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Abstract In this paper, artificial neural networks (ANNs) modeling method with back propaga-

tion algorithm was employed to investigate the flow characteristics below vertical and inclined sluice

gates for both free and submerged flow conditions. Two ANN models were developed yielding two

generalized equations to predict the discharge coefficient (Cd) values for both modes of flow. The

model network for free flow entailed four input variables, namely, dimensionless upstream water

depth, Froude number, Reynolds number, and inclination angle, whereas, the Cd value represented

the only single output variable. For submerged flow ANN model, a fifth input variable was added,

which is the dimensionless tailwater depth. The two ANN models were trained and validated

against 420 data sets collected from previous experimental studies. The results indicated that ANNs

are powerful tools for modeling flow rates below both types of sluice gates within an accuracy

of ±5%.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Policy of water saving relies on the precision of flow discharge

measurements. Sluice gates are widely used for controlling dis-
charge and flow depth in irrigation channels and in hydraulic
structures such as barrages. Thus, accurate flow rate computa-

tions below sluice gates in all flow conditions are inevitably
required. Sluice gates are classified into different categories
based on different criteria. Based on the downstream water

level, they are classified as sluice gate discharging free and sub-
merged flow, whereas, on the basis of alignment with channel
axis Mansoor [1] classified them as normal sluice gate, if the

gate is normal to the axis of the channel, side sluice gate, if
the gate is parallel to the axis of the channel, and skew sluice
gate when the gate is inclined to the axis of the channel.
Further, a gate inclined with vertical is classified as inclined

or planar gate (Fig. 1).
Flow through the opening of normal vertical sluice gates

has been the subject of investigation for many academicians

and researchers. On the other hand, little work has been done
on flow under inclined sluice gates. Henry [2] studied the diffu-
sion of submerged jet downstream of a normal sluice gate and
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Notations

ANN artificial neural networks

B gate width (m)
b sluice gate opening height (m)
BPN back propagation network
Cd discharge coefficient (dimensionless)

Fr Froude number (dimensionless)
g gravitational acceleration (m/s2)

L length of sluice gate (m)

Q discharge (m3/s)
Re Reynolds number (dimensionless)
RMSE root mean square error
Y1 upstream flow depth (m)

Yt tailwater flow depth (m)
h sluice gate angle (radians)
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developed a useful diagram for discharge coefficient (Cd) in
free and submerged flow conditions. Based on the experimen-

tal curves demonstrated in [1], Swamee [3] proposed equations
for both free and submerged flows as well as criterion for sub-
mergence. Ferro [4] carried out experimental study on simulta-

neous flow over and under a sluice gate. Clemmens et al. [5]
examined submerged radial gates. Spulveda [6] explored vari-
ous calibration methods for Cd of submerged sluice gates.

Belaud et al. [7] studied the contraction coefficient under free
and submerged sluice gates. Cassan and Belaud [8] investigated
flow characteristics under normal sluice gates using both
experimental and numerical methods. Wu and Rajaratnam

[9] explored solutions to rectangular sluice gate flow problems.
The side sluice gates and skew sluice gates are often used to

divert the discharge in the side channel in irrigation, urban

sewage system and during flood operation. Little published
work namely [10–12] is available on side sluice gates. On skew
sluice gates, Swamee et al. [13] conducted experimental study

under free and submerged flow conditions covering a wide
range of hydraulic parameters. Montes [14] developed method
of solution for flow under planar sluice gates and suggested
that the discrepancy between experimental and theoretical val-

ues of contraction coefficient is due to the energy loss associ-
ated with the vortex formation at the upstream region of the
gate.

Flow under sluice gate (Fig. 2) may be evaluated quite sim-
ply through the one-dimensional equation of energy. The more
direct form of the discharge relationship is as follows:

Q ¼ Cd b B
ffiffiffiffiffiffiffiffiffiffiffi
2gY1

p
ð1Þ
θ

Figure 1 Types of sluice g
where Cd is the gate discharge coefficient; Q is the discharge; b
is the gate opening; B is the gate width; and Y1 is the upstream
water depth.

The artificial intelligence based modeling represents an

efficient tool to investigate flow characteristics below gates.
Buyalski [15] discussed several algorithms to predict discharge
under radial gates. The use of artificial neural networks

(ANNs) modeling for prediction and forecasting variables in
water resources engineering has been increasing rapidly. An
ANN is a mathematical model based on some features of

human brain and nervous system storing and dealing with
information. It has an ability to capture a relationship from
giving patterns, and hence is suitable for application in the

solution of complex problems, such as classification, non-
linear modeling, forecasting, fitting, control and identification
as stated in [16,17]. In this context, a number of applications of
ANNs for prediction, forecasting, modeling and estimation of

water resources variables (water discharge, sediment discharge,
rainfall runoff, ground water flow, precipitation and water
quality, etc.) were examined by Mustafa et al. [18]. The

back-propagation network (BPN) is one of the most popular
feed-forward networks in ANNs. The BPN has the advantages
of a simple structure, mature algorithm and powerful function,

so it becomes a useful technique for solving hydroscience
problems.

