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a b s t r a c t

In many real world classification problems, class-conditional classification noise (CCC-
Noise) frequently deteriorates the performance of a classifier that is naively built by
ignoring it. In this paper, we investigate the impact of CCC-Noise on the quality of a
popular generative classifier, normal discriminant analysis (NDA), and its corresponding
discriminative classifier, logistic regression (LR). We consider the problem of two
multivariate normal populations having a common covariance matrix. We compare the
asymptotic distribution of the misclassification error rate of these two classifiers under
CCC-Noise. We show that when the noise level is low, the asymptotic error rates of both
procedures are only slightly affected. We also show that LR is less deteriorated by CCC-
Noise compared to NDA. Under CCC-Noise contexts, the Mahalanobis distance between
the populations plays a vital role in determining the relative performance of these two
procedures. In particular, when this distance is small, LR tends to bemore tolerable to CCC-
Noise compared to NDA.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Inmany real world classification problems, class label noise is inherent in the training dataset. CCC-Noise is an important
type of class label noise. Exampleswhere CCC-Noise arises include remote sensing and traditionalmedical diagnosis (see [1–
3]) and image classification (see [4,5]). Recent medical diagnosis technologies (e.g. microarray analyses and protein mass-
spectrometry profiling) have also sparked interest in considering classifiers where training data is prone to CCC-Noise (see,
for example, [6,7] or [8]). In many applications, most analysts acknowledge that noise is present but naively ignore it.
Alternatively, data preprocessing approaches have been proposed to attempt to remove mislabeled training observations,
see [9] or [10]. These approaches, however, face the risk of removing useful data, which consequently would reduce the
accuracy of the classifier. An alternative solution to handle noisy datamight be to construct noise tolerant classifiers directly.
Li et al. [4] combined the class noise into the model based on a probabilistic noise model. Norton and Hirsh [11] presented a
Bayesian approach to learning from noisy data, where prior knowledge of the noise process is applied to compute posterior
class probabilities. Yasui et al. [6] and Magder and Hughes [12] used EM algorithm to handle the label noise.
The effects of CCC-Noise on the estimation of association between two random variables have been discussed widely in

epidemiology, see [13]. One important conclusion is that the noise attenuates the estimation of the association. Neuhaus [14]
gave a comprehensive discussion of bias and efficiency loss due to CCC-Noise in the context of general linear model and
proposed an approximation for the expected values of the estimators. The effects of CCC-Noise have also been studied in
the area of pattern reorganization. Krishnan [15] studied the efficiency loss using Efron’s Asymptotic Relative Efficiency
criteria [16]. Michalek and Tripathi [3] bounded the asymptotic efficiency of logistic regression and normal discrimination.
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Zhu andWu [17] investigated the impact of both class and attribute noise by doing simulation experiments. They concluded
that the classification accuracies decline almost linearly with the increase of the noise level. Until now, limited research has
been conducted to theoretically quantify the impact of CCC-Noise on the misclassification rates.
Generally speaking, classifiers can be characterized as either generative or discriminative, according to whether or

not the distribution of the explanatory variables is modeled. Comparison of generative and discriminative classifiers has
received considerable attention in the literature. There is a widely held perception that, in the absence of CCC-Noise, the
discriminative approach is more robust than the generative approach. For example, Ng and Jordan [18] showed that if the
assumed conditional distributions for the explanatory variables are correct, then generative classifiers and discriminative
classifiers have the same asymptotic error rates, although the generative classifiers approach their asymptotic values faster.
However, if the conditional distributions are not correct, then discriminative classifiers have lower asymptotic error rates
provided the link function is modeled correctly. Efron [16] computed the relative efficiency, based on the ratio of expected
regrets, of one popular generative classifier, normal discriminant analysis (NDA), to the corresponding discriminative
classifier [18], logistic regression (LR), and concluded that LR is between one half and two thirds as efficient as NDA under
normality. In this paper we aim at theoretically comparing the misclassification error rate of NDAwith LR under CCC-Noise.
The rest of this paper is organized as follows. In Section 2 we briefly review the NDA and LR classifiers and then discuss

these two procedures under CCC-Noise. In Section 3, the asymptotic distributions of the misclassification error rate of the
NDA and LR under CCC-Noise are obtained. In Section 4, we compare the expected values of the misclassification error rates
of these two procedures and also the relative efficiency. Section 5 concludes with summary.

2. NDA and LR classifiers under CCC-noise

We consider a binary classification task. LetX denote the vector of explanatory variables. Suppose thatX comes from one
of two p-dimensional normal populations differing in mean but not in covariance

population 0 : X ∼ MVNp(µ0,6) with probability π0,
population 1 : X ∼ MVNp(µ1,6) with probability π1,

(1)

where π0 + π1 = 1.
If all parameters are known, a new observation may be classified based on X as belonging to population 1 or 0 according

as

L(α,β′)(X) = α + β′X > or < 0,

where

α = λ− (µ′16
−1µ1 − µ′06

−1µ0)/2

β = 6−1(µ1 − µ0)
(2)

with λ = logπ1/π0.
This linear classifier minimizes the total misclassification rate, as is easily shown by applying Bayes theorem. However,

the assumption that the parameters (λ,µ0,µ1,6) are known is rarely the case in practice. Therefore, the parameters are
usually estimated from a random sample of n observations, {(x1, y1), . . . , (xn, yn)}where yk is the binary class label for the
kth sample. Parameter estimates are typically obtained by maximizing the following log-likelihood function

n∑
k=1

(1− yk)
{
−
p
2
log(2π)−

1
2
log |6| −

1
2
(xk − µ0)

′6−1(xk − µ0)+ logπ0

}
+

n∑
k=1

yk

{
−
p
2
log(2π)−

1
2
log |6| −

1
2
(xk − µ1)

′6−1(xk − µ1)+ logπ1

}
.

