JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 94. 3 12-327 (1983)

Completion of L-Fuzzy Relations

UMBERTO CERRUTI

Istituto di Geometria, Università di Torino, 10123 Torino, Italv

Submitted by L. Zadeh

It is shown that the category $\tilde{\ell}(L)$ of complete L-similarities on L-sets is a full reflective subcategory of $\mathcal{R}(L)$ (L-fuzzy graphs); $\mathcal{F}(L)$ is equivalent to $\mathcal{H}(L)$ (sheaves on L). Connections with other known "fuzzy" categories are also studied.

I. PRELIMINARIES

In the following we shall make use of the chain of categories

$$
\mathcal{U}(L) \xrightarrow[n_1]{} \mathcal{F}(L) \xrightarrow[n_1]{} \mathcal{F}(L), \tag{I.1}
$$

where each arrow denotes a full embedding. These categories have been introduced and studied in [1]. For the reader's convenience we repeat the definitions here.

(I.2). DEFINITION OF $\mathcal{R}(L)$. An object in $\mathcal{R}(L)$ is a triplet composed of

- (a) A set $|R|$;
- (b) an L-fuzzy subset E_R of $|R|$, i.e., a function $E_R : |R| \rightarrow L$;

(c) an L-relation R on E_R , i.e., a function R: $|R| \times |R| \to L$ s.t. $R(x, y) \leqslant E_R(x) \wedge E_R(y)$. We shall denote the object by the same symbol used for the relation. A morphism $f: R \to S$ is a function $f: |R| \to |S|$ such that

- (d) $R(x, y) \leq S(f(x), f(y));$
- (e) $E_R(x) = E_S(f(x))$.

Composition of morphisms is that of functions.

(I.3). DEFINITION OF $\mathcal{F}(L)$. We denote by $\mathcal{F}(L)$ the full subcategory of $\mathcal{R}(L)$ composed of objects $R \in |\mathcal{R}(L)|$ satisfying the following additional properties:

- (a) $R(x, y) = R(y, x)$ (symmetry);
- (b) $R(x, y) \wedge R(y, z) \leq R(x, z)$ (transitivity).

312

We observe that (a) and (b) immediately imply

(c) $E_p(x) = R(x, x)$ (reflexivity).

To introduce $\mathcal{U}(L)$ we need

(I.4). DEFINITIONS. (a) Given $R \in |\mathcal{S}(L)|$, we call a ball of center x and radius $1/\alpha$ ($\alpha \in L$) the set $R_{\alpha}(x) = \{y \in |R|: R(x, y) \ge \alpha\}.$

(b) Given the ball $B = R_o(x)$ we say that $y \in B$ is an extremal point of B if $E_{R}(y) = \alpha$.

(c) The set $R \in |\mathcal{F}(L)|$ is spherically complete if every chain of nonempty balls in R has nonempty intersection.

(1.5). Remarks. (a) The ball $R_{\alpha}(x)$ is nonempty iff $\alpha \leqslant E_R(x)$.

(b) Two balls of the same radius with nonempty intersection are equal.

(c) If L is totally ordered, any two balls with nonempty intersection are contained one within the other.

(d) If $y \in R_{\alpha}(x) = B$ is an extremal point of B, then E_R attains in y its minimum possible value on B.

(I.6). DEFINITION OF $\mathcal{U}(L)$. The category $\mathcal{U}(L)$ is the full subcategory of $\mathscr{S}(L)$ composed of objects $R \in |\mathscr{S}(L)|$ satisfying the following additional properties:

(a) every nonempty ball in R has a unique extremal point;

(b) the set R is sperically complete.

(I.7). PROPERTY. Category $\mathcal{F}(L)$ is a full reflective subcategory of $\mathcal{R}(L)$.

Proof. It is easy to see that the reflector is the transitive closure t: $tR =$ transitive closure of R, $tf = f$. Indeed if f is a morphism f: $R \rightarrow S$ with S transitive, the same f: $tR \rightarrow S$ is a morphism, and then we can choose as component ε_R of the natural transformation $1 \rightarrow \varepsilon ut$ the identity map on $|R|$.

In (13) Zadeh introduced the concept of "class" represented by an element x (with respect to a similarity R).

(I.8). DEFINITION OF CLASS. We say that an L-subset A of $|R|$ is a class—and precisely the class represented by $x \in |R|$ —if

$$
\forall y \quad A(y) = R(x, y).
$$

We shall denote this class by \tilde{x} .

This concept is an extension of the concept of "crisp" class for a "crisp" equivalence relation. Now this concept can be extended in another way without using any fixed element of the support.

(I.9). DEFINITION OF TYPE. Given R in $\mathcal{S}(L)$, a type on R is an L-fuzy subset of $|R|$ such that

- (a) $A(x) \wedge R(x, y) \leq A(y)$:
- (b) $A(x) \wedge A(y) \le R(x, y)$.

