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We discuss the application of the Hojman’s Symmetry Approach for the determination of conservation 
laws in Cosmology, which has been recently applied by various authors in different cosmological models. 
We show that Hojman’s method for regular Hamiltonian systems, where the Hamiltonian function is 
one of the involved equations of the system, is equivalent to the application of Noether’s Theorem 
for generalized transformations. That means that for minimally-coupled scalar field cosmology or other 
modified theories which are conformally related with scalar-field cosmology, like f (R) gravity, the 
application of Hojman’s method provide us with the same results with that of Noether’s Theorem. 
Moreover we study the special Ansatz. φ (t) = φ (a (t)), which has been introduced for a minimally-
coupled scalar field, and we study the Lie and Noether point symmetries for the reduced equation. 
We show that under this Ansatz, the unknown function of the model cannot be constrained by the 
requirement of the existence of a conservation law and that the Hojman conservation quantity which 
arises for the reduced equation is nothing more than the functional form of Noetherian conservation 
laws for the free particle. On the other hand, for f (T ) teleparallel gravity, it is not the existence of 
Hojman’s conservation laws which provide us with the special function form of f (T ) functions, but the 
requirement that the reduced second-order differential equation admits a Jacobi Last multiplier, while 
the new conservation law is nothing else that the Hamiltonian function of the reduced equation.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The source for the late-time cosmic acceleration [1–4] has been 
attributed to an unidentified type of matter–energy with a neg-
ative parameter in the equation of state, the dark energy. The 
cosmological constant, �, is the simplest candidate for dark en-
ergy with a parameter in the equation of state, w� = −1. However, 
the cosmological constant suffers from two major problems. They 
are the fine tuning and the coincidence problems [5,6]. Conse-
quently other dark energy candidates have been introduced, such 
as cosmologies with time-varying � (t), quintessence, Chaplygin 
gas, matter creation, f (R) gravity and many others. This status of 
art imposes a discrimination among the various cosmological mod-
els and the search for new approaches to find out exact solutions 
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to be matched with data. In particular, one of the issue is that cos-
mological models should come out from some first principles in 
order to be related to some fundamental theory.

Below we restrict our consideration to a spatially flat
Friedmann–Robertson–Walker (FRW) spacetime with line element

ds2 = −dt2 + a2 (t)
(

dx2 + dy2 + dz2
)

. (1)

Let us start our considerations from cosmological solutions de-
rived from General Relativity (GR). Standard GR provides us with a 
set of second-order differential equations. Consider a Riemannian 
manifold M4, induced with a metric tensor gij , and GR with cos-
mological constant, �. The Action integral of the field equations is 
as follows:

S =
∫

dx4√−g (R − 2�) , (2)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where R is the Ricci scalar of M4. For the spacetime, (1), the Ricci 
scalar is

R = 6

[
ä

a
+

(
ȧ

a

)2
]

, (3)

and from the variational principle for the Action integral, (2), we 
have the set of differential equations,

−3aȧ2 + 2a3� = 0 (4)

and

ä + 1

2a
ȧ2 − a� = 0, (5)

where ȧ = da/dt . It is well known that the solution of the system 
(4), (5) is

a (t) = a0 exp

[√
2�

3
t

]
(6)

which is the de Sitter solution. In terms of dynamics, the system 
(4), (5) is that of a one-dimensional hyperbolic oscillator for which 
equation (4) can be interpreted as the Hamiltonian constraint on 
the oscillator. There are two ways to observe this. The first way 
is to apply the “coordinate transformation” a (t) = r (t)

2
3 . When we 

use this transformation, the system, (4), (5), reduces to the sim-
plest form,

−1

2
ṙ2 + ω2

2
r2 = 0 , r̈ − ω2r = 0 with ω2 = 3

2
�. (7)

The second way is to study the point symmetries. We consider the 
Noether point symmetries of the Lagrangian of the field equations. 
The Lagrangian which follows from (2) is

L (a, ȧ) = 3aȧ2 + 2�a3 (8)

and we can easily see that this admits five Noether point sym-
metries. Moreover, because L (a, ȧ) admits the Noether algebra 
of maximal dimension, this indicates that L (a, ȧ) can describe 
two systems: the one-dimensional free particle and the one-
dimensional linear equation1 [7]. However, as the potential in 
L (a, ȧ) is not constant, we can say that the dynamical system is 
the one-dimensional linear system and, specifically, that of the hy-
perbolic oscillator, when � is a positive constant.

