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Summary Two cruises were undertaken in the Pearl River Estuary in November 2011 and March
2012 to analyze the distribution of phytoplankton pigments and to define the relationships of
pigment indices and functional community structure with environmental factors. Among 22 pig-
ments, 17 were detected by high-performance liquid chromatography. Chlorophyll a was found in
all samples, with a maximum of 7.712 mg L�1 in spring. Fucoxanthin was the most abundant
accessory pigment, with mean concentrations of 2.914 mg L�1 and 0.207 mg L�1 in spring and
autumn, respectively. Chlorophyll a, chlorophyll c2, fucoxanthin, diadinoxanthin, and diatox-
anthin were high in the northern or northwest estuary in spring and in the middle-eastern and
northeast estuary in autumn. Chlorophyll b, chlorophyll c3, prasinoxanthin, and peridinin
were similarly distributed during the two cruises. Chlorophyll a and fucoxanthin positively
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negatively correlated. The biomass proportion of microphytoplankton (BPm) was higher in spring,
whereas that of picophytoplankton (BPp) was higher in autumn. BPm in spring was high in areas
with salinity <30, but BPp and the biomass proportion of nanophytoplankton (BPn) were high in
areas with salinity >30. BPm increased but BPn reduced with the increase in nutrient contents. By
comparison, BPp reduced with the increase in nutrient contents in spring, but no relationship was
found between BPp and nutrient contents in autumn. The ratios of photosynthetic carotenoids to
photoprotective carotenoids in the southern estuary approached unity linear relationship in
spring and were under the unity line in autumn.
# 2016 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creative-
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commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Pearl River Estuary (PRE) is situated in southern Guang-
dong Province, China, along the northern boundary of the
South China Sea. It receives most of the outflow from the
Pearl River, which is the third longest river in China and the
13th largest river by discharge in the world (Lerman, 1981).
The Pearl River drains an area of 453,700 km2, and some of
the most densely populated cities, such as Hong Kong, Macau,
Shenzhen, Zhuhai, Guangzhou, are located on the Pearl River
Delta. Approximately 19 billion tons of domestic, industrial,
and agricultural effluents are annually discharged to the
drainage basin of the Pearl River (Bulletin of Water Resources
in the Pearl River Drainage, 2011, 2012). Therefore, the PRE
has been experiencing deterioration of its aquatic environ-
ment (He et al., 2014; Qiu et al., 2010).

Phytoplankton is the base of food webs and the principal
source of organic production in aquatic ecosystems. The bio-
mass, composition, and community structure of phytoplankton
can serve as indices to monitor aquatic environments (Paerl
et al., 2003). Meanwhile, the distribution and succession of
phytoplankton are the consequences of adaption to different
environmental conditions, such as temperature, discharge,
nutrients, and light intensity (Margalef, 1978).

Many studies have investigated the diversity, distribution,
and seasonal variation of cell abundance of phytoplankton in
the PRE (Huang et al., 2004; Li et al., 2014; Yin et al., 2000,
2001, 2004). Most previous studies have employed microscopy
to identify and analyze phytoplankton quantitatively in the
PRE. However, this method is time consuming and requires
taxonomic knowledge (Naik et al., 2011). Moreover, picophy-
toplankton are typically not identified or counted with the use
of this method (Jeffrey et al., 1997). Alternatively, photosyn-
thetic pigments can be easily detected and can serve as
biomarkers for particular classes or even genera of phyto-
plankton (Wright and Jeffrey, 2006). Pigment detection based
on high-performance liquid chromatography (HPLC) methods
enables quantification of over 50 phytoplankton pigments
(Aneeshkumar and Sujatha, 2012; Jeffrey et al., 1997). Some
photosynthetic pigments (e.g., fucoxanthin, peridinin, allox-
anthin, zeaxanthin, chlorophyll b, 190-hex-fucoxanthin, and
190-but-fucoxanthin) can be considered diagnostic pigments
(DP) of specific phytoplankton groups (diatoms, dinoflagel-
lates, cryptophytes, cyanobacteria, chlorophytes, hapto-
phytes, and pelagophytes, respectively) (Barlow et al.,
2008; Paerl et al., 2003). Moreover, diatoxanthin and diadi-
noxanthin are generally found in diatoms and dinoflagellates,
whereas prasinoxanthin, lutein, violaxanthin, and neoxanthin
are found in prasinophyceae and chlorophyceae. Chlorophyll
a, c, and b,b-carotene are general indicators of total algal
biomass. Phytoplankton cells are categorized into three groups
according to their sizes (equivalent spherical diameter):
microphytoplankton (20—200 mm), nanophytoplankton (2—
20 mm), and picophytoplankton (0.2—2 mm) (Sieburth et al.,
1978). The contribution of each group is also reflected by its
pigment signatures (Vidussi et al., 2001). Therefore, photo-
synthetic pigment biomarkers are widely used in oceanography
for quantifying phytoplankton biomass and assessing the struc-
ture of phytoplankton community (Paerl et al., 2003; Wright
and Jeffrey, 2006).

