
 Procedia Computer Science 65 (2015) 422 – 431

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Universal Society for Applied Research
doi: 10.1016/j.procs.2015.09.111

ScienceDirect
Available online at www.sciencedirect.com

International Conference on Communication, Management and Information Technology (ICC
2015)

Decision Model for Software Architectural Tactics Selection
based on Quality Attributes Requirements

Ahmed E. Sabry*
Department of Computer and IS, Sadat Academy, Cairo, Egypt

Abstract

Due to increasing industrial demands toward software systems with increasing complexity and challenging quality requireme
software architecture and implementation mechanisms become an important activity. The decisions made during architecture
design have significant implications on quality goals. As addressed, there is a lack of available standard models, architectures
frameworks for enabling implementation of quality attributes specially for business intelligence environment and application
order to rapidly and efficiently supports decision-making. In addition, a lack of researches related to Quality Attributes (QA)
requirements, its implementation tactics, and interrelations or correlations between them. The increasing systems complexity
mandates software architects to choose from a growing number of design options (decisions) when searching for an optimal
architecture design in a specific domain with respect to a defined (set of) quality attributes and constraints. This results in a
design space search that is over human capabilities and makes the architectural design task more complicated.
In this paper, researcher aimed to reveal most of quality attributes implementation tactics affecting applications architectures
properties. Several quality attributes of software investigated using applied research methods with mixed quantitative (linear)
non-linear analysis techniques. It proposes an initiative for finding an easy and systematic way of addressing quality attribute
requirements to a set of implementing architectural tactics.
Finally, the findings analyzed and visualized in a way that can support decision stakeholders in addition to a new concept of
“safe-tactics” introduced as reduced (pruned) set of tactics that are claimed to be better used in general refactoring cases. In
addition, a software tool is developed throughout this research effort as result of gained knowledge and addressing the resear
findings.
© 2015 The Author. Published by Elsevier B.V.
Peer-review under responsibility of Universal Society for Applied Research.

Keywords: Software Architecture; Architecture Styles and Tactics; Quality Attributes (QA); Mining Techniques; Business Intelligence (BI)

* Corresponding author. Tel.:+2-011-120-00747; fax. +2-011-120-00747.
E-mail address: aesmat@ieee.org; aesmat@sadatacademy.edu.eg

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Universal Society for Applied Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82315288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.09.111&domain=pdf

423 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

1 Background

Architecture specifications and models are used to structure complex software systems and to provide a tem
that is the foundation for other software engineering activities. The decisions made during the activity of archite
design have significant implications on software quality goals1. In addition, the modern systems and bus
intelligence applications implies fundamental knowledge redistribution and requires a careful rethinking o
management of information resources and knowledge bases2. This mandates more rational decisions shou
carefully taken and formal methods and tools should be introduced.

In addition, the growing use of cloud computing, software as a service, as well as open source, increase the
from enterprises to implement new applications specifically business intelligence (BI). Related to this, a frame
that can help in assessing the readiness of BI implementation for enterprises is increasingly required3. Bus
intelligence level of readiness can be evaluated while it still considered weak but it can be identified. The d
framework tries to further improve the success rate and reduce complexity of BI implementation. The key facto
implementing BI architecture specially based on service-oriented architectures have not yet been systemat
investigated4. Most of the prior studies focus on organizational and managerial perspectives over the tech
factors. In this research, the technical factors and tactics that have most affect the implementation of BI architec

Lately, a gap noticed within professional communities and formal researches related to implementation tact
software QA requirements. In addition, interrelations and correlations between them and its implication im
and/or cost assessment are almost absent in architect decisions. It has been found scattered across many profess
and research communities and system domains while similar approaches are proposed in multiple domains w
being aware of each other1.

Quality Attributes (QA) has significant influence on the architecture of enterprise systems. As Archite
provides the foundation for achieving quality attributes and adhered to in the implementation. In the p
researcher surveyed and defining the main quality attributes. In addition, the interaction and effect of each qu
attribute with implementation tactics.

1.1 System and Software Architecture Modeling

System Architecture can be defined as the set of principal design decisions taken for a system. Sy
architecture is a means for describing the elements and interactions of a complete system including its hardwar
software elements5. It is concerned with the elements of the system and their contribution toward the system’s
but not with their substructure.

Software architectures provide high-level abstractions in the form of coarse-grained processing, connecting
data elements, their interfaces, and their configurations. This additional level of abstraction, while a
comprehension and construction of software systems, and requires an additional effort for its use1.

