’‖21 6 ak(’; ’); ∀’ ∈ 0
W 2

1(	): (21)

Hence, due to Lax–Milgram lemma the existence and uniqueness of vk ∈ H 1(	); k = 1; : : : ; N is
guaranteed in case of �¿ 0. However, as indicated in (21), the ellipticity constant depends on the
smoothing parameter �¿ 0 and tends to zero for � → 0+ even for a 8xed step size +¿ 0. This
gives rise to expect that the elliptic subproblems (20) for 8nding vk are asymptotically ill-posed if
� → 0+.
Now we give some a priori estimates for the discrete solution {vk}N

k=1 which we use later to
derive a convergence result for the Rothe method. In the sequel c denotes a generic positive constant
which is independent of the smoothing parameter � and which may be di1erent at di1erent places
of occurrence.

Lemma 1. Let {vk}N
k=1 for any N ∈ N with step size += T=N be the unique solution of (18) with

initial value v0 = v0. Then the estimates

1. max16k6N ‖vk‖2 6 c,

2. +
∑N

k=1 ‖
√

qk−1�vk‖2 6 c;

3.
∑N

k=1 ‖vk − vk−1‖2 6 c

hold uniformly for N ∈ N.



354 C. Grossmann, A. Noack / Journal of Computational and Applied Mathematics 138 (2002) 347–366

Proof. For the proof we consider a corresponding initial-boundary problem to (14) with homoge-
neous boundary conditions. Under the regularity assumptions given above this can be derived by
introducing the shift w := v + b�, where b� ∈ L∞(I; W 1

2 (	)) with (@=@t)b� ∈ L∞(	T ) denotes an
appropriate extension of the boundary function b�|�T

=H�(g) on the whole domain 	T . This way we
obtain the parabolic problem

@
@t

w −�(q�(w + b�)�(w + b�)) = f − @
@t

b� in 	T ;

w(·; 0) = v0(·) + b�(·; 0) in 	;

w|�T = 0; (22)

which is equivalent to (14).
Now at each time level t = tk we choose in (18) the test function ’ = wk := vk − bk where

bk := b�(·; tk); k = 1; : : : ; N and obtain
1
+
〈vk − vk−1; wk〉+ 〈qk−1�vk ;�wk〉= 〈fk; wk〉; k = 1; : : : ; N: (23)

Using the de8nition of wk and rearranging yields

〈wk − wk−1; wk〉+ +〈qk−1�wk;�wk〉= +〈Fk; wk〉 − +〈qk−1�bk ;�wk〉 (24)

for k=1; : : : ; N where Fk :=fk− 1
+ (b

k−bk−1). Now, we indicate that the properties of scalar products
imply

〈wk − wk−1; wk〉 − 1
2 (‖wk‖2 − ‖wk−1‖2) = 〈wk − wk−1; wk〉 − 1

2〈wk − wk−1; wk + wk−1〉
= 1

2‖wk − wk−1‖2 ¿ 0: (25)

Hence, we have

〈wk − wk−1; wk〉¿ 1
2 (‖wk‖2 − ‖wk−1‖2): (26)

Let II := 〈qk−1�wk;�wk〉+ 〈qk−1�bk ;�wk〉. Using the positivity of q�(·). We may rewrite this
expression in the following way:

II = 〈
√

qk−1�wk;
√

qk−1�wk〉+ 〈
√

qk−1�bk ;
√

qk−1�wk〉:
The assumed boundedness of q� and �b� and the Schwarz inequality yield

II¿ (‖
√

qk−1�wk‖ − ‖
√

qk−1�bk‖)‖
√

qk−1�wk‖
¿ (‖

√
qk−1�wk‖ − C0)‖

√
qk−1�wk‖ (27)

with some constant C0¿ 0. Then (23) and (27) result in

〈wk − wk−1; wk〉6 +〈Fk; wk〉+ +(C0 − ‖
√

qk−1�wk‖)‖
√

qk−1�wk‖:
Now (25), the assumptions on F , the fact that maxs∈R(C0−s)s=C2

0 =4 holds and Cauchy’s inequality
lead to

‖wk‖2
2

− ‖wk−1‖2
2

+
1
2
‖wk − wk−1‖2 6 +

2
‖Fk‖2 + +

2
‖wk‖2 + +

C2
0

4
6 +c +

+
2
‖wk‖2 (28)
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for k = 1; : : : ; N . Thus summing over the 8rst j steps we obtain