Photosynthetic pigments also function as indicators of the
physiological condition of a phytoplankton community, which
may be affected by environmental and trophic conditions
(Roy et al., 2006). Photoprotective carotenoids (PPCs) are
more dominant in low productivity waters, whereas photo-
synthetic carotenoids (PSCs) are dominant in high productiv-
ity waters (Barlow et al., 2002; Gibb et al., 2000). In addition,
intensive light increases the PPC:PSC ratio (Moreno et al.,
2012; Vijayan et al., 2009). Thus, PPC:PSC ratio is considered
a good indicator of environmental factors.

Estuarine environmental factors often vary markedly in
spatial and temporal scales, thereby affecting phytoplankton
physiology, biomass, and communities. The PRE has a com-
plex estuarine environment in terms of freshwater input,
turbidity and irradiance, nutrient content and composition,
etc. However, few studies have observed the spatial and
temporal distribution of phytoplankton pigments, as well
as the functional community structure, in relation to envir-
onmental factors in the PRE. The present study aims to
describe the spatial—temporal distribution of phytoplankton
pigments in the PRE and to define the relationships of pig-
ment indices and functional community structure with envir-
onmental factors.

2. Material and methods

2.1. Study area

The PRE is triangular and encompasses a large area of approxi-
mately 1900 km2. It is approximately 60 km long and 10 km
wide at its head and 60 km at its mouth. The PRE is shallow,
with a depth of 2—10 m (Harrison et al., 2008). It has a
subtropical climate with a long summer and a short winter.
The Pearl River mainly consists of three branches (Xi Jiang, Bei
Jiang, and Dong Jiang) with eight outlets, four of which enter
the estuary (Harrison et al., 2008). Its annual average
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discharge is approximately 10,000 m3 s�1 (Zhai et al., 2005),
with 20% occurring from October to March next year (the dry
season) and 80% from April to September (the wet season)
(Zhao, 1990).

2.2. Field sampling

Two surveys were conducted at 23 stations located in the PRE
and in the adjacent area in November 2011 (autumn) and in
March 2012 (spring) (Fig. 1). Water samples were collected at
a depth of 0.5 m and analyzed for dissolved O2 (DO), pH,
transparency, dissolved nutrients, and phytoplankton pig-
ments. A filtered subsample with a pre-ignited Whatman
GF/F filter was added with 0.3% chloroform (final concentra-
tion) to determine dissolved nutrients. The filtrate was
stored at �208C in an 80 mL polycarbonate bottle for later
analysis. A 1000 mL subsample was filtered on a Whatman
GF/F filter with a vacuum pressure of less than 0.03 MPa
under low light to analyze phytoplankton pigments. The
filters were wrapped in aluminum foil and stored at �808C
for later extraction and analysis of pigments.

2.3. Measurements of environment variables
and pigments

Water temperature and salinity were measured using a multi-
parameter water quality monitoring instrument (YSI 6600,
Yellow Springs Instruments, USA). Dissolved oxygen (DO) was
analyzed using the Winkler method and the pH with electrode
method on board. Water transparency was determined using a
Secchi disk. The concentrations of dissolved nutrients, includ-
ing nitrate, nitrite, ammonium, phosphate, and silicate, were
analyzed using a SKALAR flow analyzer in accordance with
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Figure 1 Sampling stations in the PRE in spring and autumn.
standard methods (Grasshoff et al., 1983). Dissolved inorganic
nitrogen (DIN) was calculated as the sum of nitrate, nitrite, and
ammonium.

