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It is well known that by means of the right and left products
of an associative dialgebra we can build a new product over
the same vector space with respect to which it becomes a right
version of a Jordan algebra (in fact, this new product is right
commutative) called quasi-Jordan algebra. Recently, Kolesnikov and
Bremner independently have discovered an interesting property
of this new product. As the results of this paper indicate, when
the said property is incorporated as an axiom in the definition
of quasi-Jordan algebra then in a natural way one can introduce
and study concepts in this new structure such as derivations (in
particular inner derivations), quadratic representations, and the
structure groups of a quasi-Jordan algebra.
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1. Introduction

It is well known that any associative algebra A becomes a Lie algebra under the skew-symmetric
product (Lie bracket) [x, y] := xy − yx and at the same time it becomes a Jordan algebra with respect
to the product x • y := 1

2 (xy + yx). On the other hand, we recall that from the works of J. Tits [12],
I. Kantor [4] and M. Koecher [7] it follows that any Jordan algebra can be imbedded into a Lie al-
gebra. It is well known that the derivations of the Jordan algebra play a fundamental role in this
construction.

In 1993, J.L. Loday introduced the notion of Leibniz algebras (see [8]), which is a generalization
of the Lie algebras where the skew-symmetricity of the bracket is dropped and the Jacobi identity
is changed by the Leibniz identity. Loday also showed that the relationship between Lie algebras
and associative algebras translates into an analogous relationship between Leibniz algebras and the
so-called associative dialgebras (see [8]) which are a generalization of associative algebras possessing
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two products. In particular Loday showed that any dialgebra (D,�,�) becomes a Leibniz algebra DLeib
under the Leibniz bracket [x, y] := x � y − y � x (see [8] and [9]). This fact is a trivial calculation using
the defining identities for associative dialgebras.

However, there exists a more deep relation between a Lie algebra and certain associative algebra
for which it also has been pointed an analogue by Loday in the context of his work about Leibniz
algebras and associative dialgebras that we pass to discuss. A main tool in the Lie algebra theory is
another algebra obtained by means of a quotient construction. This algebra constitutes an associative
algebra and is called universal enveloping algebra of a Lie algebra. It is important because allows
us to translate questions about Lie algebras into corresponding questions about associative algebras.
Let L be a Lie algebra and let U (L) denote its universal enveloping algebra, then one can introduce
U (L) as follows. Since L is a vector space, then it is possible to construct the associative algebra
T (L) = F � L � L ⊗ L � · · · , which is its contravariant tensor algebra. In T (L) one considers the two-
sided ideal K generated by the set of all elements of the form

[x, y] = (x ⊗ y − y ⊗ x),

where x and y are elements of L. In this form, the ideal K contains the differences between Lie alge-
bra products and the corresponding commutators in the associative algebra T (L). If next we consider
the associative quotient algebra U (L) = T (L)/K then its Lie products will not be distinguished from
commutators since they belong to the same coset. Now as any associative algebra, we can make U (L)

a Lie algebra using the commutator operation as the Lie product. When one does this, we can con-
sider L to be injective homomorphically into U (L), considered as a Lie algebra. If {xi} is a basis for L,
then the monomials of the form

xi1 ⊗ xi2 ⊗ · · · xin , n = 0,1,2, . . . ,

where we take the trivial monomial 1 in the case n = 0, span T (L), and hence their cosets span U (L).
A result of Poincaré, Birkhoff and Witt is that if we only take monomials having their indices i j in
ascending order, allowing repetition, then the cosets of these monomials, again including 1, form a
basis for U (L). Remarkably, Loday proved that the universal enveloping algebra of a Leibniz algebra
has the structure of a dialgebra, see [8] and [9].

We would like to observe that the referee has informed the author that the first discussion of
Leibniz algebras was in fact given by C. Cuvier in 1994. Thus, the paper [3] should be mentioned in
addition to that of Loday.

For convenience of the reader, we include here the definition of dialgebra which is a generalization
of associative algebras, with two operations.

Definition 1. A dialgebra over a field K is a K -vector space D equipped with two associative products

� : D × D → D,

� : D × D → D

satisfying the identities:

x � (y � z) = x � (y � z), (1)

(x � y) � z = x � (y � z), (2)

(x � y) � z = (x � y) � z. (3)

Very recently, Velasquez and Felipe introduced the notion of quasi-Jordan algebras which may
have, with respect to the Leibniz algebras, a relationship similar to those existing among the Jordan
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algebras and the Lie algebras. In fact, in [13] they attach a quasi-Jordan algebra Lx to any ad-nilpotent
element x with an index of nilpotence 3 (Q -Jordan element) in a Leibniz algebra L. Thus, the quasi-
Jordan algebras are a generalization of Jordan algebras but where the commutative law is changed by
a quasi-commutative identity and a special form of the Jordan identity is retained.

It should be indicated that in the above mentioned paper [13], the authors establish a few results
about the relationship between Jordan algebras and quasi-Jordan algebras; moreover, they compare
the quasi-Jordan algebras with some known structures. For instance, the Jordan and Perm algebras
are obvious examples of quasi-Jordan algebras. On the contrary, the noncommutative Jordan algebras
are not in general quasi-Jordan algebras. At the same time, we remember that the authors pointed
there a way in which one can use the notion of Jordan bimodule to construct interesting quasi-Jordan
algebras.