Using maximum likelihood estimators (MLEs) in place of unknown parameters results in the so called NDA procedure.
The corresponding discriminative method to NDA is LR. LR is a popular discriminative method that does not assume any
distribution forX. It simply assumes a parametric form for the conditional probability P(Y = 1|X = x). Then the parameters
(α, β′) are estimated directly by maximizing the conditional likelihood

n∑
k=1

yk(α + β′xk)−
n∑
k=1

log[1+ exp(α + β′xk)].

In the context of no label noise both NDA and LR will give consistent estimates under (1).
Now let’s introduce the CCC-Noise into these two procedures. For a binary classification problem, CCC-Noise means that

the label Y (0 or 1) of any observation is independently and randomly flipped to 1 − Y with probability 1 − θY , where, θY
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denotes the correct labeling rate. We know that Y denotes the corresponding true class label, but instead of observing Y , we
observe Ỹ as the noisy class label. The CCC-Noise can be specified as

P(Ỹ = 1|Y = 0) = 1− θ0
P(Ỹ = 0|Y = 1) = 1− θ1

and the observed training data is {(x1, ỹ1), . . . , (xn, ỹn)}.
For the NDA procedure, the misspecified log-likelihood is

n∑
k=1

(1− ỹk)
{
−
p
2
log(2π)−

1
2
log |6| −

1
2
(xk − µ0)

′6−1(xk − µ0)+ logπ0

}

+

n∑
k=1

ỹk

{
−
p
2
log(2π)−

1
2
log |6| −

1
2
(xk − µ1)

′6−1(xk − µ1)+ logπ1

}
. (3)

The MLEs obtained by maximizing (3) are termed misspecified MLEs. Similarly, the misspecified MLEs for the LR procedure
are obtained by maximizing

n∑
k=1

ỹk(α + β′xk)−
n∑
k=1

log[1+ exp(α + β′xk)]. (4)

3. Asymptotic distribution of error rate

Let (α̃, β̃
′

) denote an arbitrary estimate of (α, β′) based upon the training data set. For a new observation (X, Y ),
the probability of a misclassification (calculated with respect to the joint distribution of the training data and the new
observation) error is defined to be

ER(α̃, β̃) = P(L(α̃,β̃)(X) > 0, Y = 0)+ P(L(α̃,β̃)(X) < 0, Y = 1).

If (α̃, β̃
′

) are randomly determined (as in NDA or LR), ER(α̃, β̃)will be a random variable. Efron [16] stated that the distribu-
tion of ER(α̃, β̃) is invariant under a linear transformation that allows reduction of assumption (1) to the following canonical
form

population 0 : X ∼ MVNp(−(∆/2)e1, I) with probability π0
population 1 : X ∼ MVNp((∆/2)e1, I) with probability π1,

(5)

where ∆ ≡
√
(µ1 − µ0)

′6−1(µ1 − µ0), the square root of the Mahalanobis distance, I is the p × p identity matrix and
e′1 ≡ (1, 0, 0, . . . , 0) is a 1 × p vector. For either LR or NDA, the probability of misclassification has the same distribution
under (1) as it does under the so-called ‘‘standard situation’’ (5). A formal proof of this statement is presented in [19] where
it is also shown the result continues to hold even in the presence of CCC-Noise. Henceforth, wewill work with the ‘‘standard
situation’’.
In the standard situation, the conditional (given the training data) probability of misclassification of an arbitrary

estimated classification boundary, L(α̃,β̃) = α̃ + β̃
′

x = 0, is

ER(α̃, β̃) = π0Φ

−∆

2 β̃1 + α̃√
β̃
′

β̃

+ π1Φ
−∆

2 β̃1 − α̃√
β̃
′

β̃

 , (6)

where β̃1 indicates the first component of β̃ andΦ(.) is the cumulative density function of the standard normal distribution.
Now, suppose the arbitrary estimate (α̃, β̃

′

) has a limiting normal distribution

√
n
{(
α̃

β̃

)
−

(
α̃∗

β̃
∗

)}
→ MVNp+1

[
0,
(
z00 z′01
z01 Z11

)]
, (7)

where z00 is a scalar, z01 is a column p× 1 vector and Z11 is a p× pmatrix. Differentiating (6) gives,

∂ER(α̃, β̃)
∂α̃

= f0(α̃, β̃) = π0
1√
β̃
′

β̃

φ

−∆

2 β̃1 + α̃√
β̃
′

β̃

− π1 1√
β̃
′

β̃

φ

−∆

2 β̃1 − α̃√
β̃
′

β̃

 ,
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∂ER(α̃, β̃)

∂ β̃
= f1(α̃, β̃) = π0

 −∆

2√
β̃
′

β̃

e1 +
(
∆

2
β̃1 − α̃

)
(β̃
′

β̃)−
3
2 β̃

φ
−∆

2 β̃1 + α̃√
β̃
′

β̃


+π1

 −∆

2√
β̃
′

β̃

e1 +
(
∆

2
β̃1 + α̃

)
(β̃
′

β̃)−
3
2 β̃

φ
−∆

2 β̃1 − α̃√
β̃
′

β̃

 ,
where φ is the standard normal density function.
Defining ω2(α̃∗, β̃

∗

) = f 20 (α̃
∗, β̃
∗

)z00 + f′1(α̃
∗, β̃
∗

)Z11f1(α̃∗, β̃
∗

)+ 2f0(α̃∗, β̃
∗

)z′01f1(α̃
∗, β̃
∗

), the following lemma follows
from application of the delta method:

Lemma 1. In the standard situation, if (α̃, β̃
′

) has the limiting distribution given in (7) with

(α̃∗, β̃
∗′

) 6= (α, β′), then
√
n[ER(α̃, β̃)− ER(α̃∗, β̃

∗

)]
L
→ N(0, ω2(α̃∗, β̃

∗

)).