In this paper, two ANN models using the back propagation
algorithm were developed to investigate the flow for both free

and submerged flow conditions under vertical and inclined
sluice gates. The developed ANN models yielded two simple
generalized equations to predict the Cd value and to account
ates after Mansoor [1].



Figure 2 Flow beneath sluice gate under free (a) and submerged (b) condition.
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for the inclination angle effect on flow characteristics in both
modes of flow conditions.

2. Data collection

Four groups of data sets were collected from previously pub-

lished experimental work for the purpose of developing the
two ANN models in this study. The distinguishing conditions
for type of flow were based on the Equations developed by

Swamee [3]. The first group entailed 120 data sets for free flow
condition below vertical sluice gates and were collected from 3
different experimental studies, namely, Nago [19], Hager [20],

and Cassan and Belaud [8]. The second group of data sets con-
sisted of 100 data sets for submerged flow under vertical sluice
gates and were collected from Swamee [3], Belaud et al. [7], and
Cassan and Belaud [8]. The other two groups were concerned

with free and submerged flow beneath inclined sluice gates and
were extracted from Montes [14] and Nago [19]. The third
group comprised 90 data sets for free flow, whereas, the fourth

group included 110 data sets for submerged flow. Table 1 illus-
trates the range of variables for the 4 groups. The collected
Table 1 Range of parameters used for ANN models development.

h Q (m3/s) b (m) Y1 (m)

Free flow

0 0.002–0.124 0.02–0.12 0.107–0.22

P/4 (45�) 0.005–0.062 0.01–0.06 0.077–0.57

P/3 (60�) 0.004–0.053 0.01–0.05 0.060–0.56

5P/12 (75�) 0.004–0.045 0.01–0.05 0.086–0.57

Submerged flow

0 0.021–0.103 0.03–0.24 0.201–0.31

P/12 (15�) 0.009–0.036 0.01–0.06 0.082–0.37

P/6 (30�) 0.005–0.045 0.01–0.06 0.047–0.58

P/4 (45�) 0.007–0.025 0.01–0.06 0.075–0.57

P/3 (60�) 0.004–0.017 0.01–0.05 0.051–0.57

5P/12 (75�) 0.003–0.016 0.01–0.05 0.052–0.49
data included the flow rate (Q), upstream water depth (Y1),
tailwater depth (Yt), gate openings (b), Froude number (Fr)

at the upstream section, Reynolds number (Re), and inclina-
tion angle (h). The data sets of both the first and third group
were together used to develop the ANN model for free flow

conditions, while, the second ANN model was built using
the whole data sets of the second and fourth groups.

3. Development of artificial neural networks models

The ANN determines a relationship (i.e. create a model)
between the input and the output of the available data set of

any system. These models are then used to predict the output
from the known input values of the same system, thus requir-
ing sufficient number of data to create and test the models. In
this research, the BPN training algorithm was used to develop

two ANN models for free and submerged flow conditions,
respectively. A three-layer BPN consists of an input layer, an
output layer, and a hidden layer. In BPN, the input quantities

(Xi) are fed into the input layer neurons that, in turn, are
passed onto the hidden layer neurons (hi) after multiplication
Yt (m) Re Fr

0 – 19,450–123,535 0.08–0.44

2 – 45,435–86,053 0.16–0.31

2 – 38,214–66,192 0.12–0.24

4 – 36,486–58,230 0.10–0.23

3 0.103–0.297 22,460–127,054 0.04–0.25

4 0.060–0.359 31,763–71,025 0.06–0.14

0 0.033–0.427 27,508–79,408 0.05–0.15

2 0.054–0.420 29,320–63,527 0.06–0.12

3 0.053–0.407 25,416–89,490 0.07–0.17

8 0.050–0.402 23,150–55,016 0.06–0.11



920 R.A.E.-H. Rady
by connecting to weights (Wij). A hidden layer neuron adds up
the weighted input received from each input neuron (xiWij)
and associates it with a bias (bj) as follows:

Sj ¼ RðxiWij � bjÞ ð2Þ
The result (Sj) is then passed on through a non-linear trans-

fer function to produce an output (e.g. logistic sigmoid
function):

FðSjÞ ¼ 1

1þ exp�Sjð Þ ð3Þ

The output neurons do the same as the hidden neurons. The
BPN finds the optimal weights by minimizing a predetermined

error function. A gradient descent method is often used to
modify the network weights. In this research, the ANN archi-
tecture used for modeling is a multilayer perceptron network

with steepest descent back-propagation training algorithm.
The steepest descent optimization method employs instanta-
neous gradients in adapting the weights of the neural network.