In [14], the notions of the annihilator ideal and split structure are studied in detail for both dial-
gebras and quasi-Jordan algebras. The authors also provide methods for additional units in the two
structures. As a consequence, the notion of regular element receives special attention of the authors
of this article.

The objects of study of this article are the derivations (in particular, inner derivations), quadratic
representations and the structure group of a quasi-Jordan algebra. For this purpose, we use a property
recently discovered by Kolesnikov and independently by Bremner of the Jordan di-product constructed
from the right and left product over a dialgebra.

2. Preliminaries on quasi-Jordan algebras

In [13] the aim of the work was to discover a new generalization of Jordan algebras. This new
structure, named quasi-Jordan algebra, can be noncommutative although it is not in general equivalent
to a noncommutative Jordan algebra and satisfies a particular noncommutative version of the Jordan
identity. As was seen in the mentioned paper, the quasi-Jordan algebras appear in the study of the
product

x � y := 1

2
(x � y + y � x), (4)

where x and y are elements in a dialgebra D over a field K of characteristic different from 2.
We give the following definition (see [13]).

Definition 2. By a quasi-Jordan algebra we mean a vector space � over a field K of a characteristic
different of 2 equipped with a bilinear product � :� × � → � that satisfies

x � (y � z) = x � (z � y) (right commutativity), (5)

(y � x) � x2 = (
y � x2) � x (right Jordan identity), (6)

for all x, y, z ∈ �, where x2 = x � x.

In [13] it was shown that all Q -Jordan elements in a Leibniz algebra are associated to quasi-Jordan
algebras.

Next, we provide a few examples of quasi-Jordan algebras.

Example 1. First, if we translate the quasi-multiplication (Jordan product) to the dialgebra framework,
we obtain a new algebraic structure of Jordan type. Let D be a dialgebra over a field K of the charac-
teristic different from 2. We define the product � : D × D → D by

x � y := 1
(x � y + y � x),
2
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for all x, y ∈ D . Simple calculations show that the product � satisfies the identities (5) and (6), but the
product � is noncommutative in general. It follows that (D,�) is a quasi-Jordan algebra. The product �
of this example is called the Jordan di-product for dialgebras.

On the other hand, if D is a unital dialgebra, with a specific bar-unit e, we have that x � e = x, for
all x in D . This implies that e is a right unit for the quasi-Jordan algebra (D,�).

A right unit in a quasi-Jordan algebra � is an element e in � such that x� e = x, for all x ∈ �. Let �
be a quasi-Jordan algebra, if there is an element ε in � such that ε � x = x then � is a classical Jordan
algebra and ε is a unit. For this reason, we only consider right units over quasi-Jordan algebras. It is
possible to attach a unit to any Jordan algebra, but in quasi-Jordan algebras the problem of attaching
a right unit is an open problem. Additionally, the right units in quasi-Jordan algebras are not unique.

Definition 3. Let J be a Jordan algebra and let M be a vector space over the same field as J . Then
M is a Jordan bimodule for J in the case when there are two bilinear compositions (m,a) 
→ ma and
(m,a) 
→ am, for all m ∈ M and a ∈ J , satisfying

ma = am

and

(
a2,m,a

) = (
a2,b,m

) + 2(ma,b,a) = 0,

for all m ∈ M and a,b ∈ J , where (a,b, c) denotes the associator.

The following examples can be find in [13] and [14].

Example 2. Let J be a Jordan algebra and let M be a Jordan bimodule. A linear map f : M → J is
called J -equivariant over M if f (am) = af (m), for all m ∈ M and a ∈ J . If f is a J -equivariant map
over M , then we define the product � : M × M → M by

m � n = f (n)m, for all m,n ∈ M,

then (M,�) is a quasi-Jordan algebra.

Example 3. Let J be a Jordan algebra and let M be a Jordan bimodule over J . We consider the direct
sum � := M ⊕ J and we define the product � over � by

(u + x) � (v + y) = uy + x • y,

for all u, v ∈ M and x, y ∈ J . Then (�,�) is a quasi-Jordan algebra. We call this algebra the
demisemidirect product of M with J .

One can construct a quasi-Jordan algebra with the assistance of a vector space and its Jordan
algebra of linear transformations. In this sense we have

Example 4. Let V be a vector space over a field K with a characteristic different from 2 and let
gl+(V ) be a Jordan algebra of linear transformations over V with a product defined by

A • B = 1
(AB + BA),
2
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where AB denotes the composition of the maps A and B . We consider the vector space gl+(V ) × V
and we define the product � : (gl+(V ) × V ) × (gl+(V ) × V ) → gl+(V ) × V by

(A, u) � (B, v) = (A • B, Bu),

for all A, B ∈ gl(V ) and u, v ∈ V . This product satisfies the identities (5) and (6). Moreover, this quasi-
Jordan algebra is power-associative and (Id, v), where Id denotes the identity map over V , is a right
unit which is not a left unit for all v ∈ V .

Example 5. Let V be a 2-dimensional vector space with a base {e1, e2}. If we define the product
� : V × V → V with respect to e1 and e2 by ei � e j = ei , for i = 1,2, and extend the product to V for
linearity, we have that (V ,�) is a noncommutative quasi-Jordan algebra.

For more details on the concepts and results that we discuss below we refer the reader to [14].
For a quasi-Jordan algebra � we introduce

Zr(�) = {z ∈ � | x � z = 0, ∀x ∈ �}.
We denote by �ann the subspace of � spanned by elements of the form x � y − y � x, with x, y ∈ �.