The software architecture of a program or computing system is the structure or structures of the system, w
comprise the software elements, the externally visible properties of those elements, and the relationships am
them (Bass, Clements, & Kazman, Software Architecture in Practice, 2003).

Functionality is the ability of a system to do the work it was intended to do. Functionality often has assoc
quality attribute requirements (e.g., an f function is required to have a certain level of availability, reliability
performance). Architect can achieve functional requirements and yet fail to meet their associated quality attr
requirements, as functionality can be achieved using many different architectures.

Enterprise architecture frameworks are aimed at the architecture of the whole organization (sometimes referr
as the “application landscape”), rather than the systems within it. However, they share many of the concepts
their systems architecture counterparts, and in particular, they all have at their core the notion of views6.

1.2 Quality Attributes

One of the important concepts in software architecture specification is identifying required levels
measurement of software quality attributes (QA) or system qualities such as performance, security, availab

424 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

reusability and so on. Architects have to choose from a growing number of design options (decisions). Searc
space become often beyond human (architect) capabilities for an optimal architecture design and implementa
tactics within a specific requirements-context or domain with respect to a defined (set of) software qualities
constraints.

Quality attributes are properties of work-products or products by which stakeholders judge their qua
Examples of quality attributes by which stakeholders may judge the quality of software systems m ay inc
availability, usability, interoperability, configurability, performance, security, modifiability, reliability, portab
etc. The degree to which a software system meets its quality attribute requirements depends on its architec
Thus, architectural decisions are made to promote various quality attributes and a change in architecture to prom
one quality attribute often affects other quality attributes. Achieving quality attribute requirements can only be d
through rationale choice of architectures.

Architecture provides the foundation for achieving quality attributes but is useless if not adhered to in
implementation. That is why the implementation of the architecture should be aligned, controlled and adapted t
implementation context. It is important to consider the most positive as well as the most negative influence
imposing an architectural style1. Measurements of software quality attributes, is one of the important concep
software architecture evaluation and variety of techniques are used for analyzing specific quality attributes
system1. Promoting one quality attribute requirement usually has an adverse effect on some other quality attri
requirement1. Architectural decisions will promote some quality attribute requirements while inhibiting others,
resulting in quality-attribute tradeoff decisions. These tradeoffs are best dealt with in the earliest phases of sys
development-during the design of the architecture1.

In general, it is not possible to select an architecture style, which addresses all of quality attribute requirement
specific style is suitable for some special goals and not for all purposes, as provide not all quality attrib
simultaneously could be achieved1. Therefore, the selection of architecture style must have good trade-off betw
required quality attributes in system.

2 Quality Attributes and Tactics

Quality attributes are characteristics that the system has, as opposed to what the system does, such as usab
maintainability, performance, and reliability7. Quality attributes are not simply met, but rather, satisfaction is alo
scale that can be viewed in a scenario (Bass et al., 2003; Bachmann et al., 2005). Considering the fact that qu
attributes tend to be system-wide characteristics, system-wide approaches are needed to achieve them.
satisfaction should be reached on system architecture level, not on component level8. Systems have mul
important quality-attributes and decisions made to satisfy a particular quality attribute will affect other qu
attributes. For example, decisions to maximize performance will require cost of additional memory nee
Therefore, architects must make tradeoff decisions to implement software that optimizes the best set of qu
attributes combinations8.

Because of the importance of quality attributes, it is critical that they be considered during early architec
design. It has been addressed that architects commonly consider them simultaneously8. However, architects
making architectural decisions concerning which tactics to implement and it could be difficult to implem
correctly and control.

Tactics are measures taken to improve quality attributes. A tactic may be easily implemented using the s
structures (and compatible behavior) as a particular architecture pattern. Consequently, a tactic may req
significant refactoring to structure and behavior of the pattern, or apply entire new structures or behavior. In
case, implementation of the tactic will be more difficult and mandate extensive testing effort. Tactics can
classified as design time tactics related to overall approaches to design and implementation, such as “informa
hiding” to improve modifiability, or may be runtime tactics, which are particular aspect of a quality attribute,
as “users authentication” to improve security8.

The implementation tactics should be selected based on quality attribute requirements. For example, security
be improved by resisting attacks, detecting attacks, and recovering from attacks. These are categories of tactic

425 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

security. Tactics for the “resisting attacks” design concern including: Authenticate users, Authorize Users, Mai
Data Confidentiality, Maintain Integrity, Limit Exposure, and Limit Access8.

