
Discrete Mathematics 86 (1990) 239-254

North-Holland

239

ON MINIMUM DOMINATING SETS WITH MINIMUM
INTERSECTION

Dana L. GRINSTEAD* and Peter J. SLATER* **
Department of Mathematics and Statistics, The University of Alabama in Huntsville, Huntsville,

AL 35899, USA

Received 2 December 1988

In the developing theory of polynomial/linear algorithms for various problems on certain

classes of graphs, most problems considered have involved either finding a single vertex set

with a specified property (such as being a minimum dominating set) or finding a partition of the

vertex set into such sets (for example, a partition into the maximum possible number of

dominating sets). Alternatively, one might be interested in the cardinality of the set or the

partition. In this paper we introduce an intermediate type of problem. Specifically, we ask for

two minimum dominating sets with minimum intersection. We present a linear algorithm for

finding two minimum dominating sets with minimum possible intersection in a tree T, and we

show that simply determining whether or not there exist two disjoint minimum dominating sets _ .
is NP-hard for arbitrary bipartite graphs.

1. Introduction

Given a graph G = (V, E), a vertex subset S E V is independent if no two
vertices in S are adjacent; P(G) will here denote the maximum number of
vertices in an independent set; G is k-colorable if V = VI U V, U * . - U V, where
each K is independent; and the chromatic number x(G) is the minimum k such
that G is k-colorable. Vertex subset D c V is a dominating set if each u E V - D
is adjacent to at least one vertex in D; y(G) here denotes the minimum number
of vertices in a dominating set; G is k-domatic if V can be partitioned into k sets

v,, v,, . . . , V, such that each v is a dominating set for G; and the domatic
number of G is the maximum k such that G is k-domatic. Determining if
/3(G) 3 K is an NP-complete problem even for cubic planar graphs (Garey,
Johnson and Stockmeyer [17]); deciding if G is K-colorable is NP-complete even
for planar graphs of maximum degree four (Karp [23]); deciding if y(G) < K is
NP-complete for planar graphs of maximum degree three (Garey and Johnson
[19]) and for bipartite graphs (Dewdney [16]); and for the domatic number
problem introduced by Cockayne and Hedetniemi [13] determining if the domatic
number of G is at least K is NP-complete (Garey, Johnson and Tarjan [18]).

Much of the extensive amount of research in graph algorithms has been
concerned with developing polynomial time algorithms for NP-complete problems
restricted to appropriate classes of graphs. Indeed, many linear time algorithms

* Research supported in part by the U.S. Office of Naval Research Grant NOOO14-86-K-0745.

** Dr. Slater thanks those at Clemson University for their hospitality during the Fall of 1987 and
gratefully acknowledges support under the U.S. Office of Naval Research Grant NOOO14-86-K-0693.

0012-365X/90/$03.50 @ 1990- Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82315173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

240 D. L. Grinstead, P.J. Slater

have been developed. As examples, we have linear algorithms for minimum
domination in trees (Cockayne, Goodman and Hedetniemi [12]), R-domination
in trees (Slater [32]) and block graphs (Chang and Nemhauser [14]), independent
domination in trees (Beyer, Proskurowski, Hedetniemi and Mitchell [S]),
independent domination and total domination in seriesparallel graphs (Hedet-
niemi, Laskar and Pfaff [28]), domination in seriesparallel graphs (Kikuno,
Yoshida and Kakuda [24]), locating-dominating sets in seriesparallel graphs
(Colbourn, Slater and Stewart [15]), and dominating subforests of a tree (Lawler
and Slater [26]). Many other domination related algorithmic papers have
appeared, as have many related to finding independent sets in graphs. In general,
much work has been done to develop polynomial/linear algorithms for finding a
(minimum/maximum) vertex or edge set S with a specified property. Further,
problems involving partitions of vertex set V have been investigated. For
example, as reported in Johnson [22], Bodlaender [9] has developed a k-chro-
matic number algorithm for partial h-trees that is polynomial for fixed k and h.

In fact, a general theory of linear algorithms is being developed. Especially
notable is the thesis of Wimer [35], with other notable papers including Takam-
izawa, Nishizeki and Saito [33], Bern, Lawler and Wong [6], Arnborg and
Proskurowski [l], and the work of Robertson and Seymour, including [29].

