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ABSTRACT 

On nested fractals a "Laplacian" can be constructed as a scaled limit of difference 
operators. The appropriate scaling and starting configuration are given by a nonlinear, 
finite dimensional eigenvalue problem. We study it as a fixed point problem using 
Hilbert's projective metric on cones, a nonlinear generalization of the Perron- 
Frobenius theory of nonnegative matrices. The nonlinearity arises from a map 
known as the shorted operator. Potential theoretic notions and results apply to it, since 
it acts on a cone of discrete "Laplacians'" or difference operators. Usually, ~P is 
considered on the larger cone of positive semidefinite operators. We are able to take 
advantage of the more specific structure of the reduced domain because several 
properties of dp are local. Results are possible with respect to continuity, concavity, 
the Fr~chet derivative, invariant subcones, the geometry of these cones, and the 
contraction of Hilbert's metric. © 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

We will deal with the matrix analytic aspects of  a nonlinear eigenvalue 
problem whose physical and mathematical background can be found in [4]. 
Mathematically it arises in the construction of  a "Laplacian'" on nested 
Fractals. Physically it is a renormalization problem. The  troublesome ingredi- 
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ent is the shorted operator, which is a version of the Schur complement. We 
will see below that in potential theory it is known as "'traces of Dirichlet 
forms" or "traces of Markov processes." 

To simplify the notation and clarify the application we consider a specific 
nested fractal, the Vicsek snowflake X. It can be constructed by the five 
similitudes ~b I . . . . .  ~b~ : R e --* R e given below: 

x 2 x 2 x 
~/x(X) : =  "~ + ~ ( 1 , 1 ) ,  ~be(x) := ~ + -~(0, 1), ~ba(x ) := ~ ,  

x 2 x 1 
~b4(x ) := ~ + ~ ( 1 , 0 ) ,  ~bs(x ) := ~ + ~ ( 1 , 1 ) .  

1 They contract the unit square [0, 1] 2 by ~ and arrange five such small copies 
in a chessboard pattern inside [0, 1] 2. We define ~ ( M ) : =  IJ ~=l~bi(M) for 
M c R 2. Now the fractal is defined by X .'= f'l i ~ N~t([ 0, 1] ~). Each gl i has a 
unique fixed point xi, namely, 

x 1 = ( 1 , 1 ) ,  x 2 = (0 ,1) ,  x 3 = ( 0 , 0 ) ,  x 4 = ( 1 , 0 ) ,  x 5 =  (½,½). 

Set F 0 := {x l . . . . .  x4} and F i := ~i(F0) for all i ~ N. The set UieNFi is 
dense in X with respect to the Euclidean topology on R 2. On X we consider 
the (In 5)/(ln 3)-dimensional Hansdorff measure/z with /z(X) = 1 (cf. [17]). 
The fractal X is invariant under every reflection Px, y in the hyperplane of 
points equidistant from x and y, for all points x, y ~ F 0 with x ~ y. l e t  
denote the group generated by these reflections. 

The eigenvalue problem will be formulated in terms of difference forms 
or (potential theoretically) of Dirichlet forms, the analog of the classical 
Dirichlet integral [10]. For i ~ {0, 1} let us define ~i  := {flY: F~ --, R} and 
denote the Euclidean inner product on ~i  by ( ' , ' ) i .  Let 1 u be the 
characteristic function of the set M c F 1. We will regard l u  as an element of 
~0 and ~1. We define a Dirichlet form ~" with domain .~/ on the Hilbert 
space (~i ,  ( "," )i) with ~(1F,, 1F,) = 0 as follows: 