In some cases, tactics are alternate ways of implementing a design concern. For example, a design concer
availability (often called reliability) is “Fault Detection.” Two tactics for fault detection are “Ping/Echo”
“Heartbeat (dead man timer)”. We note that while the model applies to both design time and runtime tactic
have focused primarily on runtime tactics for simplicity. The implementation of tactics improves the level
quality attribute. However, tactics as addressed will also have side effects on other quality attributes8. These e
are positive in some cases, and they are negative in many cases, as it will be more elaborated within the next se
of the paper.

3 Implementation of Methods

As multi-disciplinary research methods used in this research applied research survey and case study ori
methods with mixed quantitative (linear) and non-linear (data mining) analysis techniques.

The main survey has been conducted for the period of twelve months (one complete year) during the period
December 2013 to November 2014. Questionnaire used as one of methods used in this study. As the resea
desires to collect factual information on factors contributing to the area of subject, a “likert” type questionnaire
developed to collect data for the research questions stated.

The questionnaire was made up of 50 close-ended items for the stakeholders. Close-ended questions are qui
compile and straight forward to code. It was distributed personally to the stakeholders of the selected gr
companies, or enterprises on appointed and accepted dates. The researcher discussed the questions with mo
them and later distributed them to respondents to answer. This was adopted by the researcher because it hel
determining values as well as views, attitudes and experiences of the respondents. The purposive sampling us
the selection of the respondents and utilized to answer the questionnaires.

In this regard, purposive sampling based on certain criteria laid down by research that the respondents w
population have meaning for the data that will be gathered. The respondents of the study will be designers
architects from academia and industry who are involved in the software development and engineering processes

As part of reference data analysed, the constructed dataset developed based on evaluating the ten non-funct
requirements over fifty-two affecting architecture implementation tactics listed in Table 1, which resulted in
possible effects as search space size. While we have nine scale degrees for measuring effect of a specific tactic
each non-function requirement, we will have three-dimensional space to model (quality attributes dimen
implementation tactics dimension, and positive/negative effect dimension listed in Table 2). This constructs a
table with 4,680 records used in decision tree induction.

Table 1. Surveyed Tactics
Group Code Name Code Name
Fault Detection 1 Ping/ Echo 2 Heartbeat

3 Exception
Recovery Preparation and
Repair:

4 Voting 5 Active Redundancy

6 Passive Redundancy 7 Spare
Recovery Reintroduction: 8 Shadow 9 State Resynchronization

10 Rollback
Prevention: 11 Removal from service 12 Transaction

13 Process Monitor
Resisting Attacks: 14 Authenticate Users 15 Authorize Users

16 Maintain Data Confidentiality 17 Maintain Integrity
18 Limit Exposure 19 Limit Access

Detecting Attack: 20 Intrusion Detection
Recovering From Attack: 21 Restoration 22 Identification by audit trial
Failure Detection: 23 Timeout 24 Time Strap (stamp)

25 Sanity Checking
Failure Containment: 26 Redundancy 27 Replication

28 Functional Redundancy

426 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

29 Analytical Redundancy
Recovery Reintroduction: 30 Fix the Error 31 Rollback

32 Degradation 33 Reconfiguration
Masking: 34 Voting
Rank Manage Input/Output: 35 Record /Playback 36 Separate Interfaces from
Implementation 37 Specialized Access Routines/Interfaces
Localize Changes: 38 Semantic Coherence 39 Anticipated Changes

40 Generalize Module 41 Limit Possible Options
42 Abstract Common Services

Prevention of Ripple Effect: 43 Hide Information 44 Maintain Existing Information
45 Restrict Communication Paths 46 Use an Intermediary

Internal Monitoring: 47 Built-in Monitors
Defer Binding Time: 48 Run-time registration 49 Configuration Files

50 Polymorphism 51 Component Replacement
52 Adherence to Define Protocols

Table 2. Tactics Effect Ranking Degrees
Direction Degree
Positive Neutral

(0)
Low

(1)
Med

(2)
High

(3)
Very High

(4)
Negative Neg. Low

(-1)
Neg. Med.

(-2)
Neg. High

(-3)
Neg. Very High

(-4)

The survey questionnaire was used as one of the supplementary data-gathering methods for this study.
questionnaire was divided into four main sections in the Table 3.