We have that � is a Jordan algebra if and only if �ann = {0}. It follows from the right commutativ-
ity (5) that in any quasi-Jordan algebra we have

x � (y � z − z � y) = 0.

The last identity implies

�ann ⊂ Zr(�).

One can prove that both �ann and Zr(�) are two-sided ideals of �. The ideal �ann is called the
annihilator ideal of the quasi-Jordan algebra �. On the other hand, we recall that if � is a unital
quasi-Jordan algebra, with a specific right unit e, then (see [13])

�ann = Zr(�),

�ann = {x ∈ � | e � x = 0}
and

Ur(�) = {
x + e

∣∣ x ∈ �ann}
Quotienting the quasi-Jordan algebra � by the ideal �ann gives a Jordan algebra denoted by �Jor.

Moreover, the ideal �ann is the smallest two-sided ideal of � such that �/�ann is a Jordan algebra.

Definition 4. Let � be a quasi-Jordan algebra and let I be an ideal in � such that �ann ⊂ I ⊂ Zr(�).
We say that � is split over I if there is a subalgebra J of � such that � = I ⊕ J , as a direct sum of
subspaces.

This class of quasi-Jordan algebras is important because there is a special relationship between
quasi-Jordan algebras and split quasi-Jordan algebras. This relationship shows that every quasi-Jordan
algebra is isomorphic to a subalgebra of a split quasi-Jordan algebra (see [14] for more details).

It is clear from the previous definition that if � is split over an ideal I with complement J , then
J is a Jordan algebra with respect to the product � restricted to J . This is equivalent to saying that
( J ,�| J ) is a Jordan algebra. In fact, let x, y ∈ J , then x � y, y � x ∈ J and this implies x � y − y � x ∈
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I ∩ J = {0}, i.e. �| J is commutative and therefore the right Jordan identity over � implies that ( J ,�| J )

is a Jordan algebra.
Additionally, for u, v ∈ I and x, y ∈ J we have

(u + x) � (v + y) = u � y + x � y,

because I ⊂ Zr(�).
Let � be a quasi-Jordan algebra and let I be an ideal of � such that �ann ⊂ I ⊂ Zr(�). Then � is

split over I if and only if � is the demisemidirect product (in the sense of Example 3) of I with a
Jordan algebra J .

We suppose that � is a split quasi-Jordan algebra with a specific right unit e. Because, �ann = Zr(�)

we have that there is a Jordan algebra J such that � = �ann ⊕ J . Moreover, the Jordan algebra J is
isomorphic to the Jordan algebra �Jor.

Because e ∈ � is a right unit in �, there are elements x ∈ �ann and ε ∈ J such that e = x + ε . If
y + a ∈ �, with y ∈ �ann and a ∈ J , we have

y + a = (y + a) � e = (y + a) � (x + ε) = y � ε + a � ε = (y + a) � ε.

The last identity implies that ε is a right unit in � and it is a unit in the Jordan algebra J . Also, ε
is the only element in J such that x + ε is a right unit in �.

It implies that the right units in a split quasi-Jordan algebra are of the form i + ε , where i ∈ �ann

and ε is the unique unit of a unital Jordan algebra, hence Ur(�) = �ann ⊕ {ε}.
The reciprocal of this characterization is not true, that is, a split quasi-Jordan algebra with unital

Jordan part, need not necessarily have a right unit (see [14] for more details).
In [1] Bremner proved that the product (4) over a dialgebra satisfies the relation

(
x, y2, z

) = 2(x, y, z) � y, (7)

where (u, v, w) = (u � v) � w − u � (v � w).
The equality (7) was first obtained by Kolesnikov in other context (see [5]), therefore we will call

it the Kolesnikov–Bremner identity (or KB identity) for the Jordan di-product (4).
We are in a position to introduce the following concept.

Definition 5. A quasi-Jordan algebra for which (7) holds is called restrictive quasi-Jordan algebra.

Since any associative algebra is a dialgebra for which the left and right product coincides, then it
follows that any special Jordan algebra is a restrictive quasi-Jordan algebra. On the other hand, the
referee has pointed to the author that the product in any Jordan algebra also satisfies the KB identity.
We thank the referee for suggesting us the following proof of this fact which we present here for
completeness of the article.

To check that the KB identity holds in every Jordan algebra, we start with the Jordan identity:

(
x, y, x2),

then we expand the associator, linearize the identity, and use commutativity to obtain (for brevity we
omit the symbol for the product)

2(wy)(xz) + 2(xy)(wz) + 2(zy)(wx) − 2w
(

y(xz)
) − 2x

(
y(wz)

) − 2z
(

y(wx)
) = 0,

just now, we divide by −2 and one more time we use commutativity to obtain

(
(wx)y

)
z + (

(wz)y
)
x + (

(xz)y
)

w − (wx)(yz) − (wy)(xz) − (wz)(xy) = 0,
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let us denote the left side of this equation by J (w, x, y, z). One can see that

J (w, x, z, y) − J (w, y, x, z) = (
(wx)z

)
y − (

(wy)x
)
z + (

(wy)z
)
x − (

(wz)x
)

y

+ (
(xy)z

)
w − (

(yz)x
)

w. (8)

The following step consists in starting again with the KB identity:

(
x, y2, z

) = 2(x, y, z)y,

then, in this equality we expand the associators, use commutativity, linearize the identity, and collect
terms on the left side to get

2
(
(wy)x

)
z − 2

(
(wy)z

)
x − 2

(
(xw)z

)
y − 2

(
(xy)z

)
w + 2

(
(wz)x

)
y + 2

(
(yz)x

)
w = 0,

let us divide by −2 and finally let us use commutativity again to obtain

(
(wx)z

)
y − (

(wy)x
)
z + (

(wy)z
)
x − (

(wz)x
)

y + (
(xy)z

)
w − (

(yz)x
)

w = 0. (9)

Then the left side of (9) coincides with (8).