Consider now as a candidate for dark energy a quintessence 
scalar field with action

Sφ =
∫

dx4√−g

(
−1

2
gμνφ;μφ;ν + V (φ)

)
. (9)

Consequently, for a model with a scalar field, the Action integral 
of the field equations is

S =
∫

dx4√−g R + Sφ,

and for the FRW spacetime, (1), the field equations comprise the 
set of differential equations,

−3aȧ2 + 1

2
a3φ̇2 + V (φ) = 0, (10)

and

ä + 1

2a
ȧ2 + a

2
φ̇2 − aV (φ) = 0, (11)

1 They are mathematically equivalent under a point transformation, but we prefer 
to maintain a physical distinction.
where the scalar field, φ (t), satisfies the equation

φ̈ + 3

a
ȧφ̇ + V (φ),φ = 0. (12)

Similarly equation (10) can be viewed as the Hamiltonian con-
straint2 of equations (11) and (12). In order that we can study the 
(Liouville) integrability of the Hamiltonian system (10)–(12), we 
have to study the existence of conservation laws. As the system has 
dimension two, being the configuration space Q ≡ {a, φ}, and (10)
can be seen as a conservation law, we have to determine the exact 
form of the potential V (φ) in which the system admits additional 
conservation laws. We remark that Liouville integrability means 
that the field equations can be reduced to quadratures from which 
we can seek for determining the solution of the scalar factor, a (t), 
in a closed form. The most common method to determine con-
servation laws for Hamiltonian systems is the well-known Noether 
Symmetry Approach. This has lead many researchers to the study 
of the Noether symmetries for dynamical system (10)–(12) (see for 
example [8–11] and reference therein).

Recently, in [12], it has been proposed that the unknown po-
tential of the scalar field be constrained by the existence of Ho-
jman conserved quantities. The results have been applied also to 
the cosmological scenario with a nonminimally coupled scalar-field 
model [13], in f (R)-gravity in the metric formalism [14] and in 
f (T )-gravity [15]. In what follows we follow the notation by [12,
13].

Hojman proved that, if a system of second-order differential 
equations,

q̈i = F i
(

t,qk, q̇k
)

, (13)

is invariant under the transformation,

q′ i = qi + Xi
(

t,qk, q̇k
)

, (14)

then the quantity Q
(
t,qi, q̇i

)
with form

Q = ∂ Xi

∂qi
+ ∂

∂q̇i

(
dXi

dt

)
(15)

for

∂ F i

∂q̇i
= 0, (16)

or

Q = 1

γ

∂
(
γ Xi

)
∂qi

+ ∂

∂q̇i

(
dXi

dt

)
(17)

for

∂ F i

∂q̇i
= − d

dt
lnγ , (18)

is a conservation law of (13), i.e. dQ
dt = 0, where γ = γ

(
qk

)
[16]. 

We remark that the differential equation (13) is invariant under 
the action of (14) and this means that the following condition 
holds

Ẍ i − ∂ F i

∂q j
X j − ∂ F i

∂q̇ j
Ẋ j = 0. (19)

2 We note that in a lapse time dt = N (τ )dτ of (1), equations (4) and (10) arise 
from the variation of the variable N (τ ) and are restricted to that form when we 
consider N (τ ) = 1.
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Furthermore, conditions (16) or (18) are necessary to hold in order 
the conservation law to exist.