Note that if (α̃∗, β̃
∗′

) are the true values of (α, β′), then f0(α̃∗, β̃
∗

) and f1(α̃∗, β̃
∗

) will both vanish since ER(α̃, β̃) is
minimized at that point. In this situation, Lemma 1 will not be valid since the first order Taylor expansion is not enough.
Efron [16] computed the efficiency of LR to NDA, without CCC-Noise, based on the second order Taylor expansion. For the
case of having CCC-Noise, Lemma 1 will be valid since (α̃∗, β̃

∗′

) are not equal to the true values. In order to use Lemma 1 to
obtain the asymptotic distribution of ER(α̃, β̃), we will first to get the asymptotic distribution of (α̃, β̃

′

). To this end, we will
utilize White’s theorem [20].

White’s Theorem. Suppose i.i.d. data x1, x2, . . . , xn come from a true distribution p(x), but we assume a family of distributions,
p(x|θ) where θ is an indexing parameter. Then under suitable regularity conditions, the maximum likelihood estimator of θ

converges almost surely to the value θ∗ that minimizes −
∫
p(x) log

[
p(x|θ)
p(x)

]
dx, the Kullback–Leibler distance of p(x|θ) from

p(x). White also shows that the sequence of MLEs, θ̂n, is asymptotically multivariate normal in the sense
√
n(θ̂n − θ∗)

L
→

MVN(0, C(θ∗)), where the covariance matrix C(θ∗) is equal to A(θ∗)−1B(θ∗)A(θ∗)−1, with A(θ) and B(θ)matrices whose (i, j)th
element is given by

Aij(θ) = Ep(x)[∂2 log p(x|θ)/∂θiθj],
Bij(θ) = Ep(x)[(∂ log p(x|θ)/∂θi)(∂ log p(x|θ)/∂θj)].

3.1. Asymptotic distribution of error rate of NDA

First we consider the misspecified NDA procedure. Let (α̂, β̂
′

) and (λ̂, µ̂0, µ̂1, 6̂) denote, respectively, the estimates
of (α, β′) and (λ,µ0,µ1,6) based on the misspecified NDA procedure. Let us write the distinct elements of 6̂

−1
as a

p(p + 1)/2 vector (σ̂ 11, σ̂ 12, . . . , σ̂ 1p, σ̂ 22, σ̂ 23, . . . , σ̂ pp) and indicate this vector as (σ̂(1), σ̂(2)), where σ̂(1) ≡ (σ̂ 11, σ̂ 12,

. . . , σ̂ 1p), σ̂
(2)
≡ (σ̂ 22, σ̂ 23, . . . , σ̂ pp).

For convenience we introduce the following expressions first,

a = π0θ0, b = π1(1− θ1), c = π0(1− θ0), d = π1θ1, h = 1+
(
ab
a+ b

+
cd
c + d

)
∆2.

We also have the following notations, Eij being the p × pmatrix with one in the (i, j)th position and zero elsewhere, Op×p
being zero matrixes, and δij = 1 or 0 as i = j or i 6= j. As described earlier, the asymptotic distribution of the error rate is
the same under (1) as it is under (5), so we consider the asymptotic distribution of the misspecified MLEs in the standard
situation. It will also be seen that we do not need the limiting distribution of σ̂(2) to derive the asymptotic distribution of
NDA based estimates (α̂, β̂

′

).

Lemma 2. In the standard situation, under CCC-Noise, the NDA produces misspecified estimates (λ̂, µ̂0, µ̂1, σ̂
(1)
), by

maximizing (3), which satisfy

√
n



λ̂
µ̂0
µ̂1

σ̂
(1)

 −

λ∗

µ∗0
µ∗1

σ∗(1)


→ MVN3p+1(0,�)
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where

λ∗ = log
c + d
a+ b

, µ∗0 =
b− a
b+ a

∆

2
e1, µ∗1 =

d− c
c + d

∆

2
e1, σ(1)∗ = e1/h

and

� =



ω00 O1×p O1×p ω03e′1

Op×1 ω11E11 +
I− E11

a+ b
Op×p ω13E11

Op×1 Op×p ω22E11 +
I− E11

c + d
ω23E11

ω03e1 ω13E11 ω23E11 ω33E11 + h(I− E11)


with

ω00 =
[1+ exp(λ∗)]2

exp(λ∗)
=

1
(a+ b)(c + d)

, ω11 =
1
a+ b

+
ab

(a+ b)3
∆2,

ω22 =
1
c + d

+
ab

(c + d)3
∆2,

ω33 =
2
h2
+
∆4

h4

[
ab4 + a4b
(b+ a)4

+
cd4 + c4d
(d+ c)4

− 3
(
ab
b+ a

+
cd
d+ c

)2]
,

ω03 =
∆2

h2

[
ab

(a+ b)2
−

cd
(c + d)2

]
, ω13 =

ab(a− b)∆3

(a+ b)3h2
, ω23 =

cd(c − d)∆3

(c + d)3h2
.

Proof. see Appendix A. �

Lemma 2 gives us the asymptotic distribution of the misspecified MLEs λ̂, µ̂0, µ̂1 and σ̂
(1). Similar to Efron’s deriva-

tions [16], we use the multivariate delta method to obtain Lemma 3 which uses the following definitions,

m01 =
b− a
b+ a

∆

2h
, m02 =

c − d
c + d

∆

2h
,

m03 =

[(
b− a
b+ a

)2
−

(
d− c
d+ c

)2]
∆2

8
, m13 =

(
d− c
d+ c

−
b− a
b+ a

)
∆

2
.