Remark 6. Bremner discovered (7) by means of a computer-assisted method to study identities of
certain degree in non-associative algebraic structures, while Kolesnikov arrived at this in his before
mentioned work, where he introduced and studied the concept of a variety of dialgebras which this
author found to be closely related to the notion of a variety of conformal algebras.

Another reference, extending the work of Kolesnikov, on the algorithm for converting algebras
identities to dialgebras identities, is a paper of A.P. Pozhidaev [11].

Let (A,�) be an algebra. We recall that the powers of u ∈ A are defined by u1 = u, um+1 = um � u
for m � 1. We say that (A,�) is a power-associative algebra if the equality ur � us = ur+s holds for
all u ∈ A, r � 1 and s � 1. The referee raised the important question of whether every quasi-Jordan
algebra is power-associative. The answer to this question turns out to be negative, as follows from the
following counterexample: Let �4 be the 4-dimensional split quasi-Jordan algebra (it is not a Jordan
algebra) whose multiplication table is

� i j a b

i 0 0 i j

j 0 0 j i

a 0 0 b a

b 0 0 a b

Then, �4 = �ann
4 ⊕ J4 where �ann

4 = 〈{i, j}〉 and J4 is the 2-dimensional Jordan algebra generated
by {a,b}. It is easy to show that (i + b)5 = (i + b), (i + b)3 = (i + b) and (i + b)2 = ( j + b). Hence

(i + b)3 � (i + b)2 = (i + b) � ( j + b) = ( j + b),

it follows that (i + b)3 � (i + b)2 �= (i + b)5. Thus, the quasi-Jordan algebra �4 is not power-associative.
From now on, we abandon the review about quasi-Jordan algebras.
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3. Derivations in restrictive, split and unital quasi-Jordan algebras

In the remainder of the article we suppose that � is a split and unital quasi-Jordan algebra, thus
there is a unital Jordan algebra J such that � = �ann ⊕ J . We denote the unit of J by ε . As we already
know ε will be a unit of all �.

The elements of � should be presented as pairs, that is, (i,a), ( j,b), (k, c), . . . etc. We remember
that the product of two elements is (i,a) � ( j,b) = (i � b,ab), where i � b ∈ �ann and ab ∈ J . Thus, we
have defined a linear transformation R( j,b) over all � in the way R( j,b)(i,a) = (i,a) � ( j,b) = (i � b,ab)

which can be presented using a pair of linear transformations, Rb :�ann → �ann and Lb : J → J where
Rbi = i � b and Lba = ba. It is clear that through the obvious action, we have R( j,b)(i,a) = (i,a) �
( j,b) = (Rb, Lb)(i,a).

Proposition 7. Let � = �ann ⊕ J be a split and unital quasi-Jordan algebra. Then

[Rd, Rbc] + [Rb, Rdc] + [Rc, Rbd] = 0, (10)

and

[Ld, Lbc] + [Lb, Ldc] + [Lc, Lbd] = 0, (11)

for all b, c,d ∈ J . Here [·,·] represents the brackets in End(�ann) and End( J ) respectively.

Proof. The Jordan identity (6), in our case acquires the form of two equations, the first

(i � b) � b2 = (
i � b2) � b, (12)

for every i ∈ �ann and all b ∈ J . Moreover, the second

(ab)b2 = (
ab2)b, (13)

for any a,b ∈ J .
Now, since J is a Jordan algebra, then it is a well-known fact that the equality (11) is obtained

from (13) by means of a double process of linearization. On the other hand, it is easy to see that the
proof of (10) follows a similar path. In fact, if we just execute a similar double process of linearization
to Eq. (12) we obtain (10). �

Note that in Proposition 13 we did not assume that � is restrictive.
From here on we assume � = �ann ⊕ J is a restrictive, split and unital quasi-Jordan algebra. The

unit of J will be denoted by ε .

Theorem 8. In � we have

R([Lb,La]c) = [[Rb, Ra], Rc
]
, (14)

for all a,b, c ∈ J .

Proof. The KB identity (7) implies that(
i � a2) � b − i � (

a2b
) = 2

(
(i � a) � b

) � a − 2(i � ab) � a, (15)

for all i ∈ �ann and any a,b ∈ J . Now, linearizing Eq. (15) only once, we obtain (14). Next, we develop
this calculation in detail. But first, we shall show that (15) holds. If ( j, y) ∈ � then ( j, y) � ( j, y) =
( j � y, y2). Thus, we have
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(
(i, x), ( j, y)2, (k, z)

) = (
(i, x),

(
j � y, y2), (k, z)

)
= (

(i, x) � (
j � y, y2)) � (k, z) − (i, x) � ((

j � y, y2) � (k, z)
)

= (
i � y2, xy2) � (k, z) − (i, x) � (

( j � y) � z, y2z
)

= ((
i � y2) � z,

(
xy2)z

) − (
i � (

y2z
)
, x

(
y2z

))
= ((

i � y2) � z − i � (
y2z

)
,
(
xy2)z − x

(
y2z

))
, (16)

on the other hand,

2
(
(i, x), ( j, y), (k, z)

) � ( j, y) = 2
(
(i � y) � z − i � yz, (xy)z − x(yz)

) � ( j, y)

= 2
((

(i � y) � z − i � yz
) � y,

(
(xy)z

)
y − (

x(yz)
)

y
)
, (17)

equating the first components of (16) and (17) we arrive at (15). We are now ready to linearize the
equality (15).