Pigment extraction and analysis were conducted accord-
ing to the methods described by Zapata et al. (2000). The
frozen filters were cut into small pieces and then extracted
with 3 mL 95% methanol (v/v in deionized water) in a sonica-
tion bath with ice and water for 5 min under low light. The
extract was then passed through a Teflon film with 0.2 mm
pore size to remove cellular debris. The methanol extract
(1 mL) was mixed with 0.2 mL Milli-Q water, and then, a
100 mL aliquot of the mixture was analyzed using reverse-
phase HPLC.

The HPLC system was equipped with a C8 column (Eclipse
XDB, 150 mm � 4.6 mm, 3.5 mm particle size, 1000 nm pore
size). The column was maintained at 258C, and the detection
wavelengths of the Agilent diode array detector were set to
430, 440, and 450 nm. Eluent A comprised a methanol:acet-
onitrile:aqueous pyridine solution (50:25:25, v/v/v), and
eluent B was composed of acetonitrile:acetone (80:20, v/
v). Elution was performed at a rate of 1.0 mL min�1.

Pigments were identified and quantified using pure pig-
ment standards that contain the following 22 pigments com-
mercially obtained from DHI Inc. (Denmark): chlorophyll a
(Chl a), chlorophyll b (Chl b), chlorophyll c2 (Chl c2), chlor-
ophyll c3 (Chl c3), fucoxanthin (Fuco), diadinoxanthin (Dia-
dino), peridinin (Peri), violaxanthin (Viola), alloxanthin
(Allo), diatoxanthin (Diato), b,b-carotene (bb-Car), prasi-
noxanthin (Pras), lutein (Lut), neoxanthin (Neo), zeaxanthin
(Zea), 190-hex-fucoxanthin (Hex-Fuco), 190-but-fucoxanthin
(But-Fuco), pheophorbide a (Pheide a), canthaxanthin
(Cantha), divinyl chlorophyll a (DV-Chl a), pheophytin a
(Phe a), and Mg-2,4-divinylpheoporphyrin (MgDVP). Chloro-
phylls and carotenoids were detected using a diode array
detector at 350—750 nm, and chlorophylls were detected by
fluorescence at 440 nm and 660 nm (excitation and emis-
sion). Absorbance chromatograms were extracted at wave-
lengths of 430, 440, and 450 nm.

2.4. Pigment indices

Pigment indices included PSC, PPC, and DP. PSC was the sum
of Fuco, Peri, Hex-Fuco, But-Fuco, Viola, and Chl b (Gibb
et al., 2001); and PPC was the sum of Allo, Diadino, Diato,
Zea, and bb-Car (Jeffrey et al., 2005). DP was the sum of
seven pigments (Zea, Chl b, Allo, Hex-Fuco, But-Fuco, Fuco,
and Peri). Among these pigments, Zea and Chl b were the
signatures of picophytoplankton; Allo, Hex-Fuco, and But-
Fuco were those of nanophytoplankton; and Fuco and Peri
were those of microphytoplankton. The biomass proportion
(BP) of each size group, namely, BPm (microphytoplankton),
BPn (nanophytoplankton), and BPp (picophytoplankton), was
calculated as follows (Jeffrey et al., 2005):

BPm ¼ ðFuco þ PeriÞ
DP

�100%;

BPn ¼ ðAllo þ Hex-Fuco þ But-FucoÞ
DP

�100%;

BPp ¼ ðChl b þ ZeaÞ
DP

�100%:
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2.5. Statistical analysis

Principal component analysis (PCA) was applied using SPSS
16.0, and 11 variables (temperature, salinity, pH, DO, trans-
parency, nitrate, nitrite, ammonium, DIN, phosphate, and
silicate) were considered to elucidate the main environmen-
tal driving force in the PRE. All variables were log-trans-
formed to normalize their distributions. Principal
components (PCs) with an eigenvalue of more than 1 were
extracted. A rotation of varimax with Kaiser normalization
was used to achieve a simpler and more meaningful repre-
sentation of the underlying PCs. The scores of the PCs and
diagnostic pigments were subjected to stepwise multiple
linear regression analysis to identify the influencing environ-
mental factors. Correlation was analyzed with the Pearson
correlation, and was performed at significance levels of
P < 0.05 and P < 0.01, which indicates that the correlation
coefficient outstrips the critical value at the confidence
intervals of 95% and 99%, respectively. Standard one-way
ANOVA was used to completely randomize the experimental
design, and significantly different means were separated
(P = 0.05).
Table 1 Physio-chemical variables and pigment concentrations f