Lemma 3. In the standard situation, under CCC-Noise, the NDA produces misspecified estimates (α̂, β̂
′

) satisfying

√
n
{(
α̂

β̂

)
−

(
α∗

β∗

)}
→ MVNp+1(0,3),

where

α∗ = log
c + d
a+ b

−
1
2h

[(
d− c
d+ c

)2
−

(
b− a
b+ a

)2](
∆

2

)2
,

β∗ = (µ∗1 − µ∗0)(6
∗)−1 =

∆

h
ad− bc

(b+ a)(c + d)
e1,

3 =

 κ00 κ01e′1

κ01e1 κ11E11 +

[
1

(a+ b)(c + d)h2
+m213h

]
(I− E11)


with

κ00 = ω00 + ω11(m01)2 + ω22(m02)2 + ω33(m03)2 + 2m03ω03 + 2m03ω13m01 + 2m03ω23m02,

κ01 =
−m01ω11
h

+
m02ω22
h
+m03ω33m13 + ω03m13 +

−m03ω13
h

+m01ω13m13 +
m03ω23
h
+m02ω23m13,

κ11 =
ω11 + ω22

h2
+m213ω33 −

2m13∆3

h3

[
ab(a− b)
(a+ b)3

−
cd(c − d)
(c + d)3

]
.
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Proof. Differentiating (2) gives
∂α

∂λ
= 1,

∂α

∂µ′0
= µ′06

−1,
∂α

∂µ′1
= −µ′16

−1,
∂α

∂σ ij
=
µ0iµ0j − µ1iµ1j

1+ δij
,

∂β

∂λ
= 0,

∂β

∂µ′0
= −6−1,

∂β

∂µ′1
= 6−1,

∂β

∂σ ij
=

Eij + Eji

1+ δij
(µ1 − µ0).

µ0i indicating the ith component of µ0; likewise for µ1i. In the standard situation, we have the following first-order
differential relationship that is obtained by expanding (α̂, β̂

′

) around (α∗, β∗′)

(
α̂

β̂

)
−

(
α∗

β∗

)
=

[
1 m01e′1 m02e′1 m03e′1 0
0 −(6∗)−1 (6∗)−1 m13I 0

]
λ̂− λ∗

µ̂0 − µ∗0

µ̂1 − µ∗1
σ̂
(1)
− σ∗(1)

σ̂
(2)
− σ∗(2)

 . (8)

LetM be thematrix on the right side of (8), ignoring the last column. Then themultivariate deltamethod gives the covariance
matrix of (α̂, β̂

′

) asM�M′. Evaluation ofM�M′ gives the result of3. �

Then the asymptotic distribution of ER(α̂, β̂) is given in Theorem 1.

Theorem 1.
√
n[ER(α̂, β̂)− ER(α∗, β∗1e1)]

L
→ N(0, ω2NDA),

where

ER(α∗, β∗1e1) = π0Φ
(
−
∆

2
+

α∗

|β∗1 |

)
+ π1Φ

(
−
∆

2
−

α∗

|β∗1 |

)
,

ω2NDA = (f0(α
∗, β∗1e1))

2κ00 + κ11(f11(α∗, β∗1e1))
2
+ 2f0(α∗, β∗1e1)κ01f11(α

∗, β∗1e1).

with

f0(α∗, β∗1e1) =
π0

|β∗1 |
φ

(
−
∆

2
+

α∗

|β∗1 |

)
−
π1

β∗1
φ

(
−
∆

2
−

α∗

|β∗1 |

)
,

f11(α∗, β∗1e1) = −π0
α∗

(β∗1 )
2
φ

(
−
∆

2
+

α∗

|β∗1 |

)
+ π1

α∗

(β∗1 )
2
φ

(
−
∆

2
−

α∗

|β∗1 |

)
.

Proof. The proof follows immediately from Lemmas 1 and 3. �

We know that the minimal value of the error rate is ER(λ,∆e1) = π0Φ
(
−
∆

2 +
λ
∆

)
+ π1Φ

(
−
∆

2 −
λ
∆

)
. That means the

misspecified NDA procedure will converge to ER(λ,∆e1) if the following condition is satisfied

α∗

|β∗1 |
=

log c+da+b −
1
2h

[( d−c
d+c

)2
−
( b−a
b+a

)2] (∆
2

)2
∆

h
|ad−bc|

(b+a)(c+d)

=
λ

∆
. (9)

When π0 = π1, it can be easily seen that this equation holds if θ0 = θ1.

3.2. Asymptotic distribution of error rate of LR

According to White’s theorem, the misspecified MLEs, obtained by maximizing (4), say (ŝ, t̂′) are asymptotically normal
and converge almost surely to the value (s∗, t∗′) that minimizes

E(X,Ỹ )
{
−Ỹ (α + β′X)+ log

[
1+ exp(α + β′X)

]
− log[ϕ(X)]

}
, (10)

where ϕ(X) is the density function of X under (5).
Taking the first partial derivatives with respect to α and β respectively and setting them to zero gives:

E(X,Ỹ )
[
Ỹ
]
− E(X,Ỹ )

[
exp(s∗) exp(t∗′X)
1+ exp(s∗) exp(t∗′X)

]
= 0, (11)

E(X,Ỹ )[XỸ ] − E(X,Ỹ )

[
X
exp(s∗) exp(t∗′X)
1+ exp(s∗) exp(t∗′X)

]
= 0. (12)
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Neuhaus [14] showed that ignoring CCC-Noise in the LR can be viewed as one kind of link function violation. Li and
Duan’s [21] showed that the estimated slope t̂′ from LR with a misspecified link function consistently estimates the true
parameter β′ up to a scale factor. In the standard situation β′ = ∆e′1, thus we have t∗′ = u∗∆e′1, where u

∗ is a scalar
quantity. Then (11) and (12) are simplified into,

g1(π0,∆, θ0, θ1) = EX1

[
exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

]
, (13)

g2(π0,∆, θ0, θ1) = EX1

[
X1 exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

]
(14)

with

g1(π0,∆, θ0, θ1) = E(X,Ỹ )
[
Ỹ
]
= θ1EX1

[
π1 exp(∆X1)

π0 + π1 exp(∆X1)

]
+ (1− θ0)EX1

[
π0

π0 + π1 exp(∆X1)

]
,

g2(π0,∆, θ0, θ1) = E(X,Ỹ )
[
Ỹ X1

]
= θ1EX1

[
X1π1 exp(∆X1)
π0 + π1 exp(∆X1)

]
+ (1− θ0)EX1

[
X1π0

π0 + π1 exp(∆X1)

]
and X1 indicating the first component of X. Eqs. (13) and (14) are solved by combining Monte-Carlo integration with the
Newton–Raphson algorithm. The two unknown parameters (s∗, u∗) only depend on the values of (π0,∆, θ0, θ1). Instead of
using s∗(π0,∆, θ0, θ1) and u∗(π0,∆, θ0, θ1), we adopt (s∗, u∗) for the convenience of expression.