Let L1, L2, L3 and L4 denote the linearization of the terms of Eq. (15) starting from the left. One
can see that if a → a + αc and we take the coefficients of α then

L1 = 2
(
i � (ac)

) � b, L2 = 2
(
i � (ac)b

)
, (18)

further,

L3 = 2
(
(i � c) � b

) � a + 2
(
(i � a) � b

) � c, (19)

and finally,

L4 = 2
(
i � (cb)

) � a + 2
(
i � (ab)

) � c. (20)

Now since L1 − L2 = L3 − L4, then together with (18)–(20) the identity gives

R(ac)b = Rb Rac − Ra Rb Rc − Rc Rb Ra + Ra Rcb + Rc Rab, (21)

exchange in (21) the roles of a and b

R(bc)a = Ra Rbc − Rb Ra Rc − Rc Ra Rb + Rb Rca + Rc Rab, (22)

hence, taking into account that a,b, c live in a Jordan algebra, from (21) and (22) it follows that

R([Lb,La]c) = [[Rb, Ra], Rc
]
. (23)

The theorem is proved. �
Note that because J is a Jordan algebra, then for any a,b, c ∈ J we also have

L([Lb,La]c) = [[Lb, La], Lc
]
. (24)

The KB identity is really useful. In fact, we have
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Remark 9. In the general case, that is, when � is a restrictive quasi-Jordan algebra, it does not neces-
sarily split, neither is it necessarily unital, the process of linearization of Eq. (7) leads to the following

R(y�w)�z = Rz R y�w − R y Rz R w + R y R w�z − R w Rz R y + R w R y�z, (25)

for all y, z, w ∈ �. Here Rx y = y � x. Hence, also

R(z�w)�y = R y Rz�w − Rz R y R w + Rz R w�y − R w R y Rz + R w Rz�y, (26)

now, it should be noted that R(y�w)�z = R(w�y)�z , R(z�w)�y = R(w�z)�y , R y�w = R w�y , Rz�w = R w�z

and Rz�y = R y�z . Using these equalities by subtracting (26) from (25) we obtain

R[Rz,R y ]w = [[Rz, R y], R w
]
. (27)

Next, we pay attention to the notion of derivation over a restrictive, split and unital quasi-Jordan
algebra � = �ann ⊕ J .

It is obvious that (0, ε) is a unit of �.

Definition 10. A linear transformation D on � (that is D ∈ End�) is called a derivation if for all
(i,a), ( j,b) ∈ �

D
(
(i,a) � ( j,b)

) = (
D(i,a)

) � ( j,b) + (i,a) � (
D( j,b)

)
. (28)

Since we can write D = (D1, D2), where D1 :�ann → �ann and D2 : J → J then (28) is equivalent
to the two following equations

D1(i � b) = (D1i) � b + i � (D2b), (29)

for all i ∈ �ann and every b ∈ J , moreover

D2(ab) = (D2a)b + a(D2b), (30)

for all a,b ∈ J .
It is clear that (29) and (30) can be written in this way

R D2b = [D1, Rb], LD2b = [D2, Lb]. (31)

Reciprocally, (31) implies that D = (D1, D2) is a derivation of �. Note that (28) is the same as

R D( j,b) = [D, R( j,b)]. (32)

In other words, D is a derivation if and only if (32) holds.

Corollary 11. D = ([Ra, Rb], [La, Lb]) is a derivation of �.

Proof. It is well known that for all a,b ∈ J , [La, Lb] is a derivation. Hence, the corollary follows
from (31) and Theorem 8. �

Since in any derivation D = (D1, D2), D2 is a derivation over the Jordan algebra J , then D2ε = 0.
It follows that D(0, ε) = (0,0).

We define Der(�ann) as the subset of End(�ann) of all D1 for which (29) is satisfied. Therefore,
if Der(�) is the set of all derivations of �, then Der(�) = (Der(�ann),Der( J )). It is easy to show
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that over End(�) = (End(�ann),End( J )), the product [(W1, A1), (W2, A2)] = ([W1, W2], [A1, A2]) is a
Lie bracket. Here [W1, W2] ∈ End(�ann) and [A1, A2] ∈ End( J ) are the Lie products in End(�ann) and
End( J ) respectively. Observe also that

[
(W1, A1), (W2, A2)

] = (W1, A1)(W2, A2) − (W2, A2)(W1, A1),

under the usual product in (End(�ann),End( J )).
After introducing the necessary definitions, we are able to ensure that

R([R(i,a),R( j,b)](k,c)) = [[R(i,a), R( j,b)], R(k,c)
]
, (33)

which follows directly from (14) and (24).
Obviously, Der(�) is a vectorial subspace of End(�). Moreover,

Theorem 12. Let us assume that D = (D1, D2) and D̂ = (D̂1, D̂2) are derivatives of �. Then [D, D̂] is also a
derivation. Therefore, Der(�) is a Lie algebra.