Condition (a) is the translation of "if x belongs to A and x is equivalent to γ , then γ belongs to A," i.e., "A is a union of classes." Condition (b) is the translation of "if x and y belong to A, then x is equivalent to y." i.e.. "A is contained in a class."

We remark that a type is exactly a "singleton" in the definition by Fourman and Scott (4).

In (11) and (18) Sanchez has studied and applied the concept of "eigenset."

(I.10). DEFINITION OF EIGENSET. Given an L-fuzzy relation R , an L fuzzy subset A of $|R|$ is an eigenset if

- (a) $R \circ A = A$, i.e.,
- (b) $\bigvee_{v \in |B|} (R(x, y) \wedge A(v)) = A(x).$

(I.11). PROPERTY. If $R \in |\mathcal{F}(L)|$, then a class on R is a type, and a type is an eigenset, but not conversely.

Proof. (1) Let us take $A = \tilde{x}$, with $x \in |R|$; then

$$
A(y) \wedge R(y, z) = R(x, y) \wedge R(y, z) \le R(x, z),
$$

$$
A(y) \wedge A(z) = R(x, y) \wedge R(x, z) \le R(y, z)
$$

(by symmetry and transitivity of R); so we obtain $1.9(a)$ and $1.9(b)$.

(2) Let A be a type on R. Then from $I.9(a)$

$$
\forall y \quad A(y) \land R(y, x) \leqslant A(x)
$$

and then $\bigvee_{y \in [R]} (R(y, x) \wedge A(y)) \leq A(x)$. On the other hand, 1.9(b) implies $A(x) \leq R(x, x)$; then $A(x) = A(x) \wedge R(x, x)$ and $A(x) \leq V_{y \in |R|} (R(x, y) \wedge R(x, y))$ $A(y)$). Thus A is an eigenset.

(3) We choose $L = \{0, 1\}$ and $R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, corresponding to the partition of $|R| = \{x, y\}, \{\{x\}, \{y\}\}\)$. Then $(0, 0)$ is a type but not a class, and $(1, 1)$ is an eigenset but not a type.

In this paper we direct our attention to the middle class, that of types.

II. COMPLETION OF SIMILARITY RELATIONS

In general there are many types on R which cannot be represented by an element of $|R|$; on the contrary they can be represented—as a class—by many different elements. Using the method introduced in (4) we can "complete" R . Definition II.1 and the proof of II.2 can be found in (4) (with a different notation).

(II.1). DEFINITION OF COMPLETENESS. The relation $R \in |\mathcal{F}(L)|$ is said to be complete if for every type A on R there exists a unique $x \in |R|$ such that $\forall y, A(y) = R(x, y)$, i.e., $A = \tilde{x}$.

(II.2). PROPERTY. Given R in $\mathcal{F}(L)$ we construct \tilde{R} in this way:

$$
|\tilde{R}| = \{A \in L^{[R]}\colon A \text{ is a type on } R\},\
$$

$$
\tilde{R}(A, B) = \bigvee_{x \in [R]} (A(x) \wedge B(x)).
$$

Then $\overline{R} \in |H \times (L)|$ and \overline{R} is complere; indeed if F is a type on \overline{R} , A: $|R| \to L$. A, $x \mapsto F(\tilde{x})$, is the unique element of $\|\tilde{R}\|$ s.t. $F = \tilde{A}$ ($\forall B \in |\tilde{R}|$, $F(B) =$ $\widetilde{R}(A, B)$). Furthermore, $\widetilde{R}(\widetilde{x}, \widetilde{y}) = R(x, y)$.

(II.3). DEFINITION OF $\tilde{\mathcal{F}}(L)$. We call $\tilde{\mathcal{F}}(L)$ the full subcategory of $\mathcal{F}(L)$ formed by complete $R \in |\mathcal{F}(L)|$.

(II.4). DEFINITION OF p. Given $R \in |\mathcal{L}(L)|$ we define $p(R) =$ $\overline{R} \in |\mathcal{F}(L)|$. Given $f: R \to S$ with $R, S \in |\mathcal{F}(L)|$ we define

$$
\forall A \in |\tilde{R}| \quad \forall y \in |S| \qquad \langle \tilde{f}(A), y \rangle = \bigvee_{x \in |R|} (A(x) \wedge S(f(x), y)).
$$

Proof that p is a functor. We must prove that $\tilde{A}(\tilde{A}) \in |\tilde{S}|$.