1 
~ ' ( f , g )  = ~  E [ f ( Y ) - f ( x ) ] [ g ( Y ) - g ( x ) ] c ~ ( x , Y ) ,  (1.1) 

x, y~Fi 

for all f ,  g ~ ~ i  and a unique function (conductance) c~ : Ft 2 ~ R + which is 
symmetric and vanishes on the diagonal. We call the operator defined by ~" a 
Dirichlet operator. It is the analog of the classical Laplace operator, and in 
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our case it is also a difference operator. On the other hand, a Dirichlet form 
that vanishes on constants defines a unique conductance (cf. [20, Section 2]). 
The isomorphism between conductances and Dirichlet forms will be denoted 
by ~.  We will only consider Dirichlet forms g~ and conductances c which are 
invariant under q6, that is, g ' ( f o  p, g o p) = g'(f, g) and c(p(x), p(y)) = 
c(x, y) for all f ,  g ~ i ,  P ~ ~ ,  and x, y ~ F 0. The cone of all such 
Dirichlet forms on ~0  is denoted by D. A cone P of positive semidefinite 
forms on ~0  is defined by 

P := {g" - ~r lg ' ,Sr~  D, ~ ( f , f )  >~.gr(f,f) for all f ~.C~o}. 

An embedding Hilbert space (B, ( . , - ) )  is given by B := D -  D and 
(g~,5 r )  -'= trace(E o F), where E, F are the Dirichlet operators of g" and 5 r 
respectively. For5  r -  ~ ~ P we write g" ~< 5E. Since g~ and 5r-are symmetric, 
this coincides with g~(f, f )  ~< 5r(f, f )  for all f ~ ~0,  the Loewner ordering. 
The norm on B is monotone, that is, <g', g~) ~< (~,~r> if ~ ~<SE. 

In our terminology the eigenvalue problem can be formulated as follows. 
For ~ ~ B and f ,  g ~ ~1  we define the linear coupling map • by 

5 
W ( g ' ) ( f ,  g)  := ~] g ' ( f o  q6, go q6). 

i=1 

This defines a Dirichlet form ~ (~ ' )  on ~ 1  with ~(g~X1F, , le,) = 0. Graphi- 
cally W assembles a refined "'grid" F 1 from five coupled copies of the initial 
"grid" F 0. By the definition of our fractal, ~(8")  is also invariant under q6. In 
the next step we eliminate the vertices F~ \ F 0 from the fine "grid" F 1 to 
relate it to a coarse "grid" F 0. For f ~ 0  and ~ ~ P we define the 
nonlinear "trace" map • [10, Section 6.2] by 

• ( ~ ( 8 ~ ) ) ( f , f )  := i n f { ~ ( g ' ) ( g ,  g)lg ~'~ '1 ,  glF0 = f} .  

In physics the action of the map • is called "coarse graining renormalization" 
[11]. In our terms it is the shorted operator. In the setup of [2, Theorem 1] 
the operator to be shorted is W(E), the operator of our Dirichlet form ~ ( ~ ) ;  
the underlying cone of operators is the set of all operators which define a 
form in ~ ( P )  equipped with the Loewner ordering ~< ; and the column 
range of the shorted operator ~(~ t (E) )  has to equal ~0  modulo the 
constants. 

Now, back to our terminology. Let f ~ 0  and ~ ~ p0, the interior of P 
in (B, ( • ,. )1/2). Then the above variational problem has a unique minimiz- 
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ing element H ~ f  ~ ~1.  When ~ is an element of 3 D, the boundary of D, 
there are several minimizing elements. Let H~,f  denote the unique one with 

1/2 minimal ( - , . ) 2  -norm. The linear map f ~ *  H ~ f  will be denoted by 
Hg : -~0 --+-~1. Thus, 

O ( ~ ( g " ) ) ( f , f )  = v g ( 8 " ) ( H , . f .  H , . f ) .  

For 8" ~ D, the map Hg is known in potential theory as the "'harmonic 
kernel" of qr(g') on F 1 \ F 0. The minimal Euclidean norm in its definition 
guarantees a consistent probabilistic interpretation [6, Section 1.6]. The above 
equation is known as the Dirichlet principle. By this principle or by [2, 
Theorem 1] we have H~flFo = f  and EH~fIFI \Fo =- O. This means that 
H g f  solves a "Dirichlet problem" on F 1 \ F 0 with boundary data f on F 0. 