Proof. For any b ∈ J , we have

R[D2,D̂2]b = R D2 D̂2b−D̂2 D2b = R D2 D̂2b − R D̂2 D2b

= [D1, R D̂2b] − [D̂1, R D2b]
= [

D1, [D̂1, Rb]
] − [

D̂1, [D1, Rb]
]

= [
D1, [D̂1, Rb]

] + [
D̂1, [Rb, D1]

]
= [[D1, D̂1], Rb

]
. (34)

Noting now that both D2 and D̂2 are derivations over the Jordan algebra J , we then can state that

L[D2,D̂2]b = [[D2, D̂2], Lb
]
, (35)

Thus, from (31), (34) and (35) it follows that [D, D̂1] = ([D1, D̂1], [D2, D̂2]) belongs to Der(�). �
Note that from (34) and (35) one concludes that

R[D,D̂]( j,b) = [[D, D̂], R( j,b)

]
, (36)

for every D, D̂ ∈ Der(�) and all ( j,b) ∈ �. It follows (32). However, it can be proved directly. In fact,
[D, D̂] = ([D1, D̂1], [D2, D̂2]) and remembering now that R( j,b) = (Rb, Lb) then we have

R[D,D̂]( j,b) = R([D1,D̂1],[D2,D̂2])( j,b) = R([D1,D̂1] j,[D2,D̂2]b)

= (R[D2,D̂2]b, L[D2,D̂2]b) = ([[D1, D̂1], Rb
]
,
[[D2, D̂2], Lb

])
= [[D, D̂], (Rb, Lb)

] = [[D, D̂], R( j,b)

]
.

Definition 13. The derivations of the form D = [R(i,a), R( j,b)] = [(Ra, La), (Rb, Lb)] = ([Ra, Rb], [La, Lb])
will be called inner derivations.
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We consider the formal quadratic representation

F (i,a) = 2R2
(i,a) − R(i,a)2 = 2(Ra, La)

2 − R(i�a,a2)

= (
2R2

a − Ra2 ,2L2
a − La2

)
= (

Q (a), P (a)
)
. (37)

The quadratic representation Q (.) :�ann → �ann over the annihilator ideal �ann is an entirely new
object and so it should be investigated in detail. On the contrary, the quadratic representation P (a)

on J is well studied.
We define

Q (a,b) = Ra Rb + Rb Ra − Rab, (38)

where a,b ∈ J . Clearly Q (a) = Q (a,a).
We remember that � = �ann ⊕ J is a restrictive, split and unital quasi-Jordan algebra.

Proposition 14. Let D = (D1, D2) be a derivation. Then

2Q (D2a,a) = [
D1, Q (a)

]
, (39)

for all a ∈ J .

Proof. From (31) we know that if a ∈ J

R D2a = [D1, Ra], (40)

hence

2Q (D2a,a) = 2(R D2a Ra + Ra R D2a − R(D2a)a). (41)

It shall be noted that 2(D2a)a = D2a2. Therefore, it follows from (41) that

2Q (D2a,a) = 2[D1, Ra]Ra + 2Ra[D1, Ra] − [D1, Ra2 ]
= D1

(
2R2

a

) − (
2R2

a

)
D1 − [D1, Ra2 ]

= [
D1,2R2

a − Ra2

] = [
D1, Q (a)

]
. � (42)

In addition to Proposition 14, from the classical theory of Jordan algebras it follows that

2P (D2a,a) = [
D2, P (a)

]
, (43)

for all a ∈ J .
Reciprocally, we have

Theorem 15. Let D1 :�ann → �ann , D2 : J → J be two transformations given, such that, D1 and D2 are linear
and for all a ∈ J

2Q (D2a,a) = [
D1, Q (a)

]
, 2P (D2a,a) = [

D2, P (a)
]
, (44)

then D = (D1, D2) is a derivation over �.
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Proof. In fact, the second equality of (44) implies that D2 is a derivation over J , so D2ε = 0. Now,
in the first equality we replace a by a + αε and collect linear terms. We obtain R D2a = [D1, Ra]. It
shows that D = (D1, D2) belongs to Der(�). �

Let us define

F
(
(i,a), ( j,b)

) = R(i,a)R( j,b) + R( j,b)R(i,a) − R(i,a)�( j,b), (45)

then it is easy to show that F ((i,a), ( j,b)) = (Q (a,b), P (a,b)) where P (a,b) = La Lb + Lb La − Lab is a
very well-known object in the theory of Jordan algebras.

We have the following result.

Theorem 16. Let D = (D1, D2) ∈ (End(�ann),End( J )) be given, then D is a derivation over � if and only if

2F
(

D(i,a), (i,a)
) = [

D, F (i,a)
]
, (46)

for any (i,a) ∈ �.

Proof. Let us suppose that D = (D1, D2) is a derivation then

2F
(

D(i,a), (i,a)
) = 2(R D(i,a)R(i,a) + R(i,a)R D(i,a) − R D(i,a)�(i,a))

= 2(R(D1i,D2a)R(i,a) + R(i,a)R(D1i,D2a) − R(D1i�a,D2a.a)),

but

R(D1i,D2a)R(i,a) = (R D2a, LD2a)(Ra, La) = (R D2a Ra, LD2a La),

R(i,a)R(D1i,D2a) = (Ra, La)(R D2a, LD2a) = (Ra R D2a, La LD2a),

and

R(D1i�a,D2a.a) = (R D2a.a, LD2a.a).