The steepest descent method is the simplest of the gradient
methods. By using simple optimization algorithm, this method
can easily find the local minimum of a function. It starts by
simply picking an arbitrary point that is within a function’s

range and takes small steps toward the direction of greatest
slope changes, which is the direction of the gradient, and even-
tually, after many iterations, the minimum of the function is

located.
For adjustment of the weight and threshold coefficients it

holds that:

w
ðkþ1Þ
ij ¼ w

ðkÞ
ij � k

@E

@wij

� �ðkÞ
ð4Þ

v
ðkþ1Þ
i ¼ v

ðkÞ
i � k

@E

@vi

� �ðkÞ
ð5Þ

where k is the rate of learning ðk > 0Þ. The key problem is cal-

culation of the derivatives @E
@wij

, @E
@vi
.

The steepest descent method has the advantages of minimal
storage requirements, very low computational costs, concep-
tual simplicity, with fast iterations and it can always locate

an existing minimum. However, the steepest descent sometimes
lacks fast convergence. In this context, the steepest descent ver-
sion used in this research forces the gradients in a one-

dimensional subspace as the iterations progress, to avoid the
classical zigzag pattern of steepest descent, which is the main
responsible for the slow convergence of the method. In this
paper, a number of trials were carried out to reach at the var-

ious user defined parameters required for the neural network
based algorithm using WEKA software.

3.1. Free flow artificial neural network model

The model network consists of three layers: Input layer of 4
neurons to represent the input variables as ratio of upstream

water depth to gate opening (Y1/b), inclination angle ðhÞ,
Froude number (Fr), and Reynolds number (Re); an output
layer to characterize the single output variable Cd; and the hid-

den layer between the input and the output layers to receive the
input, perform computations, and send outputs to the output
layer. The hidden layer uses a transfer or activation function
to modify the input to the neuron. The transfer function
may be linear, logistic sigmoid, or tanch. To investigate the
effect of inclination angle on the flow field under sluice gates,
the flow was analyzed for inclination angles of 45�, 60�, and
75� as well as for normal sluice gate (h ¼ 0Þ.

The following steps summarize the network training pro-
cess based on BPN algorithm:

i. The values of the weights were set to initial random
values.

ii. The normalized input pattern Xp (Y1/b, Fr, Re, and h)
and the normalized target pattern (Cd) were shown to
the network.

iii. The output from each node in a layer was calculated.

iv. The weight between nodes was adjusted, starting from
the output layer and working backwards as in (4) and
(5).

The steps from ii to iv were repeated until the error between
the desired and the neural network output reaches a global min-

imum. In this study, a ten-fold cross-validation was used, while
one hidden layer was used as it works well for this data set. The
logistic sigmoid function was used as the activation function at

both hidden and output layers. Other user-defined parameters
used were as follows – momentum = 0.0, learning rate = 0.3,
hidden layer nodes = 8, training time = 600 and, itera-
tions = 1000. These values were obtained after a large number

of trials by using different combination of these parameters car-
ried out on used data sets. From a total number of 220 data
sets, 170 data sets were used for training the model, while the

remaining 50 data sets were utilized for model validation. In
order to check the reliability of the developed ANN model to
predict the flow characteristics under vertical and inclined

sluice gates for free flow condition, the model was operated
for all configurations presented in Table 1. The ANN model
of the free flow sluice gate was obtained by learning the training

flow conditions and then the predicted results were compared
with those measured in experiments.
3.2. Submerged flow artificial neural network model

After being validated for free flow under normal and inclined
sluice gates, another ANN model was developed for sub-
merged flow condition with 200 new data sets. The flow was

analyzed for vertical sluice gate and for inclination angles of
15�, 30�, 45�, 60�, and 75�. In order to establish a general rela-
tionship to predict the Cd value for sluice gates under sub-

merged flow condition, the submerged flow ANN model
entailed the addition of one more input variable, which is
the ratio of tailwater depth to gate opening (Yt/b). The model
was trained and tested using the data sets presented in Table 1.