An explicit version of the above formula is given in [1, Formula 7]: Let E '  
denote the operator of xtr(g'), and (P(E') the operator of (I)(xlr(g~)). Further- 
more, let 7r be the orthogonal projection onto -~0 with respect to the 
Euclidean inner product on ~1, and % the corresponding projection onto 
the orthogonal complement of -~0. The adjoint is denoted by (.)*. Then 

¢b ( E ' ) = 7r E ' ~r * - 7r E ' Tr* ( % E ' %* ) + Zro E ' Tr * , (1.2) 

where A + is the Moore-Penrose generalized inverse of the matrix A [24]. 
The right hand side of this equation is a "generalized Schur complement" [5, 
Formula 11]. 

Finally we set A :--- (I) o atr, and our eigenvalue problem is 

3 y >  0 3 ~ ' E  D n P ° : A ( ~ )  = y~'.  (1.3) 

Note that ker 8' equals the constants if and only if ~ ~ P°. So ~ ~ D f-1 P° 
means that 8" is an irreducible Dirichlet form, that is, the underlying graph 
(F 0, {{x, y} ]c(x, y) > 0}) is connected. The existence of a solution of (1.3) 
was shown in [17, Theorem V.5] and its uniqueness was recently proved in 
[26, Th6or~me V.2]. 

Our eigenvalue problem (1.3) fits nicely into a fixed point theory known 
as Hilbert's projective metric on cones (cf. [23]). For ~¢, ~ ~ •° we define 
Hilbert's projective metric h by 

D'/ I .= inf{a > 0l~' ~< a ~ ' ) ,  

:= sup{  > 01 

: =  In 
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Dividing !~ 0 by the constants, a simultaneous diagonalization of ~¢ and ~ '  
shows that [ ~ / ~ ' ]  is the largest eigenvalue of B-1A, where A and B are the 
operators of the forms ~¢ and ~ respectively (cf. Proposition 2.7). The 
function h differs from a metric in the following respects: h(~ ¢, ~q~) = 0 if 
and only if ~¢ and ~ lie on the same ray; for all strictly positive a and/3  we 
have h(tr~ ¢ , / 3~ )  = h(~', ~ ') .  Let $1(0) := { ~  ~ B II1~11 = iI. Then (~1(0) 
n p o ,  h) is a complete metric space [23, Theorem 1.2]. An application of 
Hilbert's metric to our example in [21, Formula 4.2] results in: For all 

~¢, ~ ~ P° there exists a q(s¢, ~q~) ~ (0, 1) such that for all n ~ N, 

h(An(~¢), A " ( ~ ' ) )  ~< 2 .  q(~¢, ~ ' ) "  • h(~¢, ~ ) .  (1.4) 

If ~¢ tends to 0D n 0 P  then q(.a¢, ~ )  tends to 1. This convergence result 
not only implies existence and uniqueness for the original eigenvalue problem 
(1.3), but it also produces an approximation to the solution by sealed iteration 
of A. Numerically this is done with the help of (1.2). 

Section 2 contains various results obtained by studying the action of A on 
D. The connections between central potential theoretic concepts and the 
shorted operator are explained in Section 3. The effective resistance from 
electrical network theory is also considered in this context. The interpretation 
of (1.3) as a dynamical system is the main difference between our use of the 
shorted operator and the setup in [2]. The iteration of A/T can be inter- 
preted as the shorting of an infinite model or potential theoretically as 
homogenization of the fractal's "Laplacian." This is discussed in Section 4. 

2. SELECTED BENEFITS FROM D c P 

The following selected list of results on A rely on the fact that D has a 
more specific structure than P. Let us denote the infimum of a function f 
and the constant function 1 by f/x 1. With this notation we can express the 
so-called Markov property of Dirichlet forms: 

D = {~'~ p l ~ ' ( f  A 1, f A  1) <~g'(f,f) forallf~.~o}. 