In this paper we introduce an intermediate type of problem. The general type
of problem is defined by asking for more than one vertex set with required
properties, but not necessarily for a partition of V. A general treatment of such
problems is contained in Grinstead [20]. Some previous work on finding a pair of
disjoint dominating sets having some property P appears in Bange, Barkauser
and Slater [2-51. Here we relax the requirement of disjointness and ask for two
minimum dominating sets with minimum possible intersection. We let M,(G)
denote the minimum cardinality of the intersection of two minimum dominating
sets in G. Note that if G has a unique minimum dominating set D, then
M,,(G) = y(G) = ID]. In the next section, we show that simply determining if
there exist two disjoint minimum dominating sets is NP-hard for arbitrary
bipartite graphs. Section 3 contains a linear algorithm for computing M,(T) for a
tree T. The algorithm works by a single pass over the endpoint list of T (de-
scribed in Section 3). Then in Section 4, we note that two such sets can actu-
ally be obtained by an additional backward pass through the endpoint list, and
briefly discuss how the procedure can be extended to cover series-parallel graphs.

2. Determining M,,(G) is NP-hard

Having defined M,,(G) to be the minimum cardinality of the intersection of two
minimum dominating sets in G, we can pose the following decision problem.
Given a graph G and a nonnegative integer K, is M,,(G) c K? In this section we
show that simply determining whether or not M,(G) = 0 is NP-hard for bipartite
graphs G. As was pointed out to us by a referee, our DISJOINT MINIMUM
DOMINATING SETS problem is in NPNP, the class of languages recognizable

On minimum dominating sets with minimum intersections 241

nondeterministically in polynomial time with the aid of an oracle from NP. Given

an oracle to test if y(G) = k, such a nondeterministic algorithm is as follows:

Guess at two sets Dl and 02 and verify that they are disjoint dominating sets.

Using the oracle, verify that each has cardinality y(G).

We next describe a polynomial time reduction from NOT-ALL-EQUAL 3SAT

(see Schaefer [30]) to the problem of determining if M,(G) = 0 for bipartite G,

which implies that this DISJOINT MINIMUM DOMINATING SETS problem is

NP-hard. The NOT-ALL-EQUAL 3SAT problem appears in Garey and Johnson

[19, p. 2591, and [19] contains a complete discussion of the theory of NP-

completeness.

NOT-ALL-EQUAL 3SAT

Instance: Set U of variables, collection C of clauses over U such that each clause

c E C has]c] = 3.

Question: Is there a truth assignment for U such that each clause in C has at least

one true literal and at least one false literal?

DISJOINT MINIMUM DOMINATING SETS

Znstance: Graph G.

Question: Does G have two disjoint minimum dominating sets?

Let U={u1,u2,..., u,}. Given C = ci A c2 A - - - A c, where ci = (sil v si2 v

si3) and each sij is u,, or ii,, for some 1 -- < h s n, we show here how to construct a

graph G (in time polynomial in m) such that U has a NOT-ALL-EQUAL 3SAT

truth assignment for C if and only if G has DISJOINT MINIMUM

DOMINATING SETS. Hence a polynomial time algorithm for the latter decision

problem would imply a polynomial time algorithm for the former known

NP-complete problem. The graph G will contain 3m copies of the graph H in Fig.

1. We need to note that H is bipartite with vertices labelled uij and ii, in the same

set of the bipartition, and the only vertices in H adjacent to other vertices of G

will be uij and Uij (so that the degrees in G satisfy deg,(v) = deg,(w) = 7 and

deg,(x,) = 2 for 1 c i c 14). Each copy of H in G will be called an H-subgraph

with designated vertices Uij and Uij. Letting D be any minimum dominating set for

G, the following observations are easy to verify. Set D must contain at least one

of uij and ii, (consider xi, x2, x3); ID n V(H)1 2 3; and if ID f~ V(H)1 = 3 then

D fl V(H) is {v, W, Uij}, {v, W, tiij}, {Uij, W, ~14) or {iiij, V, ~13). In particular, if

G has two disjoint minimum dominating sets, then one contains {uij, w, xi4} and

the other contains {iiij, V, x13}.