(a) We have

$$
\langle \tilde{f}(A), y \rangle \wedge S(y, z) = \bigvee_{x} (A(x) \wedge S(f(x), y)) \wedge S(y, z)
$$

=
$$
\bigvee_{x} (A(x) \wedge S(f(x), y) \wedge S(y, z))
$$

$$
\leq \bigvee_{x} (A(x) \wedge S(f(x), z)) = \langle f(A), z \rangle.
$$

 (b) We have

$$
\langle \tilde{f}(A), y \rangle \wedge \langle \tilde{f}(A), z \rangle = \bigvee_{x} (A(x) \wedge S(f(x), y)) \wedge \bigvee_{t} (A(t) \wedge S(f(t), z))
$$

=
$$
\bigvee_{x,t} (A(x) \wedge S(f(x), y) \wedge A(t) \wedge S(f(t), z));
$$

now, $\forall x \forall t$:

 (c) We have

$$
A(x) \wedge S(f(x), y) \wedge A(t) \wedge S(f(t), z)
$$

\$\leq R(x, t) \wedge S(f(x), y) \wedge S(f(t), z)\$
\$\leq S(f(x), f(t)) \wedge S(f(x), y) \wedge S(f(t), z) \leq S(y, z).

So \tilde{f} is a function \tilde{f} : $\tilde{R} \to \tilde{S}$. We prove now that \tilde{f} is a morphism.

$$
\tilde{S}(\tilde{f}(A), \tilde{f}(B))
$$
\n
$$
= \bigvee_{y \in |S|} (\langle \tilde{f}(A), y \rangle \wedge \langle \tilde{f}(B), y \rangle)
$$
\n
$$
= \bigvee_{y \in |S|} \left[\bigvee_{x \in |R|} (A(x) \wedge S(f(x), y)) \wedge \bigvee_{h \in |R|} (B(h) \wedge S(f(h), y)) \right]
$$
\n
$$
\geq \bigvee_{t \in |R|} \left[\bigvee_{x \in |R|} (A(x) \wedge S(f(x), f(t))) \wedge \bigvee_{h \in |R|} (B(h) \wedge S(f(h), f(t))) \right]
$$
\n
$$
\geq \bigvee_{t \in |R|} \left[\bigvee_{x \in |R|} (A(x) \wedge R(x, t)) \wedge \bigvee_{h \in |R|} (B(h) \wedge R(h, t)) \right]
$$
\n
$$
= \bigvee_{t \in |R|} (A(t) \wedge B(t)) = \tilde{R}(A, B).
$$

 (d) We have

$$
\widetilde{S}(\widetilde{f}(A),\widetilde{f}(A))=\bigvee_{y\in |S|}\langle \widetilde{f}(A),y\rangle=\bigvee_{y\in |S|}\left(\bigvee_{x\in |R|}(A(x)\wedge S(f(x),y))\right):
$$

but, $\forall y \in |S|$

$$
\bigvee_{x \in |R|} (A(x) \wedge S(f(x), y)) \leq \bigvee_{x \in |R|} A(x) = \widetilde{R}(A, A);
$$

and then $\widetilde{S}(\widetilde{f}(A), \widetilde{f}(A)) \leq \widetilde{R}(A, A)$.

316

So we can define $pf = \tilde{f}$. To be a functor p must satisfy $p1_R = 1_R = 1_R$ and $p(f \circ g) = pf \circ pg$. We shall prove these.

(e) We have

$$
\langle \tilde{1}_R(A), x \rangle = \bigvee_{t \in |R|} (A(t) \wedge R(1_R(t), x)) = \bigvee_{t \in |R|} (A(t) \wedge R(t, x)) = A(x)
$$

then $\forall A \in |\tilde{R}| \tilde{I}_R(A) = A$ and $\tilde{I}_R = I_{\tilde{R}}$.

(f) Given $R \rightarrow_{f} S \rightarrow_{g} T$ in $\mathcal{F}(L)$ we have $R \rightarrow_{\tilde{f}} S \rightarrow_{\tilde{g}} T$ in $\mathcal{F}(L)$. We must prove that $\forall A \in |R| \forall u \in |T| \langle gf(A), u \rangle = \langle gf(A), u \rangle.$

$$
\langle \tilde{g}\tilde{f}(A), u \rangle = \bigvee_{y \in |S|} (\langle \tilde{f}(A), y \rangle \wedge T(g(y), u))
$$

=
$$
\bigvee_{y \in |S|} \left(\bigvee_{x \in |R|} (A(x) \wedge S(f(x), y)) \wedge T(g(y), u) \right).
$$

Now $\forall y \in S$, we have

$$
\bigvee_{x \in |R|} (A(x) \wedge S(f(x), y)) \wedge T(g(y), u)
$$
\n
$$
= \bigvee_{x \in |R|} (A(x) \wedge S(f(x), y) \wedge T(g(y), u))
$$
\n
$$
\leq \bigvee_{x \in |R|} (A(x) \wedge T(gf(x), g(y)) \wedge T(g(y), u))
$$
\n
$$
\leq \bigvee_{x \in |R|} (A(x) \wedge T(gf(x), u)) = \langle \widetilde{gf}(A), u \rangle.
$$

Furthermore.

$$
\langle \tilde{g}\tilde{f}(A), u \rangle = \bigvee_{y \in |S|} (\langle \tilde{f}(A), y \rangle \wedge T(g(y), u))
$$