In terms of linear algebra, D contains those forms of P that are also 
M-matrices. It is the specific sign structure of these M-matrices that we are 
going to take advantage of (cf. [13, Section 2.5]). In probabilistic potential 
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theory the elements of D correspond to "'symmetric Markov processes" with 
the (one step) transition probability 

c(x, y) 
P ( x ,  y )  := - -  with c(x) := c(x, z) 

c ( x )  

for all x, y ~ F 0 [6, Section 2.6]. At the same time an element of D 
corresponds to an electrical resistor network given by the terminals F 0 and 
the conductances c(x, y) on the edges {{x, y} c Fo2[C(X, y ) >  0} as de- 
scribed in [6, Section 3.1]. In the present example the analytic terminology 
turned out to be very effective, whereas the physical and probabilistic view 
gave much of the intuition. The latter approach is especially well suited for 
pathwise arguments on a network. 

In our specific example, •---R 2, since (~ allows only two different 
conductances. The set D can be identified with N2+ by defining the first 
component of (a, b) to denote the conductance on the sides of F 0 and the 
second component to give the conductance on the diagonals of F 0. Further- 
more, P = {(a, b) ~ R z l a >/0, a + b >/0}, since the Dirichlet form de- 
fined by (a, b) has an eigenvalue 0, another eigenvalue 4a, and twice the 
eigenvalue 2(a + b) (cf. Proposition 2.7). 

PI~OPOStTION 2.1 [19, Theorem 2.2]. 

(a) A(D) c D. 
(b) A ~ ~(D). 

Proof. (a): Because of the Dirichlet principle and the Markov property 
we derive 

A(~c ) ( f  A 1, f / x  1) = ~(~¢)(H~, ( f  A 1), H~,(fA 1)) 

• (s~)((H~,f) A 1, (Hgf) A 1) 

<<. qP(dd)( H~,f , H ~ f )  

= A(W)(f ,  f ) .  

This proves the Markov property of A(~¢). 
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(b): Consider ~¢, ~ '  ~ D and f ~ ~o.  Again by the Dirichlet principle 

A ( z d ) ( f , f )  - A ( ~ ' ) ( f , f )  = W(sC)( H~f , H.,f) - ~ (  ~ ) (  H~f  , H~f)  

< ~ (~¢) (Hj f ,  H j f )  - ~ ( , ~ ) ( H j f ,  Hmf) 

III ,I, III • I1~ - ~ 1 1 .  IIn~,fll~, 

where II1" III denotes the operator norm. The minimum principle for the 
harmonic function H j f  (cf. [20, Proposition 2.4]) gives us 

IIHmflll = E (H~f)2(x)  
x~F o 

< Ilfll~" IF~[, 

where IFII denotes the number of elements in F 1, and I1" II~ the sup norm. A 
similar argument for A ( ~ X L  f )  - A(~eXL f )  results in the same bound. 
Putting these facts together, we arrive at 

IA(ag) ( f ,  f )  - A ( ~ ) ( f , f ) l  ~ III • III • Ilfll~" lEd" I1~ -~11.  

This proves the desired continuity. 

The continuity properties of A on P are weaker in general [2, p. 63]. Our 
next result complements Proposition 2.1(a). 

PROPOSITION 2.2. A(D A P°) c D °. 

Proof. As an abbreviation of l(x ~ let us use 8 x. Because ~(R~+) = D, we 
O • • ~ • know that ~" ~ D if and only If ~'(8 x, By) < 0 for all x, y F 0 wath x 4= y. 

Therefore, let ag ~ D n P° and x, y ~ F 0 with x =/= y. We denote the 
operator of ~(a¢) by xI*(A). By the definition of A and the fact that 
xI*(A) H~, 8~ I F~,, r0 = 0 we compute 

= 
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Since ,~' ~ D N P°, it is irreducible. The minimum principle and x ~= y now 
imply ~ ( A ) H ~ , ~ ( y )  < O. 

Lindstr0m used probabilistic pathwise arguments to prove for all nested 
fractals that the cone L c P° with 

L : = { ( a , b )  ~R~+la>~b} 

is also A-invariant. Together with the Propositions 2.1, 2.2 and Brouwer's 
fixed point theorem, this implies the following result. 

PROPOSITION 2.3 [17, Theorem V.5]. There exists an ~r~  ff)o and a 
T > 0 such that A(9-) = 3~. 