Lemma 4. In the standard situation, under CCC-Noise, the LR produces misspecified estimates (ŝ, t̂′) satisfying
√
n
{(
ŝ
t̂

)
−

(
s∗

u∗∆e1

)}
→ MVNp(0,9),

where (s∗, u∗) is solution of (13) and (14), and

9 =

 ψ00 ψ01e′1
ψ01e1 ψ11E11 +

v0

h20
(I− E11)


with

ψ00 =
h22v0 − 2h1h2v1 + h

2
1v2

(h0h2 − h21)2
, ψ01 =

−h1h2v0 + (h1h0 + h21)v1 − h0h1v2
(h0h2 − h21)2

,

ψ11 =
h21v0 − 2h1h0v1 + h

2
0v2

(h0h2 − h21)2
, hi(π0,∆, θ0, θ1) ≡

∫
+∞

−∞

exp(s∗) exp(u∗∆x)
[1+ exp(s∗) exp(u∗∆x)]2

xiϕ(x)dx,

vi(π0,∆, θ0, θ1) ≡

∫
+∞

−∞

{
π1θ1 exp(∆x)+ π0(1− θ0)

π0 + π1 exp(∆x)
1− exp(s∗) exp(u∗∆x)
1+ exp(s∗) exp(u∗∆x)

+

[
exp(s∗) exp(u∗∆x)
1+ exp(s∗) exp(u∗∆x)

]}
xiϕ(x)dx i = 0, 1, 2.

Proof. see Appendix B. �

Combining Lemmas 1 and 4 proves the following theorem regarding the asymptotic distribution of ER(ŝ, t̂).

Theorem 2.
√
n[ER(ŝ, t̂)− ER(s∗, u∗∆e1)]

L
→ N(0, ω2LR),

where

ER(s∗, u∗∆e1) = π0Φ
(
−
∆

2
+

s∗

|u∗|∆

)
+ π1Φ

(
−
∆

2
−

s∗

|u∗|∆

)
,

ω2LR = (f0(s
∗, u∗∆e1))2ψ00 + ψ11(f11(s∗, u∗∆e1))2 + 2f0(s∗, u∗∆e1)ψ01f11(s∗, u∗∆e1)

with

f0(s∗, u∗∆e1) = π0
1
|u∗|∆

φ

(
−
∆

2
+

s∗

|u∗|∆

)
− π1

1
|u∗|∆

φ

(
−
∆

2
−

s∗

|u∗|∆

)
,

f11(s∗, u∗∆e1) = −π0
s∗

(u∗∆)2
φ

(
−
∆

2
+

s∗

|u∗|∆

)
+ π1

s∗

(u∗∆)2
φ

(
−
∆

2
−

s∗

|u∗|∆

)
.
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Fig. 1a. The asymptotic error rate bias with θ0 = 1,∆ = 1 and π0 = 0.5.

Fig. 1b. The asymptotic error rate bias with θ0 = 1,∆ = 2 and π0 = 0.5.

4. Comparison and discussion

Define the bias of the asymptotic error rate of the classification rule by

AERB(α̂, β̂) = lim
n→∞

E
[
ER(α̂, β̂)

]
− ER(λ,∆e1) = ER(α∗, β∗1e1)− ER(λ,∆e1),

AERB(ŝ, t̂) = lim
n→∞

E
[
ER(ŝ, t̂)

]
− ER(λ,∆e1) = ER(s∗, u∗∆e1)− ER(λ,∆e1).

Weassume that both θ0 and θ1 are greater than 0.5 since values of θ0 and θ1 less than 0.5 indicates that the process of labeling
an observation performs worse than flipping a coin. Figs. 1–3 illustrate how the CCC-Noise affects the bias of the asymptotic
error rate of NDA and LR respectively. If the CCC-Noise is ignored, both the LR and NDA procedures are positively biased.
However, when the noise level is low, which is usually the case in practice, the asymptotic error rates of both procedures
are only slightly affected. When∆ is small, the LR and NDA almost have the same asymptotic error rate. As∆ increases, the
difference in the asymptotic error rates increases with LR always being larger. When θ0 = θ1, AERB is zero for both NDA and
LR, implying the corresponding asymptotic error rates are both equal to the optimal value given by ER(λ,∆e1). We define
the relative efficiency of LR to NDA as the following,

RE(π0,∆, θ0, θ1, n) =
E
[
ER(α̂, β̂)− ER(λ,∆e1)

]2
E
[
ER(ŝ, t̂)− ER(λ,∆e1)

]2 ≈ AERB2(α̂, β̂)+ ω2NDA/nAERB2(ŝ, t̂)+ ω2LR/n
. (15)

The quantities of (15) are graphed in Figs. 4–6 for different sample sizes. These three graphs show that the relative efficiency
monotonically increases as the noise level increases, which indicates that LR is less deteriorated by CCC-Noise compared to
NDA. As noise level goes to zero, the relative efficiencies converge to their minimal values, which are different from the
numbers shown in Table 1 of Efron’s paper [16], because the relative efficiency employed in Efron’s paper is defined as the
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Fig. 1c. The asymptotic error rate bias with θ0 = 1,∆ = 3 and π0 = 0.5.