\n
$$
\geq \bigvee_{h \in |R|} (\langle \tilde{f}(A), f(h) \rangle \wedge T(gf(h), u))
$$

\n
$$
= \bigvee_{h \in |R|} \left(\bigvee_{x \in |R|} (A(x) \wedge S(f(x), f(h))) \wedge T(gf(h), u) \right)
$$

\n
$$
\geq \bigvee_{h \in |R|} \left(\bigvee_{x \in |R|} (A(x) \wedge R(x, h)) \wedge T(gf(h), u) \right)
$$

\n
$$
= \bigvee_{h \in |R|} (A(h) \wedge T(gf(h), u) = \langle \tilde{g}\tilde{f}(A), u \rangle
$$

and then we obtain the thesis. Then p is a functor $p: \mathcal{F}(L) \to \mathcal{F}(L)$.

318 UMBERTO CERRUTI

(II.5). LEMMA. (a) Given $R \in |\mathcal{F}(L)|$ and $x, y \in |R|$

 $R(x, y) = R(x, x) = R(y, y) \Leftrightarrow \tilde{x} = \tilde{y}.$

(b) Given $S \in |\mathcal{F}(L)|$ and $x, y \in |S|$

$$
S(x, y) = S(x, x) = S(y, y) \Leftrightarrow x = y.
$$

Proof. (a) To show the \Rightarrow part, let us take $z \in \{R\}$.

$$
R(x, z) = R(x, x) \wedge R(x, z) = R(x, y) \wedge R(x, z) \leq R(y, z);
$$

analogously $R(y, z) \le R(x, z)$; then $\tilde{x} = \tilde{y}$.

To show the \Leftarrow part, we have that, if $\tilde{x} = \tilde{y}$, then $R(x, x) = R(y, x)$ and $R(x, y) = R(y, y).$

(b) This is an obvious consequence of part (a) and of the definition of completeness. \blacksquare

(II.6). LEMMA. Given $R \in | \mathcal{F}(L)|$, the map $\eta_{\rho} : R \to \tilde{R}$, $\eta_{\rho} : x \to \tilde{x}$ is a. morphism.

Proof. Indeed, from II.2, we have $\overline{R}(\tilde{x}, \tilde{y}) = R(x, y)$.

(II.7). LEMMA. Given $R \in |H^2(L)|$ and $S \in |H^2(L)|$, if the diagram

$$
R \xrightarrow[n_R]{\overbrace{R} \xrightarrow[\overline{h}]{\underline{s}} S}
$$

commutes. then $g = h$.

Proof. We have, $\forall x \in |R|$ and $A \in |\tilde{R}|$,

$$
S(h(A), h(\tilde{x})) \geqslant \widetilde{R}(A, \tilde{x}) = \bigvee_{y} (A(y) \wedge R(x, y)) = A(x);
$$

in the same way, $S(g(A), g(\tilde{x})) \geq A(x)$.

From the hypothesis we have $\forall x, h(\tilde{x}) = g(\tilde{x})$ and then

$$
S(h(A), h(\tilde{x})) \wedge S(g(A), g(\tilde{x})) \leqslant S(h(A), g(A)).
$$

So $\forall x \in [R], \forall A \in [\tilde{R}], A(x) \leq S(h(A), g(A))$ and $\tilde{R}(A, A) = \bigvee_{x} A(x) \leq$ $S(h(A), g(A))$; but h and g are morphisms and then

$$
S(h(A), h(A)) = S(g(A), g(A)) = R(A, A);
$$

thus $\forall A \in [\tilde{R}], S(h(A), h(A)) = S(g(A), g(A)) = S(h(A), g(A)),$ and from Lemma II.5, $\forall A \in |\tilde{R}|, h(A) = g(A)$.

(II.8). PROPERTY. If $S \in |\mathcal{F}(L)|$, $R \in |\mathcal{F}(L)|$, and $f: R \rightarrow S$ is any morphism, then there exists a unique g: $\tilde{R} \rightarrow S$ s.t. the following diagram commutes:

$$
R \xrightarrow{\eta_R} \tilde{R}
$$
\n
$$
\uparrow \downarrow^e
$$
\n
$$
S
$$
\n(II.8.1)

In other words, $\mathscr{F}(L)$ is a reflective full subcategory of $\mathscr{F}(L)$.

Proof. Given $A \in |\tilde{R}|$, we know that $\tilde{f}(A) \in |\tilde{S}|$. Since S is complete, there exists a unique $y \in |S|$ s.t. $\forall z \in |S|$, $\langle \tilde{f}(A), z \rangle = S(y, z)$; then we define $g: |\tilde{R}| \rightarrow |S|$ in this way: $g: A \mapsto y$.