In order to simplify the problem the authors in [12] reduced 
the two-dimensional dynamical system {a, φ} of the field equations 
to a one-dimensional system in {a} by selecting φ (t) = φ (a (t)). 
When this is used, equation (11), with the use of (10), becomes

ẍ + f (x) ẋ2 = 0, (20)

where x = ln a, and f (x) = 1
2

(
dφ(x)

dx

)2
. Moreover, from equation 

(12) and (10), we have

(ln V (φ)),φ = f (x)φ,x − φ,xx − 3φ,x

3 − 1
2

(
φ,x

)2
. (21)

In [12] the authors substituted F (t, x, ẋ) = − f (x) ẋ2 into (19)
and constrained the function f (x) in order that equation (20)
admit Hojman conservation laws. Furthermore from (21) they de-
termined the potential V (φ) and found closed-form cosmological 
solutions.

We continue by studying the Lie point symmetries of the 
second-order differential equation (20). We consider a point trans-
formation in the space {t, x} and we find that equation (20) is 
invariant under an eight-dimensional Lie algebra of point trans-
formations, automatically sl (3, R), for arbitrary functional form of 
f (x). Therefore the Lie theorem holds, i.e., it means that there 
exists a “coordinate” transformation {t, x} → {τ , y}, whereby equa-
tion (20) is reduced to that of the free particle, y′′ = 0 [17]. By 
using the Lie symmetries, we have that the transformation is

t = t , y =
∫

exp

(∫
f (x)dx

)
dx (22)

whence (21) becomes ÿ = 0. Hence y (t) = y1t + y0, y1, y0 ∈ R, 
that is 

∫
exp

(∫
f (x)dx

)
dx = y1t + y0 which is the solution for the 

scale factor a (t) = exp[x (t)] for an arbitrary function, f (x). More-
over the potential is constrained by equation (21).

The function L f (y, ẏ) = 1
2 ẏ2, is one of the possible Lagrangians 

of the free particle. It is straightforward to see that L f admits five 
Noetherian point symmetries, the vector fields

Z1 = ∂t , Z2 = ∂y , Z3 = t∂y (23)

Z4 = 2t∂t + y∂y , Z5 = t2∂t + ty∂y (24)

for which the corresponding Noetherian conservation laws are

Z1 : H f = 1

2
ẏ2 , Z2 : I p = ẏ , Z3 : I ′p = t ẏ − y (25)

Z4 : Is = 2tH f − y ẏ , Z5 : I ′s = t2H f − ty ẏ + 1

2
y2. (26)

We remark that the conservation laws, H f , and I p , are the 
well-known conservation of energy and momentum, in partic-
ular it holds that H f = 1

2

(
I p

)2
. Furthermore, under the coor-

dinate transformation (22), the momentum, I p , becomes I p =
exp

(∫
f (x)dx

)
ẋ.

We continue with the determination of the Hojman conserva-
tion laws for equation (20). Without loss of generality, we study 
the Hojman conservation laws of ÿ = 0. For this equation, condi-
tion (19) becomes Ẍ = 0, that is,

X,tt + 2 ẏ X,ty + ẏ2 X,yy = 0. (27)

Hence

X (x, y, ẏ) = X1 (t ẏ − y, ẏ) + t X2 (t ẏ − y, ẏ) , (28)
or

X (x, y, ẏ) = X1
(

I p, I ′p
) + t X2

(
I p, I ′p

)
.

It is easy to see that, when ∂ X
∂ ẏ = 0, we have the Lie symmetries 

Z2, Z3 and Y L = y∂y . Therefore from (15) we have the general Ho-
jman conservation law

Q (t, y, ẏ) = Q (I ′p, I p) = ∂

∂ I ′p
X1(I ′p, I p), (29)

Consequently, for equation (20), the Hojman conservation law 
has the following form

Q (t, x, ẋ) = Q
(

I p (t, x, ẋ) , I ′p (t, x, ẋ)
)
, (30)

where now

I p = exp

(∫
f (x)dx

)
ẋ (31)