Table 3: Survey sections summary.
Section Description
First Section about current organization, role, location, and contact information
Second Section about Experience and main technologies
Third Section about architectural views used and communicated
Fourth section about systems and business domains
Fifth Section about quality attributes main concern
Sixth Section about systems specific quality attributes, architectural patterns, and size related metrics
Seventh Section as last and important section about tactics used in software architecture implementation

The questions were structured to provide five choices for every question or statement. The choices represen
degree of agreement, usage, knowledge, or utilization each respondent has for the given question. It enables
respondent to answer the survey questions easily. In addition, it allows the researcher to carry out quantita
approach effectively or statistically analyze data and data interpretation. A sample size of forty-two respond
have been gathered and summarized. Table 4 summarizes responses over each surveyed QA as general values l
and visualized responses results in Figure 1 (a) as general values and in Figure 1 (b) as ranked quality attrib
usage levels and more details listed in Appendix B.

Table 4: QA’s general values within each level.

Response

1.Functionality

2.Portability

3.M
aintainability

4.Efficiency

5.Integrity

6.Reliability

7.U
sability

8.Confidentiality

9.A
vailability

10.Safety

High 29 11 20 15 17 24 17 16 25 14
Medium 11 16 17 24 15 13 21 15 14 18
Low 2 12 5 2 8 5 4 8 3 7
Never Used 2 2 2

Don’t Know 1 1 2 1 1

42 42 42 42 42 42 42 42 42 42

427 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

a

b

Figure 1: (a) Addressed QA usage levels frequencies; (b) Addressed overall ranked QA usage frequencies.
The responses to questions in the given variables were scaled using the five-pint-scale or Likert scale system

given weight (rated). The normalized rated QA values listed in Table 5 and visualized in Figure 3.

Table 5: Resulting normalized QA values (weighted QA’s importance).

QA Normalized Values 0.12 0.08 0.10 0.10 0.09 0.11 0.10 0.09 0.11

BI Normalized Values 0.13 0.07 0.10 0.11 0.11 0.14 0.07 0.07 0.14

Figure 2: General QA's and BI Specific QA's Importance
Referring to Figure 2 visualized results, it can be concluded visibly that the interest goes more important w

BI environments for the following QA’s in order:
Availability
Reliability
Integrity

Figure 4 visualizes the pruned decision tree reduced (common) twenty tactics considered as most-affecting ta
for trade-offs for implementing the non-functional requirements as deduced from resulting decision tree.

4 Implementation

The implementation effort aimed to develop an easy-to-use and to understand decision model and tool to
this process easier, rationale and systematic. Thus supposed to maximize requirements satisfaction and hav

428 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

optimal set of tactics to implement. In addition, a well prepared set (from the research results) of reduced (comm
twenty tactics considered as most-positive-affecting tactics for trade-offs in which we name it “safe-tactics
implement for moving most of the addressed system qualities to better levels without having significant nega
impact on other qualities.

In addition, provide roadmap and guidelines for software architects they can use to rationalize
architecturally significant decisions when considering different domains and/or changing quality attrib
requirements.

The implemented tool addresses the core part of the proposed decision framework, which is to map, recomm
and measure the best implementation design decisions tactics that satisfies specified levels of quality attrib
requirements and measure its interrelated effects. Appendix A shows the developed database design
corresponding scheme description for the developed tool.

The implemented results including introduced “safe-tactics” are listed in Table 6.

Table 6. The decision tree survived tactics after pruning: named “safe-tactics” list
ID Tactic Name Rank ID Tactic Name Rank
51 Component Replacement 1 39 Anticipated Changes 2
40 Generalize Module 3 33 Reconfiguration 4
24 Time Strap (stamp) 5 35 Record /Playback 6
21 Restoration 7 30 Fix the Error 8
23 Timeout 9 18 Limit Exposure 10
11 Removal from service 11 15 Authorize Users 12
6 Passive Redundancy 13 2 Heartbeat 14
14 Authenticate Users 15 26 Redundancy 16
8 Shadow 17 4 Voting 18
37 Specialized Access Routines/Interfaces 19 1 Ping/ Echo 20

5 Conclusions

General framework for implementing architecture with a specific QA’s requirements were proposed
developed for supporting relevant stakeholders design decisions. It has been observed as validated in the deci
tree pruning, that the implementation of many tactics is almost useless and in many cases harmful. This propose
reduces (pruned) set of tactics that are better used in general refactoring cases as shown in the pruned decision
named “safe- tactics”. It has been selected as the largest positive trade-off effects for the evaluated ten qu
attributes, while having the least negative effect on the same set of quality attributes.