It is well known that A is positively homogeneous and D-monotone [3, 
Theorems 10, 5]. This implies, as in [11, Corollary 3.7], that if ~ ~ D° and 
a > 0 with A(~') = ot~, then a = % Therefore, we define 

Fix := {g' ~ P ° I A ( g ' )  = Tg'}.  

COROLLARY 2.4. FIX c D °. 

Proof. Dividing the eigenvalue equation by 3,, we get a fixed point 
equation. The corresponding fixed point problem on P° equipped with a 
close relative of Hilbert's metric allows us to conclude that Fix is arcwise 
connected, since Do is [19, Corollary 4.12]. Now assume that there exists an 
.~¢ ~ FIX ¢q (po \ Do). Then the arc of fixed points in po that connects ~¢ and 
~ ,  which exists by Proposition 2.3, must intersect 9 D ~ po. But according to 
Proposition 2.2 there can be no fixed point in this set. • 

Recently, Sabot proved the uniqueness of eigenvectors of A for all nested 
fractals. 

PROPOSITION 2.5 [26, Thbor~me V.2]. Let j r  be as in Proposition 2.3. 
Then Fix = { a,~" Iot > 0}. 

This result relies heavily on a specific decomposition of an irreducible 
Diriehlet form ~¢ into its trace ~t on a given subset M and its complement 

5~'p [2, Theorem 2]. The form ~ is the reason why the Schur complement is 
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called a complement and it is even better known in potential theory than the 
trace. It is referred to as the "part" of the Dirichlet form .a¢ on the 
complement of M. In probability theory defining parts is known as "'killing of 
Markov processes" [10, Theorem A.2.10]. 

A more detailed analysis of our example shows that the source of its nice 
h-contraction in (1.4) is its strict superadditivity in certain directions. In this 
sense the concavity of the shorting operation is crucial, and (1.4) is partly a 
concavity statement. For ~', ~ '  ~ P° let us define 

v ap .  

According to [2, Theorem 4] the trace map is superadditive, hence A is, and 
there exists an <9~ ~ P such that 

= ) + A ( V )  

Since Ais positively homogeneous, we conclude 

h ( Z )  = [ z / 2 l h ( 2 )  + A ( V )  

A similar equation can be derived for [~'/-~'1. Together with the definition of 
h we see that A contracts h if it is strictly positive [that is, A(P) c po] 
and /o r  it is strictly superadditive [that is, A ( ~  + ~ ' ) ( f ,  f )  > A(~ ) ( f ,  f )  + 
A(~) ( f , f )  for all f ~ 0  and all linearly independent ~ ,  ~'].  Concavity can 
be stated in terms of the first derivative. So let us have a look at the Fr6chet 
derivative of A. 

The cone P is embedded in a Banach space B and it is known that 
DA(~¢)(~),  the Fr6chet derivative of A at ~¢ ~ po applied to ~ '  ~ B, is 
given by ~(~ ' ) (H~,"  , H~," ) because of the corresponding formula for the 
derivative of the trace map ¢ [3, Theorem 12]. A first consequence is 
DA(~')(P) c P. 

PROPOSITION 2.6. Let z¢ ~ D °. Then DA(~CXD \ {0}) c ~o. 

Proof. Let ~¢ ~ D °, ~ '  ~ D \ {0}, and f ~ ~0  not constant. Then 

[ DA(~¢)(.~')] ( f ,  f )  = + ( . ~ ) (  H~,f, H~/f) 
5 

= E a ~ ' ( H ~ , f o  ¢6, H~,fo¢6). 
i=1 
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Choose x ~ F o such that f ( x )  = maxy~ Fo f(Y)" There exists 1 ~<j ~< 5 with 
~ ( x )  = x. Define = ( ~ )  =: c. Then 

1 
, ~ ( H ~ , f o ~ , H ~ f o ~ )  = ~ E 

y ,  z E F  o 

[ H~,f o ~ (  y) - H~f  o Oj( z)]2c(  x, y)'. 