Eighty percent of the data sets were used for training the
model, while the remaining 20% were used for testing. Many
trials were conducted to determine the best initial range of

the weights of the network connections, the best activation
function, the best number of neurons in the hidden layer and
the best number of iterations. Then the network stability was

checked. Analysis of the results of the conducted training indi-
cated the following:

� The best range to initialize the weight matrix was +0.2.
� The best activation function was logistic sigmoid.
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� The best number of neurons in the hidden layer was 9

neurons.
� The best number of iterations was 1500 iterations.
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Figure 3 Measured versus predicted Cd values for free flow

conditions below vertical sluice gate.
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3.3. Statistical analysis

Two parameters namely correlation coefficient and root mean

square error (RMSE) values were used for the performance
evaluation of the two ANN models in predicting the value of
Cd for both free and submerged flow conditions. The higher

value of correlation coefficient and the smaller value of RMSE
reveal better performance of the model. The results of the
ANN based modeling of Cd using different combinations of

input parameters with the used data sets are provided in
Table 2 in terms of correlation coefficient and RMSE. The
study revealed that the highest value of correlation coefficient

and least value of RMSE were obtained for Cd with Y/b, fol-
lowed by angle of inclination ðhÞ in radians, Fr, and Re for
both flow conditions. This implied a very weak correlation
between Re and Cd. The results of statistical analysis with

respect to Re coincide with those obtained by Montes [14]
who proved that for Re values greater than 10,000, the effect
of Re could be neglected in flow rate computations. The effect

of Fr was found to be minimal. Negative correlation was found
between Cd and Fr in both flow conditions, whereas a negative
correlation exists between Cd and angle of inclination ðhÞ for
the case of submerged flow conditions.

The results of the ANN models revealed that both Fr and
Re have very minor effect on the value of Cd. Hence, they were

not included in the predicted formulas for estimating the Cd

value for both free and submerged flow conditions.

4. Results and discussion

Many trials were carried out through the two ANN models
with different combinations of the selected parameters to
obtain the best fitted equations for predicting the value of

Cd. The results for each flow condition are as follows.

4.1. Free flow

The best fitted nonlinear equation for free flow is given by
Table 2 Calculated correlation coefficient and RMSE.

Input

combinations

Submerged flow Free flow

Correlation

coefficient

RMSE Correlation

coefficient

RMSE

Y1/b 0.911 1.412 0.925 1.662

ðhÞ in radians 0.770 1.671 0.876 1.831

Yt/b 0.634 2.123 – –

Fr –0.182 3.313 –0.223 2.849

Re 0.123 3.641 0.165 2.931

Y1/b + Re 0.45 2.950 0.511 2.221

Y1/b + Fr 0.52 2.163 0.580 1.953

Y1/b + Yt/b 0.926 1.121 – –

Y1/b + ðhÞ 0.953 0.984 0.961 0.973

Y1/b + Yt/b

+ ðhÞ
0.958 0.956 – –
Cd ¼ ð0:042hþ 0:443Þ Y1=bð Þ0:11 ð6Þ
Fig. 3 displays a comparison between the prediction of the

best network (4–8–1) and the experimental data with respect to
Cd for free flow conditions below vertical sluice gates. The fig-

ure indicated that very good agreement was obtained. The
equation shows that the discharge coefficient is greatly influ-
enced by dimensionless upstream water depth. Figs. 4–6 depict

Cd variation against Y1/b for three different inclination angles.
Figs. 4–6 indicated that there is a slight increase in Cd values
with increasing the inclination angle from 45� to 75�. On the
other hand, the values of Cd ranged from 0.40 to 0.78 for dif-

ferent angles as shown in below figures compared to a range of
0.45–0.60 in the case of free flow beneath vertical sluice gates
(Fig. 3). This implies a maximum increase of 30% in the value

of Cd for the case of inclined sluice gate. The results revealed
that the average value of Cd for vertical sluice gate is 0.58,
Figure 4 Variation of Cd versus Y1/b for h= 45� (free flow

condition).
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Figure 5 Variation of Cd versus Y1/b for h= 60� (free flow

condition).
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Figure 6 Variation of Cd versus Y1/b for h = 75� (free flow

condition).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 10 20 30 40 50 60 70

C d

Y1/b
b=0.01 m b=0.02 m b=0.04 m b=0.05 m b=0.06 m

Figure 8 Variation of Cd versus Y1/b for h= 15� (submerged

flow condition).
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Figure 9 Variation of Cd versus Y1/b for h= 30� (submerged

flow condition).
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Figure 10 Variation of Cd versus Y1/b for h= 45� (submerged

flow condition).
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which is very close to the value of 0.56 obtained by Nago [19]
and the value of 0.572 attained by Cassan and Belaud [8],

whereas, for inclined sluice gates, the model results showed
average Cd values of 0.67 and 0.73 for inclination angles of
45� and 60�, respectively. These two values are in good agree-

ment with the values of 0.66 and 0.716 found by Nago [19] for
the same two angles.