Let us suppose that $g(A_1) = y_1$ and $g(A_2) = y_2$. Then

$$
S(g(A_1), g(A_2)) = S(y_1, y_2) = \bigvee_{z \in |S|} (S(y_1, z) \wedge S(y_2, z))
$$

=
$$
\bigvee_{z \in |S|} (\langle \tilde{f}(A_1), z \rangle \wedge \langle \tilde{f}(A_2), z \rangle)
$$

=
$$
\tilde{S}(\tilde{f}(A_1), \tilde{f}(A_2)) \ge \tilde{R}(A_1, A_2)
$$

since: $\tilde{f}: \tilde{R} \to \tilde{S}$ is a morphism. Furthermore,

$$
S(g(A), g(A)) = S(y, y) = \bigvee_{z \in |S|} S(y, z)
$$

=
$$
\bigvee_{z \in |S|} \langle \tilde{f}(A), z \rangle = \tilde{S}(f(A), \tilde{f}(A)) = \tilde{R}(A, A).
$$

Then g is a morphism g: $\tilde{R} \rightarrow S$.

Now we must prove that $\forall x \in |R|$, $g(\eta_R(x)) = g(\tilde{x}) = f(x)$. Since S is complete, it is sufficient to prove that

$$
\forall z \in |S| \qquad \langle \tilde{f}(\tilde{x}), z \rangle = S(f(x), z).
$$

Now

$$
\langle \tilde{f}(\tilde{x}), z \rangle = \bigvee_{y \in |R|} (\tilde{x}(y) \land S(f(y), z)) = \bigvee_{y \in |R|} (R(x, y) \land S(f(y), z))
$$

$$
\leq \bigvee_{y \in |R|} (S(f(x), f(y)) \land S(f(y), z)) \leq S(f(x), z)
$$

and

$$
S(f(x), z) = S(f(x), f(x)) \wedge S(f(x), z) = R(x, x) \wedge S(f(x), z)
$$

= $\tilde{x}(x) \wedge S(f(x), z) \leq \bigvee_{y \in |R|} (\tilde{x}(y) \wedge S(f(y), z)) = \langle \tilde{f}(\tilde{x}), z \rangle$.

Then diagram II.8.1 commutes. Unicity of g follows from Lemma II.7.

We shall see now that the category $\mathcal{U}(L)$ (Definition 1.6) is "between" $\mathscr{F}(L)$ and $\mathscr{F}(L)$.

(II.9). PROPERTY. The category $\mathcal{T}(L)$ is a full subcategory of $\mathcal{U}(L)$.

Proof. Let us take R in $|\tilde{\mathcal{F}}(L)|$, α in L, and a nonempty ball $R_{\alpha}(x)$; then $R(x, x) \geq \alpha$. If we define A: $|R| \to L$, $A(y) = R(x, y) \wedge \alpha$, it is easy to see that A is a type on R. But R is complete and thus there exists $x_0 \in |R|$ such that $\forall y \in [R]$, $R(x_0, y) = R(x, y) \wedge \alpha$. So $R(x_0, x) = R(x, x) \wedge \alpha = \alpha$ and $R(x_0, x_0) = R(x, x_0) \wedge \alpha = \alpha \wedge \alpha = \alpha$. Thus x_0 is an extremal point of $R_{\alpha}(x_0) = R_{\alpha}(x)$.

If y_0 is an extremal point on $R_a(x_0)$, we have $R(x_0, x_0) = R(y_0, y_0) =$ $R(x_0, y_0) = \alpha$ and then $x_0 = y_0$ by Lemma II.5(b).

We have seen that every ball in R has a unique extremal point. Now let $\mathscr C$ be a chain of nonempty balls in R.

$$
\mathscr{C} = \{ R_a(x_a) \}, \qquad a \in I \subseteq L.
$$

For what we have proved we can suppose, without any restriction. that for every a, x_a is the (unique) extremal point of $R_a(x_a)$. Then if $R_a(x_a)$ = $R_{\beta}(x_{\beta})$, it follows that $\alpha = \beta$ and $x_{\alpha} = x_{\beta}$. So the following definition of A: $|R| \rightarrow L$ is meaningful:

$$
A(y) = \bigvee_{\alpha \in I} (R(x_{\alpha}, y) \wedge \alpha).
$$

We can prove that A is a type:

$$
A(y) \wedge R(x, y) = \bigvee_{\alpha \in I} (R(x_{\alpha}, y) \wedge \alpha) \wedge R(x, y)
$$

=
$$
\bigvee_{\alpha \in I} (R(x_{\alpha}, y) \wedge \alpha \wedge R(x, y))
$$

$$
\leq \bigvee_{\alpha} (R(x_{\alpha}, x) \wedge \alpha) = A(x).
$$

(b) We have

$$
A(y) \wedge A(x) = \bigvee_{\alpha \in I} (R(x_{\alpha}, y) \wedge \alpha) \wedge \bigvee_{\beta \in I} (R(x_{\beta}, x) \wedge \beta)
$$

=
$$
\bigvee_{\alpha, \beta \in I} (R(x_{\alpha}, y) \wedge R(x_{\beta}, x) \wedge \alpha \wedge \beta).
$$