Fig. 2a. The asymptotic error rate bias with θ0 = 0.9,∆ = 1 and π0 = 0.5.

Fig. 2b. The asymptotic error rate bias with θ0 = 0.9,∆ = 2 and π0 = 0.5.

ratio of the expected regrets of these two procedures, rather than the ratio of the mean square errors as in our paper. It is
also important to note that as∆ gets smaller, although NDA is still better it is better by a small margin. Furthermore, for the
case of sample size equal to 50 and∆ equal to 2, as misclassification probability increases, the performance of LR can even
be better than NDA. Though only Fig. 4 shows this latter aspect, for lower values of θ1 some of these other curves would rise
up to be larger than 1 also.
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Fig. 2c. The asymptotic error rate bias with θ0 = 0.9,∆ = 3 and π0 = 0.5.

Fig. 3a. The asymptotic error rate bias with θ0 = 0.8,∆ = 1 and π0 = 0.5.

Fig. 3b. The asymptotic error rate bias with θ0 = 0.8,∆ = 2 and π0 = 0.5.

5. Summary

Wehave investigated the impact of CCC-Noise on the performance of a popular generative classifier, normal discriminant
analysis (NDA) and its corresponding discriminative classifier logistic regression (LR). We compared the relative asymptotic
error rate of these two classifiers under CCC-Noise when the underlying distributions are multivariate normal. Typically,
the AERB of both procedures are only slightly affected when the noise level is low. LR has a larger AERB than NDA when the
two populations are more separated.
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Fig. 3c. The asymptotic error rate bias with θ0 = 0.8,∆ = 3 and π0 = 0.5.

Δ
Δ
Δ

Fig. 4. The relative efficiency of LR to NDA with θ0 = 1, n = 50 and π0 = 0.5.

Δ
Δ
Δ

Fig. 5. The relative efficiency of LR to NDA with θ0 = 1, n = 200 and π0 = 0.5.

With respect to the relative efficiency of LR to NDA, we showed that LR is less deteriorated by CCC-Noise compared
to NDA. One important conclusion is that under the CCC-Noise contexts, the Mahalanobis distance ∆2 plays a vital role in
determining the relative performance of these two procedures.When∆2 is small, LR tends to bemore tolerable to CCC-Noise
compared to NDA.
Our analyses provide insight and a more in-depth understanding of the effect of noisy labeled observations on the

accuracy of frequently used classification models, and conceivably our results can be used to guide interested researchers
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Δ
Δ
Δ

Fig. 6. The relative efficiency of LR to NDA with θ0 = 1, n = 1000 and π0 = 0.5.

on the design of noise handling mechanisms. In future work we will extend this efficiency comparison to a non-Gaussian
assumption for the distribution of X.

Appendix A. Proof of Lemma 2

According to White’s theorem the misspecified MLEs, (λ̂, µ̂0, µ̂1, 6̂), of NDA converges to (λ∗,µ∗0,µ
∗

1,6
∗) which

minimizes

E(X,Ỹ )

{
(1− Ỹ )

[
p
2
log(2π)+

1
2
log |6| +

1
2
(X− µ0)

′6−1(X− µ0)− logπ0

]

+ Ỹ
[
p
2
log(2π)+

1
2
log |6| +

1
2
(X− µ1)

′6−1(X− µ1)− logπ1

]}
,

where the expectation is with respect to the joint distribution of (Ỹ ,X). Let L represent the inner term of the expectation.
Taking the first partial derivatives with respect to λ,µ0,µ1 and 6 respectively and setting them to zero gives:

E(X,Ỹ )

{
exp(λ∗)
1+ exp(λ∗)

− Ỹ
}
= 0, (16)

E(X,Ỹ )
{
−(1− Ỹ )(6∗)−1(X− µ∗0)

}
= 0, (17)

E(X,Ỹ )
{
−Ỹ (6∗)−1(X− µ∗1)

}
= 0, (18)

E(X,Ỹ )

{
−
1
2
[26∗ − diag6∗] +

1
2
(1− Ỹ )[2(X− µ∗0)(X− µ∗0)

′
− diag(X− µ∗0)(X− µ∗0)

′
]

+
1
2
Ỹ [2(X− µ∗1)(X− µ∗1)

′
− diag(X− µ∗1)(X− µ∗1)

′
]

}
= 0. (19)

Also it can be easily shown that, in the standard situation,

E(X,Ỹ ) [X] =
(π1 − π0)∆e1

2
, E(X,Ỹ )

[
Ỹ
]
= π0(1− θ0)+ π1θ1, E(X,Ỹ )

[
ỸX
]
=
[θ1π1 − (1− θ0)π0]∆e1

2
,

E(X,Ỹ )
[
(1− Ỹ )(X− µ∗0)(X− µ∗0)

′

]
= π0θ0

[
I+

(
∆e1
2
+ µ∗0

)(
∆e1
2
+ µ∗0

)′]
+ π1(1− θ1)

[
I+

(
∆e1
2
− µ∗0

)(
∆e1
2
− µ∗0

)′]
,

E(X,Ỹ )
[
Ỹ (X− µ∗1)(X− µ∗1)

′

]
= π0(1− θ0)

[
I+

(
∆e1
2
+ µ∗1

)(
∆e1
2
+ µ∗1

)′]
+ π1θ1

[
I+

(
∆e1
2
− µ∗1

)(
∆e1
2
− µ∗1

)′]
.

(20)
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Substituting the values of the expressions from (20) into (16), (17), (18) and (19) and simplifying and solving yield
(λ∗,µ∗0,µ

∗

1,6
∗). Here 6∗ = I+

( ab
a+b +

cd
c+d

)
∆2E11 which indicates that σ(1)∗ = he1.