4.2. Submerged low

Many trials were performed through the ANN model in sub-
merged flow with different combinations of the dimensionless
parameters Y1/b and Yt/b, in addition to angle of inclination.

The perfect fitted equation generated by the model is given by:

Cd ¼ ð0:053hþ 0:243Þ Y1=bð Þ0:45 Yt=bð Þ�ð0:20þ0:03h6:2Þ ð7Þ
Fig. 7 shows that the ANN model also yielded very compa-

rable Cd values for submerged flow conditions under vertical
sluice gates. Figs. 8–12 present variation of Cd with Y1/b for

five different angles of inclination. As it can be seen, discrep-
ancy between these dimensionless parameters and Cd is higher
than the case of free flow condition, but interaction of these

parameters with each other results in high accuracy in predict-
ing Cd values. Figs. 8–12 show that there is a marked variation
of Cd with h. An increase in Cd values of the inclined sluice gate
with decrease in inclination angle was realized. For inclination

angle of 15�, the values of Cd ranged from 0.4 to 0.69, while the
range was from 0.20 to 0.43 for inclination angle of 75�. For
inclination angles of 15� and 30� the trend of Cd variation

for submerged flow is quite similar to that of inclination angles
of 45� and 60� for free flow, whereas, the variation in Cd values
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Figure 7 Measured versus predicted Cd values for submerged

flow conditions below vertical sluice gate.
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Figure 11 Variation of Cd versus Y1/b for h= 60� (submerged

flow condition).
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Figure 12 Variation of Cd versus Y1/b for h= 75� (submerged

flow condition).
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for inclination angles of 45�, 60�, and 75� for submerged flow is
different from that of same angles for free flow. The values of

Cd for inclination angles of 15� and 30� were higher than those
of vertical sluice gates (Fig. 7). On the contrary, the values of
Cd for vertical sluice gates were higher than those of inclination

angles of 60� and 75�. The average Cd value derived from the
ANN equation for vertical sluice gate is 0.38 that is compara-
ble to the value of 0.37 obtained by Cassan and Belaud [8] and
the value of 0.365 that attained by Shivapur and Shesha [21],

while, the average Cd values for inclination angles of 15�,
30�, and 45� are 0.62, 0.49, and 0.45, respectively. These values
are in good agreement with the values of 0.596, 0.465, and

0.435 found by Shivapur and Shesha [21].
4.3. Accuracy of generalized equations

After being checked for the case of vertical sluice gate with
respect to Cd values (Figs. 3 and 7), the accuracy of the two
developed equations was examined for inclined sluice gates.

For data set of each inclination angle, discharge values were
computed for both free and submerged flow conditions using
the two developed Eqs. (6) and (7). These computed values
were plotted against the observed values of Table 1 as shown

in Figs. 13 and 14 for free flow and submerged flow, respec-
tively. It is evident from these figures that most of the data
points lie within a tolerance limit of ±5%. This implies quite

high accuracy of the two developed equations.

5. Conclusions

Two simple generalized equations for estimation of discharge
coefficient of sluice gates in both free and submerged flow con-
ditions were proposed via two developed ANN models using

BPN algorithm that can be used to find Cd for any value of
h in the specified range of parameters. The predicted Cd is
found to be dependent on the ratio between the depth of water

in the upstream and the gate opening, and the angle of inclina-
tion for free flow conditions, whereas, for submerged flow con-
ditions, one more variable affects the value of discharge
coefficient that is the ratio between the depth of water in the

downstream and the gate opening. The results revealed that
an increase in discharging capacity of the inclined sluice gate
with decrease in inclination angle was realized for submerged

flow condition, while, no significant change in discharging
capacity was recognized in case of free flow condition. More-
over, the values of Cd for inclined sluice gates were higher than

those of vertical sluice gates in case of free flow, whereas, for
submerged flow, the values of Cd for inclination angles of
15� and 30� were higher than those of vertical sluice gates.
On the contrary, the values of Cd for vertical sluice gates were

higher than those of inclination angles of 60� and 75�. Using
these equations discharge through sluice gates can be obtained
within an accuracy of ±5%. The results indicated that ANNs

are powerful tools for modeling flow rates below both vertical
and inclined gates.
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