Now, given a pair $\alpha, \beta \in I$, we have-for example- $R_{\alpha}(x_{\alpha}) \subseteq R_{\beta}(x_{\beta})$, since $\mathscr E$ is a chain. Then $\alpha = R(x_\alpha, x_\alpha) \geqslant R(x_\alpha, x_\beta) \geqslant \beta$, since $x_\alpha \in R_\beta(x_\beta)$ and x_α is the extremal point of $R_a(x_a)$ (this implies that $I \subseteq L$ is a chain). But $R(x_a, x_b) \ge R(x_a, x_b) = \beta$ and thus $R(x_a, x_b) = \beta = \alpha \wedge \beta$. So

$$
\bigvee_{\alpha,\beta \in I} (R(x_{\alpha}, y) \wedge R(x_{\beta}, x) \wedge \alpha \wedge \beta)
$$

=
$$
\bigvee_{\alpha,\beta \in I} (R(x_{\alpha}, y) \wedge R(x_{\beta}, x) \wedge R(x_{\alpha}, x_{\beta})) \leq R(x, y).
$$

Then A is a type. Since R is complete there exists $x_0 \in |R|$ such that $\forall y$. $A(y) = R(x_0, y)$. So

$$
R(x_0, y) = \bigvee_{\alpha} (R(x_{\alpha}, y) \wedge \alpha).
$$

and

$$
R(x_0, x_\beta) = \bigvee_\alpha (R(x_\alpha, x_\beta) \wedge \alpha) = \bigvee_\alpha (\alpha \wedge \beta \wedge \alpha) = \beta
$$

and $\forall \beta, x_0 \in R_A(x_\beta)$. So $\bigcap \mathcal{C}$ is nonempty and $R \in |\mathcal{U}(L)|$.

If we call u_3 the full embedding $\mathcal{F}(L) \hookrightarrow \mathcal{U}(L)$, we see that diagram (I.1) can be enriched in this way:

where t and p are left adjoints, respectively, of u_1 and $u_2 \circ u_3$.

(II.10). EXAMPLE OF COMPLETION. Let L be $L = \{0, 1, 2, 3\}$ with usual order, $|R| = \{a, b, c, d, e, f\}$, and

Then we have eleven types on R ,

322

III. COMPLETE FUZZY GRAPHS AND CATEGORICAL LOGIC

The categories of Heyting-valued-sets-considered as sheaves-were introduced by Higgs in 1973; for applications to the interpretation of firstand higher-order logic see (4) and (7). We recall some definitions.

- (III.1). DEFINITION OF $\mathcal{H}(L)$. (a) Objects are the same as in $\mathcal{F}(L)$;
	- (b) a morphism $F: R \to S$ is a function $F: |R| \times |S| \to L$ s.t.
		- (b.1) $F(x, y) \wedge R(x, x') \leq F(x', y);$
		- (b.2) $F(x, y) \wedge S(y, y') \leq F(x, y')$;
		- (b.3) $F(x, y) \wedge F(x, y') \le S(y, y')$;
		- (b.4) $R(x, x) = \bigvee_{y \in [S]} F(x, y);$
	- (c) Given $R \rightarrow_{F} S \rightarrow_{G} T$, composition is defined by

$$
G\circ F(x,z)=\bigvee_{y\in S\vert} (F(x, y)\wedge G(y, z));
$$

the identity map on R is $R: |R| \times |R| \rightarrow L$.

(III.2). DEFINITION OF $\tilde{\mathcal{F}}(L)$. Category $\tilde{\mathcal{F}}(L)$ is the full subcategory of $\mathcal{H}(L)$ composed of complete R's.

(III.3). PROPERTY (Higgs). Category $\mathcal{H}(L)$ is equivalent to the Grothendieck topos $\mathcal{H}(L)$ of sheaves on L with canonical topology.

(III.4). PROPERTY. [4]. Category $\mathscr{H}(L)$ is equivalent to $\widetilde{\mathscr{H}}(L)$.

(III.5). PROPERTY. Category $\tilde{\mathcal{F}}(L)$ is isomorphic to $\tilde{\mathcal{F}}(L)$.

Proof. Given $f: R \to S$ in $\mathscr{F}(L)$ we define $F: |R| \times |S| \to L$ by

(a) $F(x, y) = S(f(x), y);$

then

(b)
$$
R(x, x') \wedge S(f(x), y) \leq S(f(x), f(x')) \wedge S(f(x), y) \leq S(f(x'), y).
$$

- (c) $S(y, y') \wedge F(x, y) = S(y, y') \wedge S(f(x), y) \leq S(f(x), y') = F(x, y').$
- (d) $F(x, y) \wedge F(x, y) = S(f(x), y) \wedge S(f(x), y') \leq S(y, y').$
- (e) $\bigvee_{y \in |S|} F(x, y) = \bigvee_{y \in |S|} S(f(x), y).$

