
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 341 (2008) 416–420

www.elsevier.com/locate/jmaa

Common fixed point results for noncommuting mappings without
continuity in cone metric spaces

M. Abbas a,1, G. Jungck b,∗

a Centre for Advanced Studies in Mathematics and Department of Mathematics, Lahore University of Management Sciences,
54792-Lahore, Pakistan

b Department of Mathematics, Bradley University, Peoria, IL 61625, USA

Received 26 March 2007

Available online 11 October 2007

Submitted by B. Sims

Abstract

The existence of coincidence points and common fixed points for mappings satisfying certain contractive conditions, without
appealing to continuity, in a cone metric space is established. These results generalize several well-known comparable results in
the literature.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

The study of common fixed points of mappings satisfying certain contractive conditions has been at the centre of
vigorous research activity. In 1976, Jungck [4], proved a common fixed point theorem for commuting maps, gener-
alizing the Banach contraction principle. This theorem has many applications but suffers from one drawback—the
results require the continuity of one of the two maps involved. Sessa [11] introduced the notion of weakly commuting
maps. Jungck [5] coined the term compatible mappings in order to generalize the concept of weak commutativity and
showed that weakly commuting maps are compatible but the converse is not true. Pant [9] defined R-weakly commut-
ing maps and proved common fixed point theorems, assuming the continuity of at least one of the mapping. Kannan
[12] proved the existence of a fixed point for a map that can have a discontinuity in a domain, however the maps
involved in every case were continuous at the fixed point. Jungck [7,8] defined a pair of self mappings to be weakly
compatible if they commute at their coincidence points. In recent years, several authors have obtained coincidence
point results for various classes of mappings on a metric space, utilizing these concepts. For a survey of coincidence
point theory, its applications, comparison of different contractive conditions and related results, we refer to [1,6,9,10]
and references contained therein. Guang and Xian [3] generalized the concept of a metric space, replacing the set of
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real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different
contractive conditions. The aim of this paper is to present coincidence point results for two mappings which satisfy
generalized contractive conditions. Common fixed point theorems for a pair of weakly compatible maps, which are
more general than R-weakly commuting, and compatible mappings are obtained in the setting of cone metric spaces
without exploiting the notion of continuity. These theorems generalize the results of Guang and Xian [3], Jungck [4],
Kannan [12] and Pant [9].

Consistent with Guang and Xian [3], the following definitions and results will be needed in the sequel.
Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, nonempty and P �= {0};
(b) a, b ∈ R, a, b � 0, x, y ∈ P implies ax + by ∈ P ;
(c) P ∩ (−P) = {0}.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and only if y − x ∈ P . A cone P

is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 � x � y implies ‖x‖ � K‖y‖. (1.1)

The least positive number satisfying the above inequality is called the normal constant of P , while x � y stands for
y − x ∈ intP (interior of P ).

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d :X × X → E satisfies:

(d1) 0 � d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X,d) is called a cone metric space. The concept of a cone metric space is
more general than that of a metric space.

Definition 1.2. Let (X,d) be a cone metric space. We say that {xn} is:

(e) a Cauchy sequence if for every c in E with c 
 0, there is N such that for all n,m > N , d(xn, xm) � c;
(f) a Convergent sequence if for every c in E with c 
 0, there is N such that for all n > N , d(xn, x) � c for some

fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. It is known that
{xn} converges to x ∈ X if and only if d(xn, x) → 0 as n → ∞. The limit of a convergent sequence is unique provided
P is a normal cone with normal constant K (see Guang and Xian [3] and [2]).

Definition 1.3. Let f and g be self maps of a set X. If w = f x = gx for some x in X, then x is called a coincidence
point of f and g, and w is called a point of coincidence of f and g.

Proposition 1.4. Let f and g be weakly compatible self maps of a set X. If f and g have a unique point of coincidence
w = f x = gx, then w is the unique common fixed point of f and g.