For each clause cj = (sir v si2 v si3) we construct a graph Gj on 58 vertices like

the one illustrated in Fig. 2 as fOllOWS. SUppOSe Sii = u, or &, Si2 = &, or iib, and

si3 = u, or iZ,. Let Gi contain three copies of H with designated vertices Uio and

Uia, @, and i&b, and uic and iii,. Each of cli and c2i is connected to uia if sil = u,, to

tij, if Sil = Ga, t0 Uib if Si2 = ub, t0 cib if Si2 = iib, t0 Uic if Si3 = U,, and t0 ii, if

242 D. L. Grinstead, P.J. Slater

Xl x2 x3 x4 x5 X6 x7 X8 x9 x10 x11 x1.2

Fig. 1. A ‘building block’ H for graph G.

si3 = U,. Each of cji and Cdi is connected to the three designated vertices not
adjacent to cli and c2i.

Let G be the graph containing disjoint copies of G1, G,, . . . , G,,, to which we
add the following vertices and edges. For each occurrence of a uh or tii, with
1 c h s n in distinct clauses ci and ci add four vertices of degree two as follows.
Assume Sir iS uh or ti,, and assume sir is uh or tih where 1 c i <j S m and
1 c r, t S 3. Let two of the four vertices be adjacent to iiih and to ujh, and let the
other two be adjacent to Uih and to fijh. The graph G is illustrated in Fig. 3 for
C=(U*VU2VUg)A(U1V52VU4)h(U2VUgVU5).

Note that G contains 58m vertices in IJE~ Gi. Further, each Uij or ii, is adjacent
to at most 2(m - 1) vertices in G - Uzl Gi, and so there are at most 6m2 + 52m
vertices in G, and G can be constructed from C in time polynomial in m.

Theorem. Graph G has two DISJOINT MINIMUM DOMINATING SETS (that
is, M,(G) = 0) if and only if U has a NOT-ALL-EQUAL 3SAT truth assignment
for C.

Proof. First, assume there is a NOT-ALL-EQUAL 3SAT truth assignment for

"i3 ;
i9

cli =2i c3i c4i

Fig. 2. A larger ‘building block’ Gi for G for Ci = (hg v u6 v ti,).

On minimum dominating sets with minimum intersections 243

Fig. 3. Graph G for C = (ul v I+ v I+) A (ti, v tiz v ~7,) A (u2 v u3 v u5).

C. Let Sl consist of those ui in U that receive the value true and S2 = U - Sl.
Construct two vertex subsets Dl and 02 of V(G) as follows. For each uji in G if
ui E Sl then place uij and the corresponding w and x14 of its building block H (as
in Fig. 1) in Dl and place ii, and the corresponding u and x13 in 02, and if
Uj E S2 then place Uij, w and x14 in 02 and ii,, u and x13 in Dl. For example, if
C = (ur v u2 v uJ) A (r& v U2 v ti4) A (u2 v u3 v z+) then one NOT-ALL-EQUAL
3SAT truth assignment is to let Sl = {ur, u4, us}, and the nine darkened Uij and

244 D.L. Grinstead, P.J. Slater

zYiji in Fig. 3 are placed in Dl (with two additional vertices from each H) with the
nine undarkened uii and tiii going into 02.

As previously noted, every minimum dominating set for G must contain at least
three or more vertices from each H. Thus y(G) 3 9m. Clearly Dl flD2 = 0 and
ID11 = 1D21= 9m, and it is straighforward to see that each of Dl and 02
dominates G. Hence, G has two DISJOINT MINIMUM DOMINATING SETS.

Conversely, assume G has two DISJOINT MINIMUM DOMINATING SETS,
say Dl and 02. As noted, for each Uij either Dl or 02 contains uij and two
specified vertices from its H-subgraph, and the other contains ii, and two
specified vertices from this same H subgraph. Suppose uik and ujk are vertices of
G with i #j (for example, u12 and ~32 in Fig. 3). TO see that Uik and iijk cannot
both be in Dl or both be in 02, note that if Uik and ujk are in Dl (and so Uik and
ujk are in D2), then Dl must also contain the two vertices x and y of degree two
adjacent to & and ujk (for example, vertices x and y in Fig. 3). Recognizing that
one of the two specified vertices in Dl from the H-subgraph of ujk dominates ujk,
the set Dl -x - y + ii& would also be a dominating set, contradicting the
minimality of Dl. COnSeqUently, if uik and ujk are VertiCeS of G with i #i then
both are in Dl or both are in 02. Therefore, the following is a well defined truth
assignment for D. For each uk E D find a Uik in G, and let uk be true if Ujk E Dl
and false if Uik E 02.