Now $\forall y, S(f(x), y) \le S(f(x), f(x))$ and $f(x) \in |S|$; then

$$
\bigvee_{y\in |S|} S(f(x), y) = S(f(x), f(x)) = R(x, x).
$$

Properties (b)–(e) prove that conditions III.1(b)–(b.4) are verified. So F: $R \to S$ is in $\tilde{\mathcal{V}}(L)$. We put $v(f) = F$. Now we take $R \to S \to^{\circ} T$. $R \rightarrow v^f S \rightarrow v^g T$. Let be $v f = F$ and $v g = G$. We want to prove that $v(g f) = G F$. I.e.,

(f)
$$
\forall x \in |R|, \forall z \in |T|, T(gf(x), z) = \bigvee_{y \in |S|} (S(f(x), y) \wedge T(g(y), z)).
$$

Now $T(gf(x), z) \leq T(gf(x), gf(x)) = S(f(x), f(x))$: then $T(gf(x), z) =$ $S(f(x), \quad f(x)) \wedge T(gf(x), z)$ and $T(gf(x), z) \leq V_{x \in S} (S(f(x), y) \wedge T(gf(x), z))$ $T(g(y), z)$).

On the other hand, given any $y \in |S|$,

$$
S(f(x), y) \wedge T(g(y), z) \leq T(gf(x), g(y)) \wedge T(g(y), z) \leq T(gf(x), z).
$$

it follows that

$$
\bigvee_{y \in |S|} (S(f(x), y) \wedge T(g(y), z)) \leqslant T(gf(x), z)
$$

and (f) is proved. Furthermore, $v(id_{R_1}) = R$.

So we have defined a functor $v: \widetilde{\mathscr{F}}(L) \to \widetilde{\mathscr{F}}(L)$ which is the identity on the objects.

(III.5.1). PROPERTY. Functor ν is faithful.

Given $R \rightrightarrows_s^f S$, we suppose that $F = vf = vg = G$. Then $\forall x \in |R|$ and $\forall y \in S$, $F(x, y) = S(f(x), y) = S(g(x), y) = G(x, y)$. and-from the completeness of S—we obtain $f(x) = g(x)$.

(III.5.2). PROPERTY. Functor ν is representative.

Given $R \rightarrow^F S$ in $\tilde{\mathcal{F}}(L)$, we recall that—for fixed $x \in |R|$ — $B: |S| \rightarrow L$, B: $y \mapsto F(x, y)$ is a type on S. Relation S is complete and so there exists a unique element in S that we call $f(x)$ such that

(g) $\forall y \in |S|, F(x, y) = S(f(x), y).$

In this way we have defined a function $f: |R| \rightarrow |S|$. We shall see now that f is a morphism f: $R \rightarrow S$ in $\mathscr{F}(L)$. Given x and x' in $|R|$ we find-as above— $f(x)$ and $f(x')$. We have $\forall y \in |S|$,

$$
S(f(x), f(x')) \ge S(f(x), y) \wedge S(f(x'), y)
$$

= $F(x, y) \wedge F(x', y) \ge F(x, y) \wedge R(x, x')$

(recall III. $1(b1)$); then

$$
S(f(x), f(x')) \geq \bigvee_{y \in |S|} (F(x, y) \wedge R(x, x'))
$$

= $R(x, x') \wedge \bigvee_{y \in |S|} F(x, y) = R(x, x') \wedge R(x, x) = R(x, x').$

We know that $R(x, x) \geq F(x, y)$ $\forall y \in |S|$; thus $\forall y \in |S|$,

$$
R(x, x) \ge S(f(x), y)
$$
 and $R(x, x) \ge S(f(x), f(x)).$

So f is a morphism. Obviously $vf = F$.

We have proved at this point that $\mathscr{F}(L)$ and $\mathscr{F}(L)$ are equivalent. But now we see

(111.53). PROPERTY. Functor v is an isomorphism.

Indeed, by III.5.2, we can construct an application $\mu: \tilde{\mathcal{F}}(L) \to \tilde{\mathcal{F}}(L)$ -which is the identity on the objects-sending $F: R \to S$ into $f: R \to S$. The proof of $\mu(G \circ F) = \mu G \circ \mu F$ can be done as for (f). Furthermore, $v \circ \mu =$ $id_{\mathcal{F}_{(I)}}$ and $\mu \circ \nu = id_{\mathcal{F}_{(I)}}$.

(III.6.1). Remark. The same v is obviously a functor v: $\mathcal{F}(L) \rightarrow \mathcal{H}(L)$; but it is neither faithful nor representative.

(III.6.2). Remark. Category $\mathcal{S}(L)$ is not equivalent to $\mathcal{F}(L)$.

The category $SET(L)$ of L-fuzzy sets has been introduced and studied in [5, 6]. Categorical characterizations of $SET(L)$ can be found [2, 5] (in the context of fibre complete categories, see [8]). We repeat here some definitions.