I ′p = t exp

(∫
f (x)dx

)
ẋ −

∫
exp

(∫
f (x)dx

)
dx. (32)

We have proved that equation (20) admits conservation laws for 
an arbitrary function f (x), and that the Hojman conservation law 
Q

(
I p

)
for that case is a functional form of Noetherian conserva-

tion laws for the free particle.
We conclude that, under the Ansatz. φ (t) = φ (a (t)), the re-

duced field equation (20) is integrable for arbitrary function f (x), 
i.e. Eq. (20) admits conservation laws for any f (x). On the other 
hand, the Ansatz. φ = φ (a), reduces the field equation in a one-
dimensional autonomous dynamical system, which is integrable. 
Moreover the Hojman conservation quantities for equation (20) are 
functions of the Noetherian conservation laws of the free particle. 
Therefore there are no difference among the two methods at that 
level, that is, the claim in [12] that the class of scalar field po-
tentials V (φ) is constrained by condition (19) for equation, (20)
means that Hojman conservation laws exists when Noetherian con-
servation laws exists.

Furthermore we remark that the solutions which have been 
found in [12] are special solutions and are not the general so-
lutions of the field equations in the sense that they hold when 
φ = φ (a) and they are restricted to the case for which there ex-
ists an inverse function t = a−1 (t). This can be seen easily for 
the closed-form solution are given for the exponential potential 
V (φ) = V 0eλφ in [12]. The solution found there is a power law. 
However, the solution for that model is more general and can be 
found in [19].

As far as concerns the application of Hojman’s conservation 
quantities in nonminimally coupled scalar field cosmology [13], or 
in f (R) gravity in the metric formalism [14] the situation is sim-
ilar with above. Note that f (R) gravity in the metric formalism 
can be seen as a Brans–Dicke-like model with vanishing Brans–
Dicke parameter, i.e. the O’ Hanlon gravity [20]. These theories are 
related under conformal transformations and are equivalent with 
the minimally coupled scalar field [21]. Moreover when there is 
no other matter source, then the solution of the field equations 
holds either in the Einstein or in the Jordan frame [22].

Because of that, the same Ansatz for the application of Hoj-
man’s method in scalar tensor theories can be used, i.e. the field 
“φ” to be a function of the scale factor. Hence the field equa-
tions reduced to a second-order ordinary differential equation of 
the form of (20). Therefore the above analysis and comments hold.

In the case of f (T ) gravity the situation is different since the 
field equations are a singular one-dimensional dynamical system.
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Following [15], we take into account a spatially flat FRW space-
time (1) and the basis eα

(
xμ

) = hα
μdxμ , such as, gμν = ηαβeαeβ =

ηaβhα
μhβ

μ , where

hi
μ = diag

(
1, ex(t), ex(t), ex(t)

)
. (33)

f (T ) gravity is a straightforward extension of Teleparallel GR 
(TEGR), such as f (R) gravity of GR. The Action integral in f (T )

gravity with a matter term is

AT =
∫

dx4 |e| f (T ) +
∫

dx4 |e| Lm, (34)

where Lm is the Lagrangian of the matter term, and T is a func-
tion of the Torsion scalar (for details see [23,24]). For the basis 
(33) from the Action integral (34), for a perfect fluid with constant 
equation of state parameter p = wρ , we have that T = −6H2, 
H = ẋ (t), the field equations are:

12 f,T H + f = ρ (35)

48H2 f,T T Ḣ − f,T

(
12H2 + 4Ḣ

)
− f = p (36)

and the conservation law for the fluid, ρ̇+3 (1 + w)ρH = 0, which 
gives ρ = ρm0e−3(1+w)x . The field equations (35), (36) form a sin-

gular one-dimensional Hamiltonian system since det
∣∣∣ ∂L
∂xi

∣∣∣ = 0. Fur-

thermore equation (36) is a second-order differential equation of 
x (t), while (35) is a first order equation of x (t). Typically, the 
system is integrable however it is not always possible to find the 
solution in closed-form. A classical analogue is the closed form so-
lution of the one-dimensional Newtonian system, E = 1