Hence

2F
(

D(i,a), (i,a)
) = 2(A, B),

where

2A = 2R D2a Ra + 2Ra R D2a − 2R D2a.a

= 2[D1, Ra]Ra + 2Ra[D1, Ra] − R D2a2

= [
D1,2R2

a

] − R D2a2

= [
D1, Q (a)

]
.

In the same way we can see that 2B = [D2, P (a)]. Hence,

2F
(

D(i,a), (i,a)
) = ([

D1, Q (a)
]
,
[

D2, P (a)
])

. (47)
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On the other hand,

[
D, F (i,a)

] = [
(D1, D2),2R2

(i,a) − R(i,a)2

]
= [

(D1, D2),
(

Q (a), P (a)
)]

= ([
D1, Q (a)

]
,
[

D2, P (a)
])

. (48)

It follows from (47) and (48) that (46) holds.
Reciprocally, if (46) holds then

2
(

Q (D2a,a), P (D2a,a)
) = ([

D1, Q (a)
]
,
[

D2, P (a)
])

.

It implies that 2Q (D2a,a) = [D1, Q (a)] and 2P (D2a,a)[D2, P (a)]. In other words D = (D1, D2) is a
derivation over �. �
4. The structure group of a quasi-Jordan algebra

As before, � = �ann ⊕ J is a restrictive, split and unital quasi-Jordan algebra. In this section we
introduce and study the structure group of this type of quasi-Jordan algebras. The unit in J is denoted
by ε .

Let Φ :� → � be such that if Φ = (Φ1,Φ2) then both Φ1 :�ann → �ann and Φ2 : J → J are bi-
jective. By Γ (�) we denote the set of these Φ for which there is Φ� = (Φ

�
1,Φ

�
2) such that for all

a ∈ J

Q (Φ2a) = Φ1 Q (a)Φ
�
1, P (Φ2a) = Φ2 P (a)Φ

�
2, (49)

and

Q
(
Φ

�
2a

) = Φ
�
1 Q (a)Φ1, P

(
Φ

�
2a

) = Φ
�
2 P (a)Φ2. (50)

Lemma 17. Let us suppose that Φ ∈ Γ (�), then for any (i,a) ∈ �

F
(
Φ(i,a)

) = Φ F (i,a)Φ�, F
(
Φ�(i,a)

) = Φ� F (i,a)Φ. (51)

Proof. It is very easy, so it will be omitted. �
Taking in (49) and (50), a = ε we obtain

Φ
�
1 = Φ−1

1 Q (Φ2ε), Φ
�
2 = Φ−1

2 P (Φ2ε), (52)

that is Φ� = Φ−1 F (Φ(0, ε)), because F (0, ε) = Id. Hence, it shows that Φ� is uniquely determined
by Φ . Since (49) and (50) are recovered by exchanging the roles of Φ and Φ� , it follows that Φ� ∈
Γ (�). Moreover, (Φ�)� = Φ .

Consider Φ,Π ∈ Γ (�) then replacing a by Π2a in the first equation of (49) we see that

Q (Φ2Π2a) = Φ1 Q (Π2a)Φ
�
1 = Φ1Π1 Q (a)Π

�
1Φ

�
1, (53)

just as we did before in the first equation of (49) we obtain

P (Φ2Π2a) = Φ2 P (Π2a)Φ
�
2 = Φ2Π2 P (a)Π

�
2Φ

�
2. (54)
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On the other hand, from (50)

Q
(
Φ

�
2Π

�
2a

) = Φ
�
1 Q

(
Π

�
2a

)
Φ1 = Φ

�
1Π

�
1 Q (a)Π1Φ1, (55)

and

P
(
Φ

�
2Π

�
2a

) = Φ
�
2 P

(
Π

�
2a

)
Φ2 = Φ

�
2Π

�
2 P (a)Π2Φ2. (56)

Thus, we are able to infer that if Φ,Π ∈ Γ (�) then ΦΠ ∈ Γ (�) and (ΦΠ)� = Π�Φ� .
Since Φ� ∈ Γ (�) provided that Φ ∈ Γ (�) then from Q (Φ2(Φ

−1
2 a)) = Φ1 Q (Φ−1

2 a)Φ
�
1 it follows

that Φ−1
1 Q (a)(Φ

�
1)−1 = Q (Φ−1

2 a). Also, one can see that Φ−1
2 P (a)(Φ

�
2)−1 = P (Φ−1

2 a).

In a quite similar form we can obtain that Q ((Φ
�
2)−1a) = (Φ

�
1)−1 Q (a)Φ−1

1 and P ((Φ
�
2)−1a) =

(Φ
�
2)−1 P (a)Φ−1

2 .
Thus, we conclude that if Φ ∈ Γ (�) then Φ−1 = (Φ−1

1 ,Φ−1
2 ) ∈ Γ (�) and (Φ−1)� = (Φ�)−1. Hence,

Γ (�) is a group which will be called the structure group of �. The map Φ → Φ� is an involution
over Γ (�).