Proof. Since w = f x = gx and f and g are weakly compatible, we have f w = fgx = gf x = gw: i.e., f w = gw is
a point of coincidence of f and g. But w is the only point of coincidence of f and g, so w = f w = gw. Moreover
if z = f z = gz, then z is a point of coincidence of f and g, and therefore z = w by uniqueness. Thus w is a unique
common fixed point of f and g. �



418 M. Abbas, G. Jungck / J. Math. Anal. Appl. 341 (2008) 416–420
2. Common fixed point theorems

In this section we obtain several coincidence and common fixed point theorems for mappings defined on a cone
metric space.

Theorem 2.1. Let (X,d) be a cone metric space, and P a normal cone with normal constant K . Suppose mappings
f,g :X → X satisfy

d(f x,fy) � kd(gx,gy), for all x, y ∈ X, (2.1)

where k ∈ [0,1) is a constant. If the range of g contains the range of f and g(X) is a complete subspace of X, then f

and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible, f and g have a unique
common fixed point.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such that f (x0) = g(x1). This can be done, since the
range of g contains the range of f . Continuing this process, having chosen xn in X, we obtain xn+1 in X such that
f (xn) = g(xn+1). Then

d(gxn+1, gxn) = d(f xn,f xn−1) � kd(gxn, gxn−1)

� k2d(gxn−1, gxn−2) � · · · � knd(gx1, gx0).

Then, for n > m,

d(gxn, gxm) � d(gxn, gxn−1) + d(gxn−1, gxn−2) + · · · + d(gxm+1, gxm)

� (kn−1 + kn−2 + · · · + km)d(gx1, gx0)

� km

1 − k
d(gx1, gx0).

From (1.1),

∥∥d(gxn, gxm)
∥∥ � km

1 − k
K

∥∥d(gx1, gx0)
∥∥,

which implies that d(gxn, gxm) → 0 as n,m → ∞. Hence {gxn} is a Cauchy sequence. Since g(X) is complete, there
exists a q in g(X) such that gxn → q as n → ∞. Consequently, we can find p in X such that g(p) = q . Further,

d(gxn,fp) = d(f xn−1, fp) � kd(gxn−1, gp),

which from (1.1) implies that∥∥d(gxn,fp)
∥∥ � Kk

∥∥d(gxn−1, gp)
∥∥ → 0, as n → ∞.

Hence d(gxn,fp) → 0 as n → ∞. Also, d(gxn, gp) → 0 as n → ∞. The uniqueness of a limit in a cone metric space
implies that f (p) = g(p). Now we show that f and g have a unique point of coincidence. For this, assume that there
exists another point q in X such that f q = gq . Now

d(gq,gp) = d(f q,fp) � kd(gq,gp),

which gives ‖d(gq,gp)‖ = 0 and gq = gp. From Proposition 1.4, f and g have a unique common fixed point. �
Example 2.2. Let E = R2, P = {(x, y) ∈ E: x, y � 0} ⊂ R2, d :R × R → E such that d(x, y) = (|x − y|, α|x − y|),
where α > 0 is a constant. Define

f x =
{ α

β+1x, x �= 0,

γ, x = 0,

and

gx =
{

αx, x �= 0,
γ, x = 0,
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where β � 1, and γ �= 0. It may be verified that d(f x,fy) � kd(gx,gy), for all x, y ∈ X, where k = 1
β

∈ (0,1].
Moreover f and g have a coincidence point X.

In above example, f and g do not commute at the coincidence point 0, and therefore are not weakly compatible.
And f and g do not have common fixed point. Thus, this example demonstrates the crucial role of weak compatibility
in our results.