2 ẏ2 + V (y), 
which admits closed-form solutions for functions V (x), where the 
equations of motion admit Lie symmetries. For the field equations 
(35), (36), the unknown function is defined by the Lagrange mul-
tiplier T = −6H2, where, again, the existence of point symmetries 
provides closed-form solutions. With the use of (35) and the La-
grange multiplier T , equation (36) can be written in the following 
form,

ẍ = F (ẋ) , (37)

where F (ẋ) = F (T ) = F ( f (T )). In order to exist a Hojman conser-
vation law for the second-order differential equation (37), condi-
tion (16) or (18) have to hold. In other words, F (ẋ) = −F1 ẋ2 − F0. 
This means that equation (37) is

ẍ + F1ẋ2 + F0 = 0 (38)

where the general solution is

x (t) = 1

2F1
ln

[
F1

F0

(
x1 cos

(√
F1 F0t

)
− x2 sin

(√
F1 F0t

))2
]

.

(39)

However, equation (38) admits eight Lie point symmetries, i.e. 
the sl (3, R), and according to the Lie theorem, it is equivalent to 
the free particle, y′′ = 0. Moreover it is easy to see that equation 
(38) follows from the Lagrangian

L (x, ẋ) = 1

2
e2F1xẋ2 − F0e2F1x, (40)

and, since the latter is autonomous, admits as Noetherian conser-
vation law the Hamiltonian function. In the case where F0 = 0, (in 
the notation of [15], c = 0), Lagrangian (40) is that of the free par-
ticle and also the momentum is another time-independent Noethe-
rian conservation law. That is the conservations laws in [15] are 
not conservation laws which follows from the Hojman’s formula 
but from Noetherian symmetries in the same way we discussed 
above.

However condition (18) for equation (37) is equivalent with 
the existence of a Jacobi Last multiplier for equation (37). The 
existence of a Jacobi Last multiplier for one-dimensional second 
order differential equations of the form of (13) is equivalent to 
the existence of a Lagrangian [25,26], and, in the simplest case 
that the dynamical system is autonomous, Hojman conservation 
laws are equivalent to the Noetherian conservation laws. Finally, 
the functional forms of f (T ), which follow from the solution of 
the system

F (ẋ) = −F1 ẋ2 − F0, (41)

are not arising from the existent of a Hojman conservation law, 
but from the existence of a Jacobi Last multiplier for the re-
duced equation (37) and the conservation laws are Noetherian 
conservation laws, the well known conservation laws of the Hamil-
tonian or of the momentum for the “oscillator” or the free 
particle.

In conclusion, for regular dynamical systems, such as scalar-
field cosmology, we consider the derivation of Hojman conserva-
tion laws for the field equations (11), (12) without the Ansatz. 
φ (t) = φ (a (t)). Hence we have to determine the group of invari-
ant transformations of the system (11), (12). Moreover, at the same 
time the Hamiltonian function H = 0, i.e. equation (11), should be 
also invariant, which means that the following condition

X [1] (H) = λH, (42)

has to hold, where X [1] is the first prolongation of X and λ is 
an arbitrary function. However, equation (42) is nothing else than 
the Noether condition in Hamiltonian formalism for generalized 
symmetries (see [18,27]). In the case of point and contact transfor-
mations, this is a well known result [28,29]. Therefore the determi-
nation of Hojman conservation quantities in cosmological models, 
which arise from a Lagrange function, it is equivalent with the 
application of Noether’s Theorem. That holds for all the physical 
systems where the Hamiltonian function is one of the equations 
involved.

When the field equations are a singular dynamical system, as 
in the case of f (T ) gravity, the functional forms of f (T ), in which 
the field equations admit a closed-form solution, follows from the 
existence of a Jacobi Last multiplier, and the conservation laws are 
again Noetherian.
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