It remains only to show that each clause ci has at least one true (respectively,
false) literal. If not, we can assume clause ci has three true literals. Then each of
cgi and cqi is adjacent to three vertices in 02, so c3i and cqi are in Dl. Letting x be
one of the vertices adjacent to c3i and cqi, we see that Dl - cji - c4j +x is a
dominating set, contradicting the minimality of Dl. Using Fig. 3 as an example, if
ui and u2 and u3 are true then {Ui, ii2, ii3} c 02 and {uil, u12, u13, c31, c4i} c
Dl, and Dl - c3i - c41 + Ui3 would be a dominating set strictly smaller than
dominating set Dl. It follows that U has a NOT-ALL-EQUAL 3SAT truth
assignment for C. El

3. A linear algorithm for determining My(T)

In this section we will present a linear algorithm for determining M,,(T), the
minimum cardinality of the intersection of two minimum dominating sets of tree
T. Section 4 will note how an algorithm for finding two minimum dominating sets
whose intersection has cardinality M,(T) can be derived.

Without loss of generality, it will be assumed that all trees are rooted at some
vertex which can be chosen arbitrarily. This will enable us to use recursive
representations of trees. Given a rooted tree T, we will represent T by the
number of nodes in T, say n, an endnode list EL = (vi, u2, . . . , v,), and an
associated parent list PA = (ui, u2, . . . , u,-1). The endnode list is any enumera-
tion of the nodes of T in which each node precedes its parent. In the associated

On minimum dominating sets with minimum intersections 245

Fig.4. AtreewithEL=(5,6,11,7,8,9,10,2,3,4,1)andPA=(2,3,7,3,3,4,4,1,1,1).

parent list, each ui is the parent of vi in T. Note that PA has length n - 1 and not
n, since the root 21, has no parent. For example, the tree of Fig. 4 may be
represented by IZ = 11, EL=(5,6,11,7,8,9,10,2,3,4,1), and PA=

(2,3,7,3,3,4,4,1,1,1).
These lists can be constructed for a tree of 12 nodes in time O(n) (see e.g.

[25,34]), so requiring them does not increase the order of execution time of our
algorithm.

We will also make use of the following notation. As the vertex v is reached in a
left-to-right processing of the endnode list, let TV be the subtree induced by v and
all of its descendants. (Note that all of the descendants of v have already been
processed since they precede v in EL.) Let u be the parent of v (which is
determined using PA) and let Tu’ be the subtree induced by U, the children of u
that precede v in EL, and the descendants of all such children. Finally, let TM be
composed of Tu’, TV and the edge (u, v). Note that Tu does not necessarily
contain all of the descendants of u since there may be children of u which appear
after v in EL. See Fig. 5.

The first three parameters we are interested in will be used to ensure that we

Fig. 5. Illustration of TV, Tu, and Tu’ notation.

246 D. L. Grinstead. P.J. Slater

get minimum dominating sets. Note that y(T) can be achieved without the use of
these parameters, but we employ them here because they will be used in
evaluating the minimum size of the intersection of two MDS’s later in this
section. For a vertex u E V(T), define

y,,(Tu) = MIN{JDI: u ED, D dominates Tu},

yn(7’u) = MIN{IDI: u 4 D, D dominates Tu},

y,(Tu) = MIN{IDI: u $ D, D dominates Tu - u}.

That is, let y,,(Tu) be the minimum order of a dominating set of Tu which
contains U, let y,(Tu) be the minimum order of a dominating set of Tu which
does not contain U, and let y,(Tu) be the minimum order of a dominating set of
Tu - u which does not contain u. This third parameter will be useful when u is to
be dominated by its parent or by an as yet unprocessed child.

Note that, since any dominating set of Tu that does not contain u is also a
dominating set of Tu - u, we have that y,(Tu) S yn(Tu) for all u E V(T). Also
y(Tu), the minimum number of vertices in a dominating set of Tu, can be
expressed by

Y&Q) = MIN{Y,(W YJTu)). (1)

Now, if D is a minimum dominating set of Tu and if u E D then we may write
D = U U V where V is a minimum dominating set of Tu’, u E U, and V is a
smallest possible vertex subset of TV that dominates TV - v (and may or may not
dominate v, since v is dominated by u). The vertex v may or may not be an
element of V. Thus y,,(Tu) = y,(Tu’) + MIN{y,,(Tv), yn(Tv), yrs(Tv)}. But since
yfi(Tv) c yn(TV) we may write this recursive relation as

Y,(W = Y@‘) + MIN{YJW y,(Tu)).