Physio-chemical variables and pigments Spring 

AVE SD M

Physio-chemical variables
Temperature [8C] 17.19 0.3 1
Salinity 26.86 6.15 1
DO [mg L�1] 7.94 0.41 

pH 8.13 0.17 

Transparency [m] 1.2 0.9 

Nitrate [mmol L�1] 35.17 28.38 

Nitrite [mmol L�1] 6.62 5.76 

Ammonium [mmol L�1] 16.67 12.61 

DIN [mmol L�1] 58.47 44.21 

Phosphate [mmol L�1] 0.42 0.3 

Silicate [mmol L�1] 49.38 38.32 

DIN:phosphate ratio 137.60 81.53 4

Pigments
Chl a [mg L�1] 1.166 1.605 

Chl b [mg L�1] 0.029 0.041 

Chl c2 [mg L�1] 0.859 0.710 

Chl c3 [mg L�1] 0.054 0.058 

Fuco [mg L�1] 2.914 3.103 

Diadino [mg L�1] 0.261 0.240 

Peri [mg L�1] 0.208 0.157 

Viola [mg L�1] 0.019 0.010 

Allo [mg L�1] 0.131 0.082 

Diato [mg L�1] 0.042 0.026 

bb-Car [mg L�1] 0.037 0.049 

Pras [mg L�1] 0.023 0.015 

Lut [mg L�1] 0.019 0.014 

Neo [mg L�1] 0.016 0.011 

Zea [mg L�1] 0.013 0.009 

Hex-Fuco [mg L�1] 0.019 0.018 

But-Fuco [mg L�1] 0.002 0.002 
3. Results

3.1. Hydrological parameters and nutrients

Water temperature was significantly lower but transparency
was higher in the spring cruise than in the autumn cruise
(P < 0.05, Table 1). No significant difference in DO and pH
was detected between the two cruises (P > 0.05). The mean
of phosphate in spring was 0.42 mmol L�1, which was signifi-
cantly lower than that in autumn (P < 0.05). However, DIN
(58.47—79.25 mmol L�1) and silicate (39.93—49.38 mmol L�1)
did not present significant differences between the two
cruises (P > 0.05). The high N:P ratio suggested potential
phosphorus limitation in the PRE. The distribution of salinity
was low in the northwest but high in the southeast, both in
spring and autumn (Fig. 2), whereas nitrate and silicate
decreased from the northwest to the southeast in the two
cruises. Phosphate presented a low concentration in the
south in spring and in the middle in autumn.

By applying PCA, 90% and 70% of the variance contained in
the original data set was explained by only two PCs in spring
and autumn, respectively. Loadings of two PCs are displayed
rom the surface waters of the PRE in spring and autumn.

Autumn

IN MAX AVE SD MIN MAX

6.49 17.82 23.95 0.36 23.15 24.66
2.57 32.58 25.77 6.38 10.17 33.36
6.96 8.66 6.69 0.31 5.89 7.41
7.76 8.33 7.81 0.14 7.46 8.03
0.2 3.2 0.8 0.3 0.5 2.0
3.76 93 60.28 49.97 4.81 177.18
0.56 19.91 13.06 7.52 2.49 32.02
0.27 32.7 5.9 3.26 2.26 14.71
4.65 140.75 79.25 55.63 12.62 201.27
0.08 0.98 0.82 0.41 0.35 2.46
7.96 137.96 39.93 23.93 7.78 78.27
3.30 443.59 103.66 69.89 11.40 240.06