Since ~ '  is irreducible, the minimum principle for the harmonic function 
H~f  and ~j(F 0) n F 0 = {x} imply 

f ( x )  = H a f o ~ ( x  ) > H ~ , f o ~ ( y )  ( y  ~ F o \ { X } ) .  

By definition (~ acts transitively on F 0. Thus c (x )=  0 implies ~ '  = 0. 
Combining these facts, we arrive at [DA(~ / ) (~ ) ] ( f , f )>  0. Hence the 
kernel of DA(~cX~ ') consists only of constants, that is, DA(~¢)(~)  ~ P °. • 

In general it is not true that DA(~acXD) c D °, although DA(~CXD °) c P°. 
The behavior of DA is for example important for the uniqueness of eigenvec- 
tors of A [19, Theorem 4.9] or the contraction of Hilbert's projective metric 
in certain regions [22, Proposition 3.3]. 

The cone D is always polyhedral, that is, the intersection of finitely many 
half spaces. Its extremal rays are spanned in our case by those forms 
corresponding to (1, 0) and (0, 1). It is not obvious that the cone D is also 
polyhedral. Proposition 2.7 makes use of the connection between Dirichlet 
forms and adjacency matrices of graphs and is valid for every nested fractal. 

PROPOSITION 2.7 [21, Proposition 3.2]. All elements of B commute, and 
D is a simplicial cone in •. 

Proof. A conductance c on F 0 defines a graph F(c) with vertex set F 0 
and edge set {{x, y} c F o I c(x, y) > 0}. Hence, F(1) is the complete graph 
with vertices F o. To each graph F = (F0, E) we can associate a conductance 
c which is 1 on E and 0 elsewhere. This defines a Dirichlet form on F 0 by 
(1.1). 

The symmetry group (~ splits the edges of F(1) into orbits E 1 . . . . .  E I. 
Each orbit E i defines a graph Fi, a conductance g ,  and a Diriehlet form ~/ 
with operator A i. It suflqces to prove that the A 1 . . . . .  A t commute, since D 
is spanned by d 1 . . . . .  -~l. We remark that ci(x) = c i ~ R because F i is 
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g6-invariant and q6 acts transitively on F 0. Let I denote the identity map on 
~0,  and set B i := g I  - A,  for all 1 ~< i ~< I. Then the (A t) commute if and 
only if the (S~) do. The (B i) are the adjacency matrices of the (Fi). 

For all x , y  ~ F  0 a n d l  ~<i~<l, 

z ~ F  o 

The latter sum can be interpreted as the number of paths of length 2 from x 
to y in F(1) with the first step along Fj and the second along F i. The 
reflection p~, ~ maps those paths one to one onto the paths of length 2 from 
y to x in F(1) with the first step along Fj and the second along F i. Hence, 

z ~ F o  

Since B~ and Bj are symmetric, we arrive at 

z ~ F  o 

= <BjBiSx, ~ ) .  

Next, we prove the result about the geometry of P. l_~t f l  . . . .  , fk be the 
eigenfunctions arising from the simultaneous diagonalization of all elements 
of B, which exist by the above commutation result [12, Theorem 1.3.19]. 
Then the spectral representation 

E : B  ~ R k, 

" . . . . .  

is one to one and linear. In particular, ~(P)  = Rk+ N E ° ~(R mm 8). Since Rk+ 
is polyhedral and dim ~ o ~ .~(~dim B,) = dim •, ~(P)  is a polyhedral cone in 
R k of dimension dim B. Hence, P is simplicial in B. • 

In the latter proof it is sufficient to assume that q6 acts transitively on F 0 
instead of generating ~ by { Px, y I x, Y ~ Fo, x ~ y}. 
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3. POTENTIAL THEORETIC REMARKS 

In this section we will try to explain why the shorted operator is so easily 
expressed in potential theoretic terms and what this has to do with the 
concept of effective resistance from electrical network theory. It is used very 
often in connection with shorted operators, because of its invariance under 
¢P, the elimination of vertices in an electrical network. A shorted operator can 
be expressed in terms of the "parallel sum" of operators and vice versa [1, 
Theorem 4; 3, Theorem 13]. The latter concept was studied potential 
theoretically in [8]. 