Similarly it is straightforward to derive the following:

(2)

and
y,(Tu) = MIN{y,(Tu’) + r(Tu)t YOU’) + Y,(W) (3)

y,(Tu) = y,(Tu’) + y(Tv). (4)

To see how these parameters should be initialized, consider a subtree consisting
of a single vertex v. Then the minimum number of vertices needed to dominate
the subtree using v is one; it is not possible to dominate the subtree without using
v; and zero vertices are required to dominate the subtree minus v. Thus for any
endpoint vi of a tree T we may initialize y,(Tvi) = 1, y”(Tv,) = 00, and
y,(TvJ = 0. And f or any internal node ui of T we may initialize y,,(Tui) = 1,
yn(Tui) = 00, and y<(TuJ) = 0. After this initialization we may proceed through the
endnode list evaluating equations (1) through (4) for Ui where ui is the parent of
the current endnode list entry Vi. Once v, is reached, we can determine

y(T) = y(Tu,) = MIN{Y,WJ,), Y&W).
For example, y(T) = 4 for the tree of Fig. 6.

On minimum dominating sets with minimum intersections 247

Table 1

ELu Y,WJ) Y,W) Y,W)

5

6
11
7
8
9

10
2
3
4
1

1
1
1
1
1
1
1
1
2
1
5

00

m

m

1
cc
m
co

1
3
2
4

0
0
0
1
0
0
0
1
3
2
4

Fig. 6. A tree with y(T) = 4.

While the three y-type parameters were used for maintaining information
about any one dominating set, we will now introduce six more parameters for
maintaining information relating two dominating sets. More specifically, they are
used for maintaining the minimum order of the intersection of two minimum
dominating sets with certain additional properties. For u E V(T), define

A,,,,(E) = MIN{ID, n&l: u E Di, u E 4, D1 and D2 each

dominate Tu, JDi(= y,(Tu)};

A,,(Tu) = MIN{IQ tl &I: u $ Di, Di dominates Tu,

lDil= ~n(Tu)l;

il,,(Tu) = MIN{ IDi n&l: u 4 Dip Di dominates TU - u,

lDil= YE(T

&(Tu) = MIN{IDi n &I: u ED,, u 4 4, Di dominates Tu,

l&l = Y,(Tu)> l&l = Y,(Tu)J;

&,,(Tu) = MIN{lDi n 41: u E D,, u 4 &, D, dominates Tu,

IL&I = y,(Tu), D2 dominates Tu - u, ID21 = yE(Tu)}

A,,,(Tu) = MIN{ IDi n&l: u 4 Dip Di dominates TM, D2

dominates Tu -u, IDI1 = y,(Tu), l&l = yE(Tu)}.

That is, A,,,,(Tu) is the minimum cardinality of the intersection of two MDS’s of
Tu, each of which contains u ; A,,(Tu) is the minimum cardinality of the
intersection of two MDS’s of Tu, neither of which contains u; A,, is the minimum
cardinality of the intersection of two MDS’s of Tu - u, neither of which contains
u; AY,, is the minimum cardinality of the intersection of two MDS’s of Tu, one
containing u and the other not containing u; A,,,, is the minimum cardinality of the
intersection of an MDS of Tu containing u and an MDS of Tu - u not containing
u; and A,,,? is the minimum cardinality of the intersection of an MDS of Tu and an
MDS of Tu - u, neither of which contains u.

248 D.L. Grinstead, P.J. Slater

To determine the initial conditions for the A parameters, again consider a
subtree consisting only of the vertex u. Any MDS of the subtree consists of
exactly the vertex u, so &,Y(Tv) = 1. It is not possible to dominate the subtree
without using ~1, so A,,(Tu) = 5,,(C) = &,(Tv) = a. No vertices are necessary to
dominate TV - v, so h,,(Tv) = 0. Since {v} is a MDS of TV and 0 is a MDS of
TV - v, A,,,(Tv) = 0. We therefore initialize all endpoints of a tree T in this
manner. Also, for internal nodes U, il,,(Tu’) = 1, A,,(Tu’) = &(Tu’) =

A,,(Tu’) = 03, and h,,(Tu’) = A,,(Tu’) = 0.