0.126 7.712 0.267 0.141 0.013 0.570
0.000 0.140 0.070 0.030 0.023 0.127
0.143 3.437 0.040 0.029 0.000 0.096
0.000 0.190 0.006 0.010 0.000 0.045
0.148 11.020 0.207 0.073 0.075 0.332
0.057 1.082 0.028 0.013 0.010 0.059
0.027 0.565 0.061 0.029 0.017 0.123
0.006 0.043 0.011 0.004 0.005 0.018
0.050 0.328 0.052 0.028 0.003 0.107
0.012 0.113 0.005 0.004 0.000 0.012
0.000 0.212 0.007 0.005 0.000 0.013
0.000 0.056 0.011 0.007 0.002 0.029
0.005 0.061 0.008 0.005 0.000 0.019
0.000 0.037 0.012 0.005 0.002 0.026
0.002 0.031 0.017 0.011 0.007 0.043
0.000 0.058 0.012 0.010 0.000 0.036
0.000 0.008 0.004 0.003 0.000 0.011
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Figure 2 Spatial distributions of salinity and nutrients [mmol L�1] in the PRE in spring and autumn.

Figure 3 Loadings of 11 variables on two rotated PCs in (a) spring and (b) autumn.
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in Fig. 3. In spring, PC 1 was highly participated by nutrients,
whereas PC 2 was mainly participated by water temperature,
salinity, and pH. Similarly, PC 1 had a highly positive load of
nitrogen and silicon in autumn, whereas PC 2 had load of
water temperature and phosphate. The results from Pear-
son's correlation (Table 2) showed that all nutrients corre-
lated most significantly with PC 1 in spring (r > 0.8,
P < 0.01), whereas nitrogen and silicon correlated signifi-
cantly with PC 1 in autumn (r > 0.9, P < 0.01). Thus, nutri-
ents were the most important environmental driving element
in the PRE. In addition, the high correlation coefficients
between PC 2 and temperature and salinity in spring, as well
as between PC 1 and transparency in autumn, indicated that
these physical variables were also important.
3.2. Pigment concentrations and distributions

Among 22 pigments, 17 major pigments were detected in the
PRE during the sampling periods (Table 1). Chl a, Fuco, and Chl
c2 were the most abundant pigments in spring, with mean
values of 1.166, 2.914, and 0.859 mg L�1, respectively. By
comparison, the concentrations of Diadino, Peri, and Allo were
relatively low, i.e., 0.131—0.261 mg L�1; the other 11pigments
were <0.1 mg L�1 in concentration. In autumn, the mean
values of Chl a and Fuco were higher than those of the other
pigments, which were 0.267 mg L�1 and 0.207 mg L�1, respec-
tively. By contrast, the mean values of Chl b, Peri, and Allo
were lower, i.e., 0.052—0.070 mg L�1. Other pigments had
relatively low concentrations, with mean values generally



Table 2 Pearson's correlation coefficients between the
variables and PCs.

Spring Autumn

PC 1 PC 2 PC 1 PC 2

Temperature �0.179 0.913 ** 0.026 0.705 **

Salinity �0.505 * 0.800 ** �0.740 ** �0.151
DO �0.749 ** 0.523 * �0.359 �0.735 **

pH �0.593 ** 0.735 ** �0.742 ** �0.535 **

Transparency �0.788 ** 0.399 �0.804 ** 0.200
Nitrate 0.849 ** �0.453 * 0.964 ** 0.187
Nitrite 0.878 ** �0.438 * 0.914 ** 0.199
Ammonium 0.951 ** �0.137 �0.011 �0.166
DIN 0.909 ** �0.364 0.963 ** 0.227
Phosphate 0.837 ** �0.448 * 0.102 0.711 **

Silicate 0.852 ** �0.503 * 0.965 ** 0.178

* P < 0.05.
** P < 0.01.
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lower than 0.02 mg L�1. Significant differences in the concen-
trations of pigments, except in Neo, Zea, and Hex-Fuco, were
determined between the two cruises. The concentrations of
nearly all pigments, except Chl b and But-Fuco, were signifi-
cantly higher in spring than in autumn (P < 0.05). MgDVP,
Pheide a, Cantha, DV-Chl a, and Phe a were not detected in
the PRE during the two cruises.