Next, we will study an important subgroup of Γ (�). First of all, we observe that for every a,b ∈ J

Q (a + b) = Q (a) + Q (b) + 2Q (a,b), P (a + b) = P (a) + P (b) + 2P (a,b). (57)

Theorem 18. Suppose that Φ ∈ Γ (�) and (i,a), ( j,b) ∈ �, then

F
(
Φ(i,a),Φ( j,b)

) = Φ F
(
(i,a), ( j,b)

)
Φ�, (58)

and

F
(
Φ�(i,a),Φ�( j,b)

) = Φ� F
(
(i,a), ( j,b)

)
Φ. (59)

Proof. First, we prove (58). For this, we shall use (57). In fact,

F
(
Φ(i,a),Φ( j,b)

) = F
(
(Φ1i,Φ2a), (Φ1 j,Φ2b)

)
= (

Q (Φ2a,Φ2b), P (Φ2a,Φ2b)
)

= (H, I),

now

H = Φ1

(
Q (a + b) − Q (a) − Q (b)

2

)
Φ

�
1 = Φ1 Q (a,b)Φ

�
1,

and

L = Φ2

(
P (a + b) − P (a) − P (b)

2

)
Φ

�
2 = Φ2 P (a,b)Φ

�
2.

We deduce that (H, I) = Φ F ((i,a), ( j,b))Φ� . Thus, we have proved (58). The proof of (59) is simi-
lar and this is left to the reader. �
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We say that Φ ∈ Γ (�) is an automorphism if Φ((i,a) � ( j,b)) = Φ(i,a) � Φ( j,b). We will denote
the set of all automorphisms by Aut(�). It is easy to show that Φ = (Φ1,Φ2) ∈ Aut(�) if and only if
for i ∈ �ann and a,b, c ∈ J

Φ1(i � a) = Φ1i � Φ2a, Φ2ab = (Φ2a)(Φ2b).

One can also check that if Φ,Π ∈ Aut(�) then ΦΠ ∈ Aut(�) and Φ−1 ∈ Aut(�). Hence, Aut(�) is a
subgroup of Γ (�).

We have a simple characterization of the elements of Aut(�).

Theorem 19. Let Φ be an element of Γ (�). Then Φ ∈ Aut(�) if and only if Φ(0, ε) = (0, ε) and Φ
�
1(i � a) =

Φ
�
1i � Φ

�
2a for all i ∈ �ann and every a ∈ J . Moreover, in this case Φ� = Φ−1 .

Proof. Let Φ be an element of Aut(�), then ΦR( j,b)(i,a) = RΦ( j,b)Φ(i,a). It implies that ΦR( j,b)Φ
−1 =

RΦ( j,b) and hence

Φ F (i,a)Φ−1 = Φ
(
2R2

(i,a)

)
Φ−1 − ΦR(i,a)2Φ

−1

= 2
(
ΦR(i,a)Φ

−1)(ΦR(i,a)Φ
−1) − RΦ(i,a)2

= 2R2
Φ(i,a) − R(Φ(i,a))2 = F

(
Φ(i,a)

)
. (60)

On the other hand, observe that Lemma 17 shows us that Φ :� → � bijective, belongs to Γ (�) if
and only if there is Φ� such that

F
(
Φ(i,a)

) = Φ F (i,a)Φ�, F
(
Φ�(i,a)

) = Φ� F (i,a)Φ.

But we just have proved that F (Φ(i,a)) = Φ F (i,a)Φ−1. Also, from here, it follows that
F (Φ−1(i,a)) = Φ−1 F (i,a)Φ . Thus Φ� = Φ−1. Since Φ1 ∈ End(�ann) and F (0, ε) = Id|� the equality
ΦR( j,b)Φ

−1 = RΦ( j,b) implies that Φ2ε = ε . Thus Φ(0, ε) = (0, ε). Finally, as Φ� = Φ−1 ∈ Aut(�) then

Φ
�
1(i � a) = Φ

�
1i � Φ

�
2a.

Reciprocally, if Φ ∈ Γ (�) is such that Φ(0, ε) = (0, ε). Then by definition there exists Φ� for which
(51) holds for all (i,a) ∈ �. Thus,

(
0,

(
Φ

�
2a

)2) = F
(
Φ�(i,a)

)
(0, ε) = Φ� F (i,a)Φ(0, ε)

= Φ� F (i,a)(0, ε) = Φ�
(
0,a2) = (

0,Φ
�
2a2).

Hence, (Φ
�
2a)2 = Φ

�
2a2 for all a ∈ J . Now linearizing this last equality we arrive at the following

Φ
�
2(ab) = (Φ

�
2a)(Φ

�
2b). Combining the last equation and the second hypothesis we deduce that Φ�

is an automorphism. Now from the first part of the proof we have that Φ = (Φ�)� = (Φ�)−1. Thus,
Φ ∈ Aut(�). �
5. Concluding remarks

Out below we propose a few possible directions of work:
1) Suppose F is a field of characteristic different of 2 or 3. Tits, Kantor and Koecher have given a

construction of Lie algebras over F from Jordan algebras. Thus, an interesting problem should be the
construction of Leibniz algebras from quasi-Jordan algebras (see [6] and [10] for more details).

2) We believe it is necessary to initiate a systematic study of the role of quasi-Jordan algebras
in analysis and differential geometry. For instance, what could be the analogue of the concept of
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cone over a Euclidean quasi-Jordan algebra and what could be his relationship with optimization
problems.

3) Establish a relationship between the quasi-Jordan algebras and some type of Capelli identities.
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