The asymptotic variance–covariance matrix of (λ̂, µ̂0, µ̂1, σ̂
(1)
) is represented as

� = A−1BA−1 =

A00 A01 A02 A03
A′01 A11 A12 A13
A′02 A′12 A22 A23
A′03 A′13 A′23 A33


−1B00 B01 B02 B03

B′01 B11 B12 B13
B′02 B′12 B22 B23
B′03 B′13 B′23 B33

A−1,

where A00 is a scalar, A01,A02,A03 are 1 × p vectors and A11,A22,A33,A12,A13,A23 are p × p matrixes, likewise for all
components in matrix B. First we consider the elements in matrix A. Again according to White’s theorem we know that

A00 = E(X,Ỹ )

[
∂2L
∂λ∂λ

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
=

exp(λ∗)
[1+ exp(λ∗)]2

,

A11 = E(X,Ỹ )

[
∂2L

∂µ0∂µ0

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

{
(1− Y ′)(6∗)−1

}
= (a+ b)

(
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1
,

A22 = E(X,Ỹ )

[
∂2L

∂µ1∂µ1

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Y ′)

{
Ỹ (6∗)−1

}
= (c + d)

(
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1
and apparently A01 = A02 = A03 = O1×p, A12 = A21 = Op×p. With respect to A13 and A23, for each element in σ (1), we have

E(X,Ỹ )

[
∂2L

∂µ0∂σ
1j

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

[
E1j + Ej1

1+ δ1j
(1− Ỹ )(X− µ∗0)

]
= Op×1,

E(X,Ỹ )

[
∂2L

∂µ1∂σ
1j

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

[
E1j + Ej1

1+ δ1j
Ỹ (X− µ∗1)

]
= Op×1,

which indicate that A13 = A23 = Op×p.
Now let’s consider (19). Taking the first partial derivative with respect to σ ij,and evaluated at (λ∗,µ∗0,µ

∗

1,6
∗) gives

−E(X,Ỹ )

[
−6∗

Eij + Eji

1+ δij
6∗ +

1
2
diag

(
6∗

Eij + Eji

1+ δij
6∗
)]
.

All the elements in this matrix are zero except the positions (i, j) and (j, i), which indicates that A33 is a diagonal matrix and
evaluation gives A33 =

h2
2 E11 + h(I− E11). Finally, the whole matrix A can be written in the following way

A = diag

(
−

exp(λ∗)
[1+ exp(λ∗)]2

,−
a+ b
h

,

p−1︷ ︸︸ ︷
−(a+ b), . . . ,−(a+ b),

−
c + d
h

,

p−1︷ ︸︸ ︷
−(c + d), . . . ,−(c + d),

−h2

2
,

p−1︷ ︸︸ ︷
−h/2, . . . ,−h/22

)
.

Now consider the matrix B. According to White’s theorem we know that

B00 = E(X,Ỹ )

[
∂L
∂λ

∂L
∂λ

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

{[
−

exp(λ)
1+ exp(λ)

+ Ỹ
]2}
=

exp(λ∗)
[1+ exp(λ∗)]2

,

B11 = E(X,Ỹ )

[
∂L
∂µ0

(
∂L
∂µ0

)′ ∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Y ′)

{
(1− Ỹ )2(6∗)−1(X− µ∗0)(X− µ∗0)

′(6∗)−1
}

=

(
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1 [
(a+ b)I+

ab
a+ b

∆2E11

](
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1
,

B22 = E(X,Ỹ )

[
∂L
∂µ1

(
∂L
∂µ1

)′ ∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Y ′)

{
(Y ′)2(6∗)−1(X− µ∗1)(X− µ∗1)

′(6∗)−1
}

=

(
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1 [
(c + d)I+

cd
c + d

∆2E11

](
I+

(
ab
a+ b

+
cd
c + d

)
∆2E11

)−1
.
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It also can be easily shown that B01 = B02 = O1×p and B12 = B21 = Op×p based on the fact that (1− Ỹ )Ỹ is a zero random
variable. Now let’s consider B03. First we let N = − 12

[
26∗ − diag6∗

]
and nij be (i, j) component of N. Thus we have

E(X,Ỹ )

[
∂L
σ ij

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= nij + (1− Ỹ )

(Xi − µ∗0i)(Xj − µ
∗

0j)

1+ δij
+ Ỹ

(Xi − µ∗1i)(Xj − µ
∗

1j)

1+ δij
.

Note the fact that N is a diagonal matrix. Let’s consider the jth component of B03

E(X,Ỹ )

[
∂L
λ

∂L
σ 1j

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

{(
exp(λ)
1+ exp(λ)

− Ỹ
)

×

[
n1j + (1− Ỹ )

(X1 − µ∗01)(Xj − µ
∗

0j)

1+ δ1j
+ Ỹ

(X1 − µ∗11)(Xj − µ
∗

1j)

1+ δ1j

]}

= E(X,Ỹ )

{
−Ỹ n1j − Ỹ

(X1 − µ∗11)(Xj − µ
∗

1j)

1+ δ1j

}
.

It can be observed that only the component with j = 1 is nonzero, which is equal to

E(X,Ỹ )

{
Ỹ
h
2
− Ỹ

(X1 − µ∗11)(X1 − µ
∗

11)

2

}
=
∆2

2

[
ab
c + d
a+ b

− cd
a+ b
c + d

]
.

Now let’s consider the (i, j) component of B33,

E(X,Ỹ )

[
∂L
σ 1j

∂L
σ 1i

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E

[
(1− Ỹ )2

(X1 − µ∗01)(Xj − µ
∗

0j)

1+ δ1j

(X1 − µ∗01)(Xi − µ
∗

0i)

1+ δ1i

]
+ E

[
(Ỹ )2

(X1 − µ∗11)(Xj − µ
∗

1j)

1+ δ1j

(X1 − µ∗11)(Xi − µ
∗

1i)

1+ δ1i

]
.