The Schur complement formula in Section 1 can be modified. By [24, 
Lemma 2.2.4(iii)] the Moore-Penrose generalized inverse can be replaced by 
any generalized inverse. On the other hand, for an invertible E l the inversion 
formula for partitioned matrices, [12, p. 18], and (1.2) imply ~(E1) -1 = 
7rE[17r *. So there might be some generalized inverse (-)- such that 

cp (~ , ) -  = 7r~-~r* forall ~ '  e po. (3.1) 

In potential theory a very prominent generalized inverse of a Dirichlet 
operator is its Green's function. Let us assume that ~ is a Dirichlet form on 
F 1 whose kernel consists only of constants. We choose a reference point 
x 1 ~ F 0 and restrict ~ '  to the space of all real valued functions on F 1 that 
vanish in x 1. Let B denote the Dirichlet operator of the old form and ~T{XX} 
the orthogonal projection onto functions that vanish in Xx; then 1r{x~}BTr~l } is 
the Dirichlet operator of the new form, and 

C : =  

is called the Green's function of B on F 1 \ {xl}. By the standard link 
between potential theory and symmetric Markov processes, the Green's 
function can be interpreted in terms of expected local times [7, Formula 7]. 
The generalized inverse G indeed fulfils (3.1) [20, Proposition 3.3]. 

Another generalized inverse frequently used in connection with shorted 
operators is the effective resistance R(x,  y) between two different vertices x 
and y of an electrical network. It is also known as the "Campbell-Youla 
inverse" [27, Formula 33]. Its popularity is due to the fact that it also fulfils 
(3.1), as we will see. Following Doyle and Snell [6, p. 62], we define the 
effective resistance via the Dirichlet form. Let x, y ~ F o with x 4= y, and 
define ex, y by ex, y(x) = 1, ex, y(y) = 0, and ex, y harmonic with respect to 
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B on F 1 \ {x, y}. Such a function is called an "equilibrium potential" in 
potential theory. Now 

R( x, y )  -1 :=,~(ex ,  y,ex,  y). 

Since e x ~'is the solution of a certain Dirichlet problem, the Dirichlet 
principle'tells us that 

~q~( f , f )  } 
R ( x , y ) - i  = i n f  [ f ( x ) - f ( y ) ] 2  : f e ~ l , f ( x ) - - g f ( Y )  . 

By definition we have B(G8 x) = ~,~ - 8x. Hence G(8 x - 8y) is also har- 
monic on F 1 \ {x, y} with respect to ~ ' .  Thus, 

R(x, y)- '  ~'(C(~x - ~ ) ,  c ( ~  - ~ ) )  
2 [ c (a~ -  a y ) ( y ) -  c ( a ~ -  ~)(x)] 

=<G(~x - ~y), ~x - ~y)l 1. 

We finally arrive at 

R(x, y)=(C(Sx - ~) ,  8~ - ~y), (3.2) 

In particular, R(x,  x 1) = ( G ~ ,  8~>1. The norm defined by G is known in 
potential theory as "'Maeda's energy norm" [18, Corollary 4.5, Theorem 4.2]. 
So the effective resistance between x and y is nothing else than Maeda's 
energy norm of 8 x - By. The multiple v of ~ - t~y with Gu = ex, y is called 
an "equilibrium measure." On the other hand we can reproduce G from R 
by the second polarization identity. 

<G~x, ~y>l = {[ a(  x, x1) 4- n(  y, Xl) - n(  x, y ) ] .  

So R is just another way to write down G, and vice versa. Since (3.1) holds 
for G, it also holds for R. 

The Green's function G defines a scalar product. In particular, 

d(x, y) = R(x, y)1/2 ~(x,  x) = 0, 
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for all x, y ~ F 1, defines a metric on F l, the so called effective resistance 
metric [14, Definition 0.5]. In the light of (3.2) it is a distance arising from an 
inner product. In this sense a Dirichlet form defines a geometry on a graph. 
We remark that R does not depend on Xl, although G does. 