1
2
‖wj‖2 +

j∑
k=1

‖wk − wk−1‖2 6 c +
j∑

k=1

1
2
‖wk‖2+; j = 1; : : : ; N

and Gronwall’s Lemma yields

max
j=1;:::; N

‖wj‖6 c and
j∑

k=1

‖wk − wk−1‖2 6 c; j = 1; : : : N: (29)

From these estimates and the properties of b� the 8rst and third assertion of the lemma follow
immediately.
To show the second assertion we use (23), (26) and (27), the assumptions on F and sum up over

the 8rst j steps for arbitrary j ∈ {1; : : : ; N}. This leads to
1
2
‖wj‖2 + +

j∑
k=1

(‖
√

qk−1�wk‖ − C0)‖
√

qk−1�wk‖6 +c
j∑

k=1

‖wk‖+ 1
2
‖w0‖2:

Applying (29) results in

+
j∑

k=1

(‖
√

qk−1�wk‖ − C0)‖
√

qk−1�wk‖6 c: (30)

With

sj :=

(
+

j∑
k=1

‖
√

qk−1�wk‖2
)1=2

;

Cauchy’s inequality applied to (30) provides

s2j 6 c(1 + sj); j = 1; : : : ; N:

Thus some constant c¿ 0 exists such that maxj=1; :::;N sj 6 c. Finally, together with vk = wk + bk ,
the assumptions on q� and b� and the parallelogram equality we obtain

+
j∑

k=1

‖
√

qk−1�vk‖2 6 2+
j∑

k=1

(‖
√

qk−1�wk‖2 + ‖
√

qk−1�bk‖2)6 c; j = 1; : : : ; N:

So far we have shown some properties of the semi-discretization problem at the time levels t= tk .
To obtain an approximation in the original domain 	T and prove convergence results we assign
two extensions to the discrete solution {vk}N

k=1. Let us introduce a piecewise linear extension, called
Rothe function (cf. [10]), by

v(N )(t) := vk−1 + (vk − vk−1)
t − tk−1

+
∀t ∈ [tk−1; tk]; k = 1; : : : ; N in 	 (31)

and a piecewise constant function

Nv(N )(t) := vk ∀t ∈ (tk−1; tk]; k = 1; : : : N in 	:
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As already shown, for any N ∈ N the solution {vk}N
k=1 of the semi-discretization is unique and

contained in
0
W 2

1(	). Thus v(N ) and Nv(N ) are uniquely de8ned and by construction we have

1.
@
@t

v(N ) =
vk − vk−1

+
;

2. Nv(N )(t)− Nv(N )(t − +) = vk − vk−1; t ∈ (tk−1; tk); k = 1; : : : ; N:

3. Nv(N )(t)− v(N )(t) = (vk − vk−1) t
k−t
+ ,

Further, applying Lemma 1 and += T=N we derive

‖ Nv(N ) − v(N )‖2L2(	T ) =
N∑

k=1

∫ tk

tk−1
‖vk − vk−1‖2 (t

k − t)2

+2
dt =

+
3

N∑
k=1

‖vk − vk−1‖2 6 c
N

:

Thus

‖ Nv(N ) − v(N )‖2L2(	T ) 6
c
N

→ 0 for N → ∞: (32)

For any N ∈ N the sequence {vk}N
k=0 is contained in

0
W
1

2(	). This combined with the a priori

estimates of Lemma 1 implies Nv(N ) ∈ L2(I;
0
W 2

1(	)) for all N ∈ N. Further, we obtain v(N ) ∈ W 1
2 (	T )

for all N ∈ N directly from the following result.

Lemma 2 (cf. [7]). Let G ⊂ Rm be a subset such that NG=
⋃M

i=1
NGi and all Gi of the partition are

bounded regions with @Gi ∈ C0;1 and int Gi ∩ int Gj = ∅ for i �= j. Let further u :G → R be a
function; such that u ∈ C( NG) and u|Gi ∈ C1. Then u ∈ W 1

2 (G).

The a priori estimates for the discrete solution {vk}N
k=1 as stated in Lemma 1 permit adequate a

priori estimates for the Rothe function and for Nv(N ) as well.

Lemma 3. Under assumptions (i) and (ii) for arbitrary N ∈ N the following estimates are satis7ed:

1. ‖ @
@t v

(N )‖L2(I;H−1) 6 c;

2. ‖v(N )‖2L2(	T ) 6 c;

3. ‖�v(N )‖2L2(	T ) 6 c�(�)−1.