The spatial distribution of Chl a and diagnostic pigments in
spring and in autumn is presented in Figs. 4 and 5, respectively,
while other pigments are not showed. Chl a, Chl c2, Fuco,
Diadino, Diato, and bb-Car exhibited a similar distribution,
i.e., higher in the northern or northwest estuary but lower in
the south. Except Fuco, which is the characteristic pigment of
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Figure 4 Spatial distributions of pigm
diatoms, Chl a, Chl c2, Diadino, Diato, and bb-Car were
observed in many phytoplankton species. Their distributions
were obviously influenced by diluted water. The highest values
of Chl a, Fuco, Diadino, and bb-Car were observed at station
A2, and those of Chl c2 and Diato at stations F1 and F2. By
contrast, Peri, the characteristic pigment of dinoflagellates,
was mainly distributed in the northeast and south estuary. Chl
b, Chl c3, Allo, Pras, Lut, Neo, Hex-Fuco, and But-Fuco were
distributed at high concentrations in the southern part of the
sampling region; these pigments were mainly found at station
D3 or D5. The concentrations of Viola and Zea were high in the
north and south, but low in the central part of the estuary.

Unlike in spring, Chl a, Chl c2, Fuco, Diadino, Diato, Allo,
and But-Fuco showed high concentrations in the middle
eastern and northeast parts of the sampling region, with
the highest value in station B4. Similar to the pigments in
spring, Chl b, Chl c3, Pras, and Zea in autumn were distrib-
uted in the southern part, with the highest value in station D4
or D2. Furthermore, Peri in autumn presented the same
distribution as that in spring, whose high value was distrib-
uted both in the northeast and in the south.

Correlation analysis showed that Chl a in spring was sig-
nificantly positively correlated with Fuco (r = 0.587,
P < 0.01). In addition, Chl a and Fuco were significantly nega-
tively correlated with salinity (r = �0.504 and �0.768, respec-
tively, P < 0.05) but significantly positively correlated with
nutrients (r = 0.444—0.752, P < 0.05). By contrast, Hex-Fuco
and But-Fuco were significantly positively correlated with
salinity (r = 0.555 and 0.436, respectively, P < 0.05) but sig-
nificantly negatively correlated with nutrients (r = �0.491 to
�0.682, P < 0.05). Unlike in spring, Chl a in autumn was
significantly positively correlated with Allo, Chl b, and Zea
(r = 0.436—0.753, P < 0.05). Allo, Chl b, and Zea were sig-
nificantly positively correlated with salinity (r = 0.419—0.598,
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P < 0.05), whereas Chl a, Allo, Hex-Fuco, Chl b, and Zea were
significantly negatively correlated with nitrate and silicate
(r = �0.468 to �0.625, P < 0.05).

3.3. Phytoplankton pigment indices

The mean of BPm in spring was 85.4%, and ranged from 55.3% to
99.1%, which was higher than that in autumn with a mean of
64.1%. By contrast, the mean of BPp in autumn (20.6%) was
significantly higher than that in spring (3.3%). In spring, BPm
was higher in the area with salinity <30, but BPp and BPn were
higher in the area with salinity >30 (Fig. 6). BPm generally
increased but BPp and BPn reduced with the increase in nitrate,
phosphate, and silicate. Similar to spring, BPm increased but
BPn decreased with increasing nitrate and silicate. However,
no relationship was found between BPpand salinity or nutrients
as well as between phosphate and any BP in autumn.

The PPC:PSC ratios in most stations of transects C and D in
spring approached the unity linear relationship (red line, in
Fig. 7), but were low in stations A1 to A4, B2, and F2. By
comparison, the PPC:PSC ratios in all stations were under the
unity line in autumn.

4. Discussion

4.1. Phytoplankton diversity and distribution in
the PRE as revealed by pigments

High concentrations of Fuco and Peri during two cruises con-
firmed that diatoms and dinoflagellates were dominant, and
the detected pigments, including Allo, Pras, Lut, Zea, Hex-
Fuco, and But-Fuco, indicated the presence of cryptophytes,
prasinophytes, chlorophytes, cyanophytes, haptophytes, and
pelagophytes. By contrast, DV-Chl a with an undetectable level
implied that no Prochlorococcus was present during sampling
time.