We have seen two ways to deal with effective resistances in potential 
theory: as a Dirichlet norm of equilibrium potentials and as the energy norm 
of equilibrium measures. A third, more general way is to view effective 
resistance as a "relative capacity." Consider an 5~' ~ D f3 po and x, y ~ F 0 
with x q= y. Let .acF0, Cx} denote the restriction of ~¢ to "~F0 ", {~} = {f ~-~01 
f(x) = 0}. Now define 

CaPvo',/~I(Y) := inf{~eo',~x~(f,f) f ~eo',lx~, f(Y) >1 1}. 

Then 

CaPe0,.tx/(y) = R( x, y)-l. 

We name CaPF0-,txj(Y) the capacity of y relative to x. 
All three concepts--Dirichlet forms, energy forms, and capacities--are 

central in potential theory. They provide three different ways to understand 
the shorted operator and /or  effective resistance. The interpretations as 
electrical networks, Dirichlet forms, and distances are by no means new. 
They correspond for example to the models C, B, and D in [9]. The main 
potential theoretic message therefore is the dominant role of Green's func- 
tions and energy forms together with their standard probabilistic interpreta- 
tions. 

4. SHORTING INFINITE MODELS 

Graphically An(5¢) can be interpreted in the following way: Refine the 
initial "grid" F 0 n-fold, that is F, := W"(F0). Then refine the Dirichlet form 
~¢' ~ D n-fold, that is, ~¢, := ~"(.a¢). Now eliminate all vertices of F~ \ F 0 
from Fn by 

A " ( ~ ) ( f , f )  = inf{,~.(g, g ) l g : / 7 ,  --, a ,  glFo =f}, 
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as in [20, Formula 6.4]. In this sense the renormalization limit 

lira (A/3")n(,~ ¢) =:~¢~ (4.1) 

is the result of eliminating all vertices but those in F 0 from an infinite "grid" 
F := LI, e N/7,. It is a solution of the eigenvalue problem A(.~¢'o0) = 3"~¢'=. 

More precisely, we define a Dirichlet form (,,7, ~ )  on L2(X, Ix) using the 
fact that F is dense in X. We set ,70 := z'c® and 

X , ~ )  -n  } := f ~  @~( sup 3' ~ , ( f l r . ,  f F ) < o~ , 
hEN 

J ( f , f )  == lim "/-",Y,(flF°,flF,)- gt --~ oo 

(4.2) 

This is a local, regular Dirichlet form [16, Theorem 4.14]. In particular, for 
f we have 

~ = inf{.Z(g, g)l  g ~ ,  glFo = f } -  

This equality coincides with the above shorting of an infinite "grid." For 
f :  F, ~ •, we even have 

3'-"J.(f  , f )  = J (  Hx .. F J ,  Hx .. F J ) ,  (4.3) 

where H x , F.f is a function harmonic on X \ F n with respect to J and 
boundary data f on F.. This is due to the fact that ~¢~ is an eigenvector of A. 
For n = 0, 1 we recover our eigenvalue equation. 

The result (4.1) corresponds to a "homogenization" property in the sense 
of [15]: We start with So :=,at and try the construction (4.2). This time we 
get the "F-convergence" of ( f , ) , ~ N  to the limit ,7' = J .  But we lose the 
primed version of (4.3). Nevertheless the original version of (4.3) still holds. 
In this sense the limiting form ,ff is more homogeneous than the approximat- 
ing forms ( f , ) ,  ~ ~, that is, homogenization took place. 

The concepts of Dirichlet operator, Green's function, effective resistance, 
Maeda's energy norm, and relative capacity can all be formulated for the 
continuous model as well, and their interrelations remain the same with a 
little more notational precaution. In particular the connection between effec- 
tive resistance and the energy norm remains valid. Again an effective resis- 
tance defines an energy norm, which defines a Dirichlet form. In transient 
cases, points have to be replaced by nonpolar sets [18, 25]. 
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