After this initialization, proceed through EL starting with vi and evaluating
each of equations (5) through (10) for Ui where Vi is the current element of EL.
Once the vertex v, is reached we are ready to determine M,. First, since

&(Tu,)> &,i(Tu,), and &&TV,) consider sets which are only required to
dominate TV, - v,, they are not used in choosing MY. Second, we must insure
that only minimum dominating sets of T = TV are considered, so if y,,(Tv,) <

y,(Tv,) then M,(T) = &,,,(Tv,); if y,,(Tv,) > y,(Tv,) then M,,(T) = A,,(Tv,); and

if y,iTv,) = ynVvJ then i$G) = min{&(Tv,), ~&W, L(Tv,)).
The y-recurrences previously given as formulae (2), (3) and (4) appear in the

following algorithm marked as lines (2), (3) and (4). The A-recurrences appear in
lines marked (5)-(10).

Verification of these recurrences is somewhat straightforward. We explain only
one of these, namely &,, (line (8) in the algorithm). In the algorithm, we write

&(u) for &,(Tu), m(u) for y,,(Tu), etc.
The parameter A,,,(u) represents the minimum cardinality of the intersection of

y,,-set of Tu (that is, a set D1 which dominates Tu, contains u, and has cardinality
y,(Tu)) and a y,,-set of Tu (that is, a set D2 which dominates Tu, does not
contain u, and has cardinality yn(Tu)). To formulate the appropriate recurrences,
we consider the intersection of such sets D1 and D2 with the vertices of TV,

specifically with the vertex v and its immediate children.
This leads to six possibilities:
(1) We first suppose v E D1 and v E D2. This can only happen if y,(Tu) =

y,,(Tu’) + y,,(Tv) and y,(Tu) = y,(Tu’) + y,(Tv). In such a case, A,,,(Tu) s

A,,%(Tu’) + AY,,(TV). Thus in the algorithm, if the two y conditions are met we set
a variable Dl equal to &,(Tv) + &(Tu’). If not both y conditions are met then
this case must be excluded, so we set Dl : = 03. Variables 02 through 06 are
similarly defined in cases (2) through (6) below. Noting that 03 always equals ~0,
we then set il,,,(Tu) := MIN(D1, 02, 04, D5, 06) in line (8) of the algorithm.

(2) Suppose v is not an element of D1 or D2 but v is dominated by a vertex in
each of D, and D2 other than by u. In this case, 02 equals A&TV) + &(Tu’) or
02 equals m.

(3) Suppose v is not an element of D1 or D2 and is not necessarily dominated
by a vertex other than u in each set. These conditions will not quarantee that v is
dominated, thus 03 would always be infinity.

(4) Suppose v is an element of D, and v is not an element of D2 but a child of v

On minimum dominating sets with minimum intersections 249

is an element of D2. In this case, 04 = A,,(Tu’) + &(I%) or 04 = ~0. (If the role
of v is reversed in the two sets, the situation will be subsumed in case (5).)

(5) Suppose r~ is not an element of D, (and neither are any of its children) and
u is an element of 4. In this case, D5 = &(7’u’) + &,(Tv) or D5 = m. (If the
role of v is reversed in the two sets, the situation is excluded since the conditions
will not guarantee that v is dominated.)

(6) Suppose u is not an element of D1 or D2 and that v is not necessarily
dominated by a vertex other than u in D,. In this case, 06 = A,,(Tu) + il,,(Tu’)
or 06 = 03. (If the role of u is reversed in the two sets, the situation is excluded
since the conditions will not quarantee that v is dominated in D,.)

The other 3, recurrences can be similarly justified and the algorithm follows.

Algorithm MGAMMA (T) (* for finding the minimum cardinality of the
intersection of two minimum dominating sets
for a tree *)

For i: =l to n do

y,(i) := 1; m(i) := cQ; YE(i) := 0; y(i) := 1;
&(i) := 1; h,,(i) := 00; k,,(i) := 0;

S,(i) : = 03; A,,(i) : = 0; n,,(i) := m;

For i: =l to n do

rY New := y,(PA(i)) + MIN(y,@L(i)), y&L(i)))

Y” New : = MIN(y#A(i)) + y(EL(i)), y,#‘A(i)) + y,(EL(i)))
yE New := y,(PA(i)) + y(EL(i))

(2)
(3)
(4)