(III.7). DEFINITION OF $SET(L)$. (a) Objects of $SET(L)$ are pairs (X, A) , where X is a set and A is a function $A: X \rightarrow L$ (A is an L-fuzzy subset of X).

(b) Morphisms of SET(L) f: $(X, A) \rightarrow (Y, B)$ are functions f: $X \rightarrow Y$ s.t. $\forall x \in X$, $A(x) \leq Bf(x)$.

Another interesting category connected with our study is $FUZ(L)$, defined in [3].

(III.8). DEFINITION OF FUZ(L). (a) $|FUZ(L)| = |SET(L)|$;

(b) Morphism of $FUZ(L)$ f: $(X, A) \rightarrow (Y, B)$ are functions f: $X \times Y \rightarrow L$ s.t.

\n- (b.1)
$$
f(x, y) \leq A(x) \land B(y);
$$
\n- (b.2) $A(x) = \bigvee_{y \in Y} f(x, y);$
\n- (b.3) $f(x, y) \land f(x, y') \leq e(y, y')$, where $e(y, y') = 0$, if $y \neq y'$, $= 1$, if $y = y'$
\n

(1 and 0 are, of course, the maximum and minimum of L).

(c) Given $(X, A) \rightarrow^f (Y, B) \rightarrow^g (Z, C), gf: (X, A) \rightarrow (Z, C)$ is defined by $g(x, z) = \bigvee_{y \in Y} f(x, y) \wedge g(y, z).$

The identity map on (X, A) is $i(x, x') = A(x) \wedge e(x, x')$.

We have

(III.9). PROPERTY [3]. The category $SET(L)$ is a nonfull subcategory of $FUZ(L)$.

(III.10). PROPERTY [3]. The category $FUZ(L)$ is equivalent to $\mathcal{H}(L)$.

(III.11). COROLLARY. The category $FUZ(L)$ is equivalent to $\mathcal{T}(L)$.

IV. CONCLUDING REMARKS

From III.5 and III.11 it is clear that $\mathcal{F}(L)$ can be considered as a model for Heyting-algebra-valued set theory. The category $\widetilde{\mathcal{I}}(L)$ has—with respect to the other ones—the advantage of being a category of structured sets.

For a survey in this area and other connections between topoi, logical categories, and fuzzy-sets seen as "variable sets," the interested reader can consult—apart from the already quoted $[1, 3]$ — $[9, 10]$ and the papers quoted therein. Deeper insights on completions, connections with categories of graphs, and tentative interpretations are given in our following paper "Graphs and Fuzzy Graphs."

REFERENCES

- I. U. CERRUTI. Categories of L-fuzzy relations on L-fuzzy sets, in "Applied Systems and Cybernetics." (G. E. Lasker, Ed.). Vol. 6, Pergamon, Elmsford, New York. 1981.
- 2. U. CERRUTI, Categorie tibralmente complete e insiemi sfumati. Affi Accad. Sci. Torino CI. Sci. Fis. Mat. Natur. 113 (1979), 435-439.
- 3. M. EYTAN, Fuzzy sets: a topos-logical point of view, Fuzzy Sets and Systems 5 (1981). $47 - 67$.
- 4. M. P. FOURMAN AND D. S. SCOTT, Sheaves and logic, in "Applications of Sheaves." pp. 302-401. Lecture Notes in Mathematics No. 753. Springer-Verlag. Berlin/New York. 1979.
- 5. J. A. GOGUEN. "Categories of Fuzzy Sets: Application of Non-Cantorian Set Theory." Dissertation, University of California, Berkeley, 1968.
- 6. J. A. GOGUEN. Concept representation in natural and artificial languages: Axioms, extensions, and applications for fuzzy sets, *Internal. J. Man-Mach*. Stud. 6 (1974), $513 - 561$.
- 7. M. MAKKAI AND G. E. REYES. "First Order Categorical Logic." in Lecture Notes in Mathematics No. 611, Springer-Verlag, Berlin/New York. 1977.
- 8. E. G. MANES, "Algebraic Theories," GTM 26, 1976.
- 9. C. V. NEGOITA, Fuzzy sets in topoi, Fuzzy Sets and Systems 8 (1982), 93-99.
- 10. C. V. NEGOITA AND C. A. STEFANESCU, Fuzzy objects in topoi: a generalization of fuzzy sets, Bul. Inst. Pol. Din Iasi 24 (1978), 25-28.
- 11. E. SANCHEZ, Resolutions of eigen fuzzy sets equations, Fuzzy Sets and Systems 1 (1978). $69 - 74.$
- 12. E. SANCHEZ, Compositions of fuzzy relations, in "Advances in Fuzzy Set Theory and Applications" (M. M. Gupta et al., Eds.), North-Holland, Alsterdam, 1979,
- 13. L. A. ZADEH, Similarity relations and fuzzy orderings, *Inform, Sci.* 3 (1971), 177-200.