The stakeholders have been derived through surveys with participants in the field of architec
implementation, and service providers. The participants observed that it clearly shows which components mus
refactored or modified. The participants observed that it is useful to use and know how tactics interact with
other and their effect on quality attributes required levels.

The case study showed several benefits of implementing suitable tactics in the distributed architecture de
specially moving towards more BI environment readiness. In addition, it shows the addition of tactics for
performance and security; where an additional authorization component was required affect the componen
performance. In addition, it has been observed that the amount of documentation needed is becoming smaller
the modelled rules as it clearly addresses the QA-tactics rationale. As documentation of interaction between
quality-attributes and tactics exists, it can be leveraged to minimize the amount of writing needed.

The interaction of multiple tactics as well as tactics on multiple patterns should have additional study. W
considering how the impact of tactics changes when considered in the context of multiple quality attribute l
required. It has long been known that architecture patterns and quality attributes are dependent, but have signif
interaction with each other. We have found that this relationship is very rich, and involves the implementatio
quality attributes through tactics.

Finally, the interaction among quality attributes and tactics falls into several general categories, based on the
of changes needed in order to implement the tactic. The amount of work required to implement a tactic i
architecture that uses a pattern depends on the type and volume of change needed.

429 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

As a limitation, it need more research to know how to generalize proposed and implemented framework
general model for measuring enterprise BI readiness from solutions architecture prospective.

Figure 3: Visualized implemented rules deduced from the Decision Tree for Tactics Selection

430 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

Appendix A. Implemented Database Design

The database design with main entities visualized in Figure 4.

Figure 4: Developed Data Model for Proposed Tool

431 Ahmed E. Sabry / Procedia Computer Science 65 (2015) 422 – 431

Appendix B. Survey Data Summary

The following table summarizes selected responses data from conducted survey related to applications tech
domain.

Table 7: Number of Systems per Respondents Country
Country Data-flow

and
Production

IS and
Enterprise
Systems

Web-Based
Systems

Scientific
Applications

Cloud
Computing
Applications

Mobile
Applications

DSS and BI
Apps

Total

Australia 2 5 0 2 4 13
Belize 34 32 30 32 28 39 86 281
Canada 2 0 1 0 0 2 0 5
Colombia 3 5 1 0 2 1 1 13
Egypt 111 21 15 0 5 5 5 162
France 1 1 1 1 1 1 1 7
Germany 1 0 2 0 0 0 0 3
India 29 12 33 0 5 4 4 87
Japan 5 4 5 4 1 4 4 27
Kuwait 0 1 0 0 0 0 0 1
Macedonia 3 8 8 0 2 0 3 24
Pakistan 2 2 1 5
Romania 2 1 1 0 1 0 1 6
South Africa 2 0 10 0 2 5 0 19
Spain 3 3 6 0 1 1 2 16
Sweden 0 2 1 0 1 0 0 4
United Arab Emirates 6 6 7 1 3 4 3 30
United Kingdom 5 3 27 2 3 1 0 41
Uruguay 3 0 4 4 1 12
Unknown 23 6 5 0 1 0 3 38
Total 235 109 163 40 62 71 114 794

References

1. N. Eftekhari, M. Poyan Rad and A. Hamid, "Evaluation and Classifying Software Architecture Styles Due to Quality Attributes," Aus
Journal of Basic and Applied Sciences, vol. 5, no. 11, pp. 1251-1256, 2011.

2 S. Egaravanda, L. Nugroho, T. Bharata and A. Munawar, "TRANSFORMING G2C/C2G RELATIONS THROUGH VIR
COLLABORATION," in ICTS, Bali, 2013.

3. A. Hidayanto, R. Kristianto and M. Shihab, "Business Intelligence Implementation Readiness: A Framework Development," Interna
Research Symposium in Service Management (IRSSM), 2012.

4. L.-K. Chan, W. Yeoh, W.-O. Choo and P.-Y. Lau, "Technical Factors for Implementing SOA-Based Business Intelligence Archite
Communications of the IBIMA, vol. 2012, p. 10, 2012.

5. L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison Wesley, 2003.
6. N. ROZANSKI and E. WOODS, "APPENDIX," in SOFTWARE SYSTEMS ARCHITECTURE, Addison-Wesley, pp. 627-629.
7. I. Sommerville, Software Engineering, 9th ed., Addison-Wesley, 2010.
8. N. B. Harrison and P. Avgeriou, "How do architecture patterns and tactics interact? A model and annotation," Journal of System

Software, vol. 83, p. 1735–1758, 2010.