Proof. Using (16) and (18) and the assumptions on f and b� we have∣∣∣∣
(

@
@t

v(N )(t); ’
)∣∣∣∣6 |〈fk; ’〉|+ |〈qk−1�(vk + bk);�’〉|

6 c‖’‖1 + ‖
√

qk−1�vk‖ ‖�’‖

6 (c + ‖
√

qk−1�vk‖)‖’‖1 (33)
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for all t ∈ (tk−1; tk); k = 1; : : : ; N and arbitrary ’ ∈ 0
W 2

1(	). This estimate combined with Lemma 1
and Cauchy’s inequality yields∣∣∣∣

∣∣∣∣ @@t v(N )
∣∣∣∣
∣∣∣∣
L2(I;H−1)

=
∫ T

0

∣∣∣∣
∣∣∣∣ @@t v(N ))

∣∣∣∣
∣∣∣∣
∗
dt =

∫ T

0
sup

‖’‖61

∣∣∣∣
(

@
@t

v(N ); ’
)∣∣∣∣ dt

6 c + +
N∑

k=1

‖
√

qk−1�vk‖

6 c


1 +

[
+

N∑
k=1

‖
√

qk−1�vk‖2
]1=26 c:

To prove the second assertion we apply Lemma 1 and obtain

‖v(N )‖2L2(	T ) =
N∑

k=1

∫ tk

tk−1

∣∣∣∣
∣∣∣∣vk−1 + (vk − vk−1)

t − tk−1

+

∣∣∣∣
∣∣∣∣
2

dt

6 +

(
N∑

k=1

‖vk−1‖2 + 1
3

N∑
k=1

‖vk − vk−1‖2
)
6 c:

By a similar argumentation using Lemma 1 and (16) it follows

‖�v(N )‖2L2(	T ) 6 +

(
4
3

N∑
k=1

‖�vk−1‖2 +
N∑

k=1

�vk‖2
)
6 c�(�)−1:

In [11] the relative compactness of the set {v(N )}N∈N in L2(	T ) is proved means of the com-
pactness theorem by Riesz–Kolmogorov (cf. [21]) which implies the existence of a convergent
subsequence of {v(N )}N∈N. Such an approach could be used here too, but we will derive the desired
result directly from a well-known embedding result of Rellich–Kondrashov type for Sobolev spaces
as given.

Theorem 1 (see Lions [13]). Let V1 ⊂ V ⊂ V2 denote a triple of Banach spaces such that Vi;
i = 1; 2 are re9exive and the embedding V1 → V is compact. Then the space

W :=
{
v ∈ L2(I; V1)

∣∣∣∣ @@t v ∈ L2(I; V2)
}

equipped with the norm ‖v‖W := ‖v‖L2(I;V1)+‖v‖L2(I;V2) is a Banach space and the embedding 2 :W →
L2(I; V ) is compact.

In the following part the dependence on the smoothing parameter �¿ 0 is investigated, therefore
we write {v(N )� }N∈N instead of {v(N )}N∈N.
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Lemma 4. For any 7xed �¿ 0 the sequence {v(N )� }N∈N possesses a convergent subsequence in
L2(	T ).

Proof. Recall that the sequence {v(N )� }N∈N is contained in W 1
2 (	T ). Now we set V1 :=W 1

2 (	); V =
L2(	) and V2 = H−1. By assumption we have @	T ∈ C0;1. Thus we can apply the well-known
fact that V1 ⊂ V ⊂ V2 forms an evolution triple and the embedding W 1

2 (	) → L2(	) is compact
(cf. [21]). Hence, all requirements of Theorem 1 are ful8lled and we obtain that the embedding of
W = {v ∈ L2(I; W 1

2 (	)) | (@=@t)v ∈ L2(I; H−1)} in L2(	T ) is compact. Since, according to Lemma 3,
the set {v(N )� } is bounded in W for every 8xed value of the smoothing parameter �¿ 0 there exists
a subsequence {v(N )� }N which converges to an element v� ∈ L2(	T ).

Now we can formulate the main result on convergence for the semi-discretization scheme.

Theorem 2. Let assumptions (i) and (ii) be satis7ed. Then for every N ∈ N and �¿ 0 there exists
the unique sequence of discrete solutions {vk}N

k=0 of (18). Further

‖v(N )� − v�‖L2(	T ) → 0 for N → ∞

and

‖ Nv(N )� − v�‖L2(	T ) → 0 for N → ∞

hold; where v� ∈ L2(	T ) ∩ L∞(I; H−1(	)) is the unique weak solution of (17).