It can be observed that only the components with i equal to j are nonzero. For any j 6= 1

E(X,Ỹ )

[
∂L
σ 1j

∂L
σ 1j

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= −n21j + 1+ π0θ0(µ01 − µ

∗

01)
2
+ π1(1− θ1)(µ11 − µ∗01)

2

+π0(1− θ0)(µ01 − µ∗11)
2
+ π1θ1(µ11 − µ

∗

11)
2

= −n21j + 1+
(
∆

2

)2 (
a
(
2b
b+ a

)2
+ b

(
2a
b+ a

)2

+ c
(
2d
c + d

)2
+ d

(
2c
c + d

)2)

= 1+∆2
[
ab
b+ a

+
cd
c + d

]
= h.

For j = 1,

E(X,Ỹ )

[
∂L
σ 11

∂L
σ 11

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
=
h2

2
+
1
4
∆4

[
ab4 + a4b
(b+ a)4

+
cd4 + c4d
(d+ c)4

− 3
(
ab
b+ a

+
cd
d+ c

)2]
.

For (i, j) component of B13,

E(X,Ỹ )

[
∂L
σ 1j

∂L
∂µ0i

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= E(X,Ỹ )

[
(1− Ỹ )2

(X1 − µ∗01)(Xj − µ
∗

0j)

1+ δ1j

(Xi − µ∗0i)
hδ1i

]
.

It can be observed that only the (1, 1) component is nonzero, which is equal to

E(X,Ỹ )

[
∂L
σ 11

∂L
∂µ01

∣∣∣∣
(λ∗,µ∗0,µ

∗
1,6
∗)

]
= π0θ0

3(µ01 − µ∗01)+ (µ01 − µ
∗

01)
3

2h

+π1(1− θ1)
3(µ11 − µ∗01)+ (µ11 − µ

∗

01)
3

2h

=
∆3

2h
ab(a− b)
(a+ b)2

.

Thus B13 =
∆3

2h
ab(a−b)
(a+b)2

E11. Similarly, we have B23 =
∆3

2h
cd(c−d)
(c+d)2

E11. Finally, evaluation of A−1BA−1 gives the matrix�.
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Appendix B. Proof of Lemma 4

The asymptotic variance–covariance matrix of (ŝ, t̂′) is represented

9 = V−1HV−1 =
(
V11 V12

V′12 V22

)−1 (H11 H12

H′12 H22

)
V−1

where V11 is a scalar, V12 are 1 × p vectors and V22 are p × p matrixes, likewise for all components in matrix H. First we
consider the elements in matrix H. Let l represent the inner term of the expectation of (10),

H11 = E(X,Ỹ )

[
∂2l
∂α∂α

∣∣∣∣
(s∗,u∗)

]
= EX1

{
exp(s∗) exp(u∗∆X1)

[1+ exp(s∗) exp(u∗∆X1)]2

}
= h0.

Now consider the ith component of H12

E(X,Ỹ )

[
∂2l
∂α∂βi

∣∣∣∣
(s∗,u∗)

]
= EX

{
Xi exp(s∗) exp(u∗∆X1)

[1+ exp(s∗) exp(u∗∆X1)]2

}
.

Only the first component is nonzero, which is equal to

E(X,Ỹ )

[
∂2l

∂α∂β1

∣∣∣∣
(s∗,u∗)

]
= EX1

{
X1 exp(s∗) exp(u∗∆X1)
[1+ exp(s∗) exp(u∗∆X1)]2

}
= h1.

The (i, j) component of H22,

E(X,Ỹ )

[
∂2l

∂βi∂βj

∣∣∣∣
(s∗,u∗)

]
= EX

{
XiXj exp(s∗) exp(u∗∆X1)
[1+ exp(s∗) exp(u∗∆X1)]2

}
.

It can be observed that only the components with i equal to j are nonzero. For any i 6= 1

E(X,Ỹ )

[
∂2l

∂βi∂βi

∣∣∣∣
(s∗,u∗)

]
= EX

{
(Xi)2 exp(s∗) exp(u∗∆X1)
[1+ exp(s∗) exp(u∗∆X1)]2

}
= EX1

{
exp(s∗) exp(u∗∆X1)

[1+ exp(s∗) exp(u∗∆X1)]2

}
= h0.

For i = 1

E(X,Ỹ )

[
∂2l

∂β1∂β1

∣∣∣∣
(s∗,u∗)

]
= EX

{
(X1)2 exp(s∗) exp(u∗∆X1)
[1+ exp(s∗) exp(u∗∆X1)]2

}
= h2.

Thus H22 = h2E11 + h0(I+ E11). For matrix V,

V11 = E(X,Ỹ )

[
∂ l
∂α

∂ l
∂α

∣∣∣∣
(s∗,u∗)

]

= E(X,Ỹ )

{
(Y ′)2 − 2

exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

Y ′ +
[
exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

]2}

= EX1

[
θ1π1 exp(∆X1)+ π0(1− θ0)

π0 + π1 exp(∆X1)
1− exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

+

[
exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

]2]
= v0.

For the ith component of V12,

E(X,Ỹ )

[
∂ l
∂α

∂ l
∂βi

∣∣∣∣
(s∗,u∗)

]
= E(X,Ỹ )

{
(Y ′)2Xi − 2

exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

Y ′Xi + Xi

[
exp(s∗) exp(u∗∆X1)
1+ exp(s∗) exp(u∗∆X1)

]2}
.

Only the first component is nonzero, which is E(X,Ỹ )

[
∂ l
∂α

∂ l
∂β1

∣∣∣∣
(s∗,u∗)

]
= v1. For the matrix V22, similar to H22, we have

V22 = v2E11 + v0(I + E11). Finally, evaluation of V−1HV−1 gives the matrix9.
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