The distribution of pigments implies the spatial variations
of phytoplankton. In spring, the high value of Chl a and Fuco
suggested the existence of a diatom bloom in the north of the
estuary. The distributions of Chl b, Allo, Pras, Lut, Hex-Fuco,
and But-Fuco indicated that cryptophytes, chlorophytes,
prasinophytes, haptophytes, and pelagophytes mainly
existed in the south. The distributions of Peri and Zea indi-
cated that dinoflagellates and cyanophytes basically existed
both in the north and south but were low in the central part.
Similar to spring, dinoflagellates in autumn were mainly
distributed both in the northeast and in the south, while
chlorophytes and cyanophytes were mainly distributed in the
south. However, unlike in spring, diatoms, cryptophytes, and
pelagophytes mainly existed in the middle-eastern and
northeast parts of the estuary. The phytoplankton distribu-
tion found in the current study is consistent with those in
previous studies (Harrison et al., 2008; Lu and Gan, 2015; Yin,
2003). Temperature, light, hydrodynamics, and nutrient sup-
ply are the major factors that control the spatial—temporal
distribution of phytoplankton (Agawin et al., 2000; Marañón
et al., 2007; Riegman et al., 1993). Lu and Gan (2015) found
that the low river discharge leads to longer water residence
time, satisfactory water column stability, and transparency,
which are helpful for the diatom bloom in the upper PRE
during the dry season. In the present study, higher salinity in
spring indicated low river discharge, which may result in
diatom bloom in the northern estuary during spring (Table 1).
As for the spatial distribution, Li et al. (2013) and Zhang et al.
(2013) reported that larger phytoplankton (e.g., diatom) are
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Figure 7 PPC vs. PSC by station numbers in the PRE in (a) spring
and (b) autumn. The red line denotes the unity line, which
indicates that PPC:PSC is 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article.)

Table 3 Regression analysis of the principal component
scores (as independent factors) for the diagnostic pigments
in spring and autumna.

Dependent factor R 2 F b

PC 1 PC 2

Spring
Fuco 0.563 ** 12.880 0.609 ** �0.438 **

Peri 0.199 2.491 �0.085 0.438 *

Allo 0.134 1.548 �0.306 0.201
Zea 0.104 1.336 �0.195 0.258
Chl b 0.203 2.544 �0.269 0.361
Hex-Fuco 0.607 ** 15.435 �0.751 ** 0.205
But-Fuco 0.551 ** 12.251 �0.741 ** 0.309

Autumn
Fuco 0.027 0.274 �0.159 �0.036
Peri 0.154 1.825 �0.081 �0.384
Allo 0.397 ** 6.595 �0.615 ** 0.140
Zea 0.521 ** 10.888 �0.722 ** �0.111
Chl b 0.484 ** 9.366 �0.541 ** �0.437 *

Hex-Fuco 0.301 * 4.414 �0.516 * �0.188
But-Fuco 0.060 0.639 �0.181 �0.165

a R2: regression coefficient; b: F-value of the full model and the
standardized coefficient.
* P < 0.05.
** P < 0.01.
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dominant in the upper PRE that has low salinity and high
nutrient content, whereas the smaller ones (e.g., blue-green
algae) are found in water with high salinity and low nutrient
content. Stepwise multiple regression analysis indicated that
Fuco positively correlated, whereas Hex-Fuco, Allo, Zea, and
Chl b negatively correlated with PC 1, indicating that nutri-
ents were the main environmental controlling factors
(Table 3).

4.2. Relationship of different phytoplankton
groups as revealed by pigments with
environmental factors

The biomass proportions derived from pigments suggest the
size structure of phytoplankton. In this study, BPm was con-
siderably higher than BPn and BPp in the area with salinity
<30, and BPn increased, particularly in spring, despite the
decrease in BPm in the area with salinity >30 (Fig. 6). There-
fore, high BPm and BPn indicated the dominance of micro-
phytoplankton and nanophytoplankton in the PRE. This result
is consistent with previous investigations conducted through
microscopy and flow cytometry (Qiu et al., 2010). In compar-
ison, the increasing BPp in the area with salinity >30 in spring
indicated that picophytoplankton became abundant (Fig. 6),
and the increase in BPp in autumn suggested the abundance
of picophytoplankton. Phytoplankton sizes are generally
affected by environmental factors (Finkel et al., 2007,
2009). Large phytoplanktons are generally developed in
turbulent and high nutrient waters (Huete-Ortega et al.,
2010; Margalef, 1978; Reul et al., 2006), whereas small
phytoplanktons are developed in stratified and low nutrient
waters (Chisholm, 1992; Kiørboe, 1993; Marañon, 2009). With
the decrease in nutrient availability, phytoplankton typically
change from a large species to small one (Roy et al., 2006);
thus, microphytoplankton generally dominate areas in nutri-
ent-rich conditions (Chen and Liu, 2010). By comparison,
nanophytoplankton and picophytoplankton are abundant in
nutrient-deficient waters (Roy et al., 2006; Thingstad, 1998),
although they contribute to the total biomass in nutrient-rich
coastal waters (Badylak and Phlips, 2004; Phlips et al., 1999).
In the present study, BPn and BPp increased but BPm
decreased with decreasing nutrient concentration in spring
(Fig. 6). This result indicates that nutrient concentration
influences phytoplankton distribution with different sizes. A
previous study also reported that the abundance of picophy-
toplankton in the PRE is negatively correlated with inorganic
nutrients (Zhang et al., 2013). This report implies that low
nutrient concentrations in offshore areas promote the growth
of picophytoplankton.