Proof. From Lemma 4 we already know that there exists a subsequence {v(N )� }N which converges
to some v� in L2(	T ). The 8rst estimate of Lemma 3 implies that (@=@t)v

(N )
� is uniformly bounded

in L2(I; H−1) for N ∈ N. Thus (@=@t)v� ∈ L2(	T ) exists and (@=@t)v
(N )
� → (@=@t)v� weakly in

L2(I; H−1).
It remains to prove that the limit function v� ∈ L2(	T ) solves the weakly formulated problem

(18). Since v(N )� (0)= v0 holds for arbitrary N ∈ N the limit function v� satis8es the initial condition.
Now we rewrite (18) in the form∫ T

0

(
@
@t

v(N )� ; ’
)
dt +

∫ T

0
〈 Nq (N )� (v(N )� (t − +))� Nv (N )� ;�’〉 dt =

∫ T

0
〈 Nf(N )(t); ’〉 dt

with the step functions

Nq(N )� (x; t; u) = q�(u(x; tk)); Nf
(N )
(x; t) = f(x; tk) ∀t ∈ (tk−1; tk]; k = 1; : : : ; N;

where Nq(N )� (x; 0; u)=q�(u(x; 0)) and Nf
N
(x; 0)=f(x; 0). Applying (32), the convergence {v(N )� }N → v�

in L2(	T ) and Nv(N )� ∈ L2(I;
0
W 2

1(	)) for all N ∈ N results in Nv(N )� → v� in L2(	T ) According to
Lemma 3 we have �vN� → �v� weakly in L2(	T ). Further, (32) yields � NvN� * �v� in L2(	T ).
Thus Nq(N )� (v(N )� (t − +))� Nv(N )� * q�(v�)�v� in L2(	T ).
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The above convergence results and Nf
(N ) → f a.e in 	T provide that v� is a weak solution of

(17). On the other hand according to [13] the weak formulation of problem (14) possesses a unique
solution v� ∈ L2(	T )∩ L∞(I; H−1(	)). Therefore v� is the unique weak solution of (17). Moreover,
not only a subsequence but the total sequence {v(N )� } converges to v� (cf. [21]).

4. Numerical results

In this section we report some results obtained in numerical tests, namely cases of a one-dimensional
problem with a known exact solution and the two-dimensional wedge solidi8cation problem taken
from [3]. The numerical treatment of the semi-discretization requires a further discretization of the
spatial variables. For the sake of simplicity in our computer experiments we applied 8xed uniform
grids in space and the occurring divergence form of the spatial derivatives have been approximated
on uniform grids {xi}M

i=0 by the standard di1erence scheme

(qv′)′(xi) ≈ h−2(qi+1=2(vi+1 − vi)− qi−1=2(vi − vi−1))

with qi±1=2 := (qi±1 + qi)=2.

Example 1. First, we deal with a simple one-dimensional test problem with a known analytical
solution. The construction of this problems rests on the classical formulation of the two-phase Stefan
problem with a prescribed melting front s(t); t ∈ [0; T ] which separates the frozen and the liquid
zones

	1
T := {(x; t) ∈ (0; 1)× (0; T ):x¡ s(t)}

and

	2
T = {(x; t) ∈ (0; 1)× (0; T ):x¿ s(t)}; (34)

respectively. Now, the Stefan drift equation (7) in the one-dimensional case has the form

ṡ(t) =
1
�

(
@u2
@x

− @u1
@x

)
(s(t); t); t ∈ (0; T ]: (35)

With a given di1erentiable function s: I → R we choose

u1(x; t) = 250(x − s(t)) + 51(x − s(t))2; (x; t) ∈ 	1
T ;

u2(x; t) = 50(x − s(t)) + 51(x − s(t))2; (x; t) ∈ 	2
T :

(36)

To obtain the solution given above the right-hand side f of the parabolic problem (1) has been
selected according to

f(x; t) =

{−2(50 + 51(x − s(t))ṡ(t)− 251; (x; t) ∈ 	1
T ;