(* COMPUTING A,,,, *)
If y,, New = y,(PA(i)) + y,(EL(i))

then Al := A,(EL(i))
elseAl:=w

If y,, New = y,(PA(i)) + y,(EL(i))
then A3 : = &,(EL(i))
elseA3:=~

If rY New = y,(PA(i)) + y,@-(i)) and yY New = y,(PA(i)) + y,(EL(i))
then A5 : = &(EL(i))
elseA5:=m

&(PA(i)) : = &(PA(i)) + MIN(A1, A3, A5)

(* COMPUTING A,,, *)
If y,, New = y,(PA(i)) + y,(EL(i))

then Bl : = &&PA(i)) + &(EL(i))
else Bl:= co

(5)

250 D.L. Grinstead, P.J. Slater

If yn New = yJPA(i)) + yn(EL(i))

then B2 : = A,,(PA(i)) + &,(EL(i))

else B2:= 00

If y,, New = y,(PA(i)) + y,(EL(i)) and yn New = y,,(PA(i)) + m(EL(i))

then B4 := &&PA(i)) + &(EL(i))

else B4:=@3

A&PA(i)) := MIN(B1, B2, 84) (6)

(* COMPUTING ilAA *)

If yli New = yYA(PA(i)) + y,(EL(i))
then Cl : = &,(EL(i))

else Cl:=w

If yr7 New = yE(PA(i)) + y,JEL(i))

then C2 := n&EL(i))

else C2:= m

If yfi New = y,(PA(i)) + y,(EL(i)) and yti New = y,(PA(i)) + y,(EL(i))
then C4 : = &(EL(i))

else C4:= 03

&&PA(i)) := &&PA(i)) + MIN(C1, C2, C4) (7)

(* COMPUTING A,,,, *)

If yY New = y,(PA(i)) + y,(EL(i)) and A, New = y,(PA(i)) + y,,(EL(i))
then Dl := &(EL(i)) t- A&PA(i))

else Dl:=m

If yY New = y,(PA(i)) + y,,(EL(i)) and y,, New = m(PA(i)) + m(EL(i))
then 02 := &,(EL(i)) + &,(PA(i))
else D2:= 00

If yY New = y,(PA(i)) + y,(EL(i)) and yn New = y,JPA(i)) + yJEL(i))
then 04 := &(PA(i)) + Sn(EL(i))
else D4:=m

If yY New = y,(PA(i)) + y,(EL(i)) and yn New = y,(PA(i)) + y,(EL(i))
then D5 : = &(PA(i)) + &(EL(i))
else D5:=m

If yY New = y,(PA(i)) + y,(EL(i)) and y,, New = m(PA(i)) + yn(EL(i))
then 06 : = A,,(EL(i)) + h,,(PA(i))
else D6:= a3
&(PA(i)) := MIN(D1, 02, 04, D5, 06)

(* COMPUTING A,, *)
If yY New = y,(PA(i)) + y,(EL(i)) and yr? New = y,(PA(i)) + y,(EL(i))

then El := A,,(EL(i))
else El:=m

(8)

On minimum dominating sets with minimum intersections 251

If y,, New = y,(PA(i)) + y,,(EL(i)) and yfi New = y,(PA(i)) + y”(EL(i))
then E2 := &,(EL(i))
ELSE E2:=03

If yn New = y,(PA(i)) + y,(EL(i)) and yls New = y,(PA(i)) + m(EL(i))
then E4 : = &,,(EL(i))
else E4:= CC

If yY New = y,(PA(i)) + y,(EL(i)) and yfi New = y,(PA(i)) + y,(EL(i))
then E5 : = A&EL(i))
else E5:=03

If yY New = y,(PA(i)) + y,(EL(i)) and yS New = y,(PA(i)) + y,JEL(i))
then E6 : = A,,(EL(i))
else E6:=m

A&PA(i)) = S,(PA(i)) + MIN(E1, E2, E4, E5, E6) (9)

(* COMPUTING jlnr? *)
If y,, New = yJPA(i)) + y,,(EL(i)) and yI? New = y,(PA(i)) + y,(EL(i))

then Fl : = il,,(EL(i)) + A,,(PA(i))
else Fl :=m

If yn New = y,(PA(i)) + y,,(EL(i)) and yfi New = y,(PA(i)) + yJEL(i))
then F2 := A,,(EL(i)) + A,,(PA(i))

else F2:=m

If y,, New = yfi(PA(i)) + y,,(EL(i)) and yi New = y,(PA(i)) + y,,(EL(i))

then F4 := &,(EL(i)) + &&PA(i))

else F4:=w

If y,, New = yJPA(i)) + y”(EL(i)) and yti New = y,(PA(i)) + y,(EL(i))
then F4B : = &(EL(i)) + &&PA(i))
else F4B : = 03
A,,(PA(i)) := MIN(F1, F2, F4, F4B)

y,(PA(i)) : = y,New;
y,,(PA(i)) : = y,New;
yti(PA(i)) : = y,New;