4.3. Influence of environmental factors on PPC
and PSC

Environmental and trophic conditions affect PPC and PSC,
which function as indicators of the physiological condition of
a phytoplankton community (Trees et al., 2000; Veldhuis and
Kraay, 2004). Lutz et al. (2003) noted an increase in PPC at
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high irradiance levels while the elevated proportion of
PSC at low irradiance, and Barlow et al. (2007) found
that PPC is dominated where nitrate concentrations are
<0.007 mmol L�1, but PSC is high at nitrate levels
>0.007 mmol L�1. As a result, intensive light and low nutri-
ents increase the proportion of PPC, and consequently, the
ratio of PPC:PSC (Moreno et al., 2012; Vijayan et al., 2009).
In the present study, the nutrient concentration in the
southern part was low in spring (Fig. 2); meanwhile, the
average transparency was 1.98 m in transects C and D, which
was considerably higher than that in transect A (0.2 m),
inferring adequate light in transects C and D during spring.
Therefore, adequate light and low nutrients may increase
PPC:PSC ratios in the southern part (transects C and D) of the
PRE in spring (Fig. 7).

By comparison, environmental variables between autumn
and spring showed nonsignificant differences (P > 0.05),
except water temperature, which was significantly lower
in spring than in autumn. Higher phytoplankton biomass
and more samples of higher PPC:PSC ratio were observed
during spring despite lower water temperature (Table 1,
Fig. 7). These trends were probably due to the satisfactory
water transparency in spring. Average transparency was
1.2 m during spring but was only 0.8 m during autumn
(Table 1). Higher transparency may result in adequate light
intensity, possibly causing high levels of the pigments and
PPC:PSC ratios during spring. Zhang et al. (2014) also
reported that turbidity and light are principal factors that
affect phytoplankton biomass in the PRE. Therefore, the
spatial—temporal distribution of PPC:PSC ratios provides
information on the physiological condition of the phytoplank-
ton community in the PRE as influenced by light, transpar-
ency, and nutrient conditions. On this basis, PPC:PSC ratio
can be used as a classification tool for ecosystems because it
can be related both to phytoplankton populations and to
hydrography (Moreno et al., 2012).

5. Conclusion

Among the 22 pigments, 17 were detected using HPLC. Fuco
was the most abundant accessory pigment. The detected
pigments indicated the presence of diatoms, dinoflagellates,
cryptophytes, prasinophytes, chlorophytes, cyanophytes,
haptophytes, and pelagophytes. Most pigment levels were
significantly higher in spring than in autumn, and different
spatial distribution patterns were presented between the
two seasons.

The salinity and nutrient levels influenced the distribution
of phytoplankton functional types in the PRE. BPm was higher
during spring, whereas BPp was higher during autumn. BPm in
spring was high in areas with salinity <30, whereas BPp and
BPn were high in areas with salinity >30. BPm increased
whereas BPn reduced with the increase in nutrient contents.
By comparison, BPp declined with the increase in nutrient
contents during spring.

The PPC:PSC ratios in the southern estuary approached
unity linear relationship during spring and were under the
unity line during autumn. PPC:PSC ratios provide an estimate
of the physiological condition of the phytoplankton commu-
nity in the PRE as influenced by light, transparency, and
nutrients conditions.
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