−(50 + 251(x − s(t))ṡ(t)− 251; (x; t) ∈ 	2
T

: (37)
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Table 1

M N � 62 6∞

100 100 1.0 0.0478 0.2354
0.1 0.0134 0.0359
0.01 0.0247 0.2246

500 500 0.01 0.0065 0.0163
0.001 0.0042 0.0307

100 1000 0.001 0.0662 0.4580
1000 1000 0.001 0.0027 0.0119

In addition, the boundary conditions are chosen consistently to (36) by

u(0; t) =−250s(t) + 51s(t)2;

u(1; t) = 50(1− s(t)) + 51(1− s(t))2;
t ∈ (0; T ]: (38)

The enthalpy v(·; 0) at the starting time t = 0 is for 8xed regularization parameter �¿ 0 de8ned by

v(x; 0) = H�(u(x; 0)); x ∈ [0; 1] (39)

with u(·; ·) continuously extended from (36). In our calculations we used �= 20, T = 0:5 and

s(t) = 0:5 + 0:25
t
T
; t ∈ [0; T ]: (40)

Then (35) holds if the parameter 50¿ 0 satis8es 50T=0:25�. Table 1 reports the obtained accuracies

62 :=
1√

N + 1
√
M + 1

M∑
i=0

N∑
k=0

|u(xi; tk)− ui;k |2; 6∞ := max
06i6M;06k6N

|u(xi; tk)− ui;k |;

i.e. discrete L2-norms and maximum norms, respectively, for various numbers M; N of grid points
in space and time and smoothing parameters �.
As expected, for small parameters �¿ 0 the rapid change of the smoothed enthalpy function near

the melting temperature requires dense grid points close to the transition zone. Hence, an spatial
grid locally adapted to the moving boundary has to be included to make the method practically
e:cient.
In Fig. 1 we give a surface plot of the temperature and enthalpy, respectively, over the space

time cylinder 	T for N = M = 50 and � = 0:1. For the same data Fig. 2 shows the level lines
u=0:3l; l=0;±1; ±2; : : : of the temperature. Temperature levels below and equal to zero are given
as solid lines while positive temperatures are indicated by dashed lines. Finally, in this example
Fig. 3 shows the distribution of errors over 	T .
As one can see, the absolute error reaches its maximum along the free boundary. This ef-

fect is reasonable because of the poor approximation of the discontinuity of the enthalpy in this
zone.



C. Grossmann, A. Noack / Journal of Computational and Applied Mathematics 138 (2002) 347–366 361

Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 4.

Fig. 5.

Example 2. As two-dimensional test problem we deal with the wedge solidi8cation as considered
in [3]. With 	 = (0; 1)2 ⊂ R2 and �= 0:5 the initial temperature is de8ned by

u(x; y) = 0:3; ∀(x; y) ∈ (0; 1)2:
The boundary conditions are of mixed type

u(x; 0; t) = u(0; y; t) = −1; x; y ∈ [0; 1];
uy(x; 1; t) = ux(1; y; t) = 0; x; y ∈ (0; 1); t ∈ (0; T ]: (41)

The boundary conditions can be transferred to Dirichlet type only if one embeds the problem into the
larger domain 	̃ := (0; 2)2. Then the Neumann conditions in (41) are just a consequence of symmetry.
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Fig. 6.

Fig. 7.

Unlike in [3] in the present paper out main emphasis is on the analysis of the smoothing technique
itself. So, as already mentioned, for the sake of simplicity of the implementation an equidistributed
grid has been chosen. To make the proposed smoothing method more e:cient, however the grid
must be adapted to the speci8c situation of phase change problems as proposed e.g. in [3]. To en-
able an easier comparison with the result in [3] we have chosen the same discretization parameters
M = 30; N = 80. As regularization parameter we have selected eps = 0:01.
In Figs. 4–8 we give the obtained level curves at levels u = 0:05l; l = 0;±1;±2; : : : and surface

plots for the temperature u(·; ·; tc) at the selected time steps tc ∈ {0:005; 0:01; 0:02; 0:05; 0:1}. As be-
fore, temperature levels below and equal to zero are given as solid lines while positive temperatures
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Fig. 8.

Fig. 9.

are indicated by dashed ones. Fig. 9 shows the graphs of the temperature and of the enthalpy along
the upper boundary y = 1 at the considered time levels tc ∈ {0:005; 0:01; 0:02; 0:05; 0:1}. Finally, in
Fig. 10 the position of the melting front along the spatial diagonal x = y and the development of
temperature at the central point (x; y) = (0:5; 0:5) are given. Overall, the obtained results show a
good coincidence with those from [3].
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Fig. 10. Melting front.
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