Theorem 2.3. Let (X,d) be a cone metric space and P a normal cone with normal constant K . Suppose that the
mappings f,g :X → X satisfy the contractive condition

d(f x,fy) � k
(
d(f x,gx) + d(fy,gy)

)
, for all x, y ∈ X, (2.2)

where k ∈ [0, 1
2 ) is a constant. If the range of g contains the range of f and g(X) is a complete subspace of X, then

f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, f and g have a unique
common fixed point.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such that f (x0) = g(x1). This can be done since the
range of g contains the range of f . Continuing this process, having chosen xn in X, we obtain xn+1 in X such that
f (xn) = g(xn+1). Then

d(gxn+1, gxn) = d(f xn,f xn−1) � k
(
d(f xn, gxn) + d(f xn−1, gxn−1)

)
= k

(
d(gxn+1, gxn) + d(gxn, gxn−1)

)
.

So

d(gxn+1, gxn) � hd(gxn, gxn−1),

where h = k
1−k

. For n > m,

d(gxn, gxm) � d(gxn, gxn−1) + d(gxn−1, gxn−2) + · · · + d(gxm+1, gxm)

�
(
hn−1 + hn−2 + · · · + hm

)
d(gx1, gx0)

� hm

1 − h
d(gx1, gx0),

which from (1.1) implies that ‖d(gxn, gxm‖ � km

1−k
K‖d(gx1, gx0)‖. Then d(gxn, gxm) → 0 as n,m → ∞, and {gxn}

is a Cauchy sequence. Since g(X) is a complete subspace of X, there exists q in g(X) such that gxn → q , as n → ∞.
Consequently we can find p in X such that g(p) = q . Thus,

d(gxn,fp) = d(f xn−1, fp) � kd(gxn−1, gp),

which implies that∥∥d(gxn,fp)
∥∥ � Kk

∥∥d(gxn−1, gp)
∥∥ = 0, as n → ∞.

Hence d(gxn,fp) → 0 as n → ∞. Also, d(gxn, gp) → 0 as n → ∞. The uniqueness of a limit in a cone metric space
implies that f (p) = g(p). Now we show that f and g have a unique point of coincidence. For this, assume that there
exists another point q in X such that f q = gq . Now

d(gq,gp) = d(f q,fp)

� k
(
d(f q,gq) + d(fp,gp)

)
,

which gives ‖d(gq,gp)‖ = 0 and gq = gp. From Proposition 1.4, f and g have a unique common fixed point. �
Theorem 2.4. Let (X,d) be a cone metric space, and P a normal cone with normal constant K . Suppose that the
mappings f,g :X → X satisfy the contractive condition

d(f x,fy) < k
(
d(f x,gy) + d(fy,gx)

)
, for all x, y ∈ X, (2.3)

where k ∈ [0, 1
2 ) is a constant. If the range of g contains the range of f and g(X) is a complete subspace of X, then

f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, f and g have a unique
common fixed point.
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Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such that f (x0) = g(x1). This can be done, since the
range of g contains the range of f . Continuing this process, having chosen xn in X, we obtain xn+1 in X such that
f (xn) = g(xn+1). Then

d(gxn+1, gxn) = d(f xn,f xn−1) � k
(
d(f xn, gxn−1) + d(f xn−1, gxn)

)
� k

(
d(gxn+1, gxn) + d(gxn, gxn−1)

)
.

So

d(gxn+1, gxn) � hd(gxn, gxn−1),

where h − k
1−k

. For n > m,

d(gxn, gxm) � d(gxn, gxn−1) + d(gxn−1, gxn−2) + · · · + d(gxm+1, gxm)

�
(
hn−1 + hn−2 + · · · + hm

)
d(gx1, gx0)

� hm

1 − h
d(gx1, gx0).

Following an argument similar to that given in Theorem 2.3, we obtain a point of coincidence of f and g. Now we
show that f and g have a unique point of coincidence. For this, assume that there exist p and q in X such that fp = gp

and f q = gq . Now

d(gq,gp) = d(f q,fp)

� k
(
d(f q,gp) + d(fp,gq)

) = 2kd(gq,gp)

which implies that d(gq,gp) = 0 and gq = gp. From Proposition 1.4, the result follows. �
The above theorem generalizes Theorem 4 of [3], which itself is a generalization of a result of [12].
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