{end for loop}

(* CONCLUDING *)

Y := MIN(y,(EL(n)), m(EL(n)));

If y,(EL(n)) < yn(EL(n))
then My := &(EL(n));

u y,(EL(n)) ’ m(EL(n))
then My := n&EL(n));

If y,(EL(n)) = yn(EL(n))
then I$, := min{&,(EL(n)), &(EL(n)), n&EL(n))};

(10)

252 D.L. Grinstead, P.J. Slater

Table 2. Parameters I for tree of Fig. 6 showing that M,,(T) = MIN{3,2,2} = 2

ELu +,y(Tv) &,(Tu) A,(TV) &m(Tu) SATv) UTu)

5 1 m 0 a, 0 m
6 1 m 0 m 0 m

11 1 cc 0 0 m

7 1 1 1 ; 0 1
8 1 m 0 cc 0 cc
9 1 m 0 cc 0 m

10 1 m 0 0 m

2 1 1 1 ; 0 1
3 1 2 2 0 0 2
4 1 2 2 0 0 2
1 3 2 2 2 2 2

For the tree of Fig.
and hence M,,(T) = 2.

4. Further extensions

6, Table 2 represents the values of all of the A parameters

The algorithm presented in Section 3 determines the parameter M,(T), the
minimum cardinality of the intersection of two MDS’s of tree T. Two minimum
dominating sets whose intersection has such cardinality can be obtained by one
additional scan (this time right-to-left rather than left-to-right) of the endpoint
list. (See Grinstead [20].) We will not fully present the procedure here, but only
mention that in order to find the sets some additional information is collected in
the first scan. For example, in the right-to-left scan of the endpoint list, the root
of the tree is the first to be processed. As each vertex is reached, we will decide
whether or not to use the vertex in Dl (the first MDS) and whether or not to use
it in 02 (the second MDS). If, in either set, it is ever decided not to use a vertex
which has not already been dominated by its parent, we must have some
information about its children as to which one will ‘cost’ the least in terms of the
size of the MDS and in terms of the cardinality of the intersection of Dl and 02.

A more complicated, but still linear, algorithm for finding the minimum
cardinality of the intersection of two minimum dominating sets in a series-parallel
graph will appear in Grinstead [20]. Since series parallel graphs have two
terminals, this algorithm must consider nine y-type parameters (rather than three
for the tree case) and forty-five A-type parameters (as opposed to six for the tree
case). Since there are three basic ways of connecting two series-parallel subgraphs,
each of the nine y-type and forty-five A-type parameters must have three subcases.

Finally, as previously noted, we view this minimum intersection MDS problem
as a prototype of many possible problems involving such sets as dominating
and/or independent vertex sets, with details concerning various problems to
appear in Grinstead [20].

On minimum dominating sets with minimum intersections 253

5. Addendum

As indicated in the introduction, much work is being done in the developing
theory of polynomial/linear algorithms for graph theoretic problems. Some quite
recent work is concerned with predicting the nature of problems for which there
will exist linear time algorithms on recursive families of graphs. Such work
includes that of Bern, Lawler and Wong [7], Bodlaender [lo], Borie, Parker and
Tovey [ll], Mahajan and Peters [27], and Seese [31].

We also note that results on M,(G) for series-parallel graphs appear in
Grinstead and Slater [21].

References

[l] S. Arnborg and A. Proskurowski, Linear-time algorithms for NP-hard problems restricted to

partial k-trees, Report No. TRITA-NA-8404, The Royal Insitute of Technology, Sweden, 1984.

[2] D.W. Bange, A.E. Barkauskas and P.J. Slater, A constructive characterization of trees with two

disjoint minimum dominating sets, in: Proceedings Ninth S.E. Conference on Combinatorics,

Graph Theory and Computing (Utilitas Mathematics, Winnipeg, 1978) 101-112.

[3] D.W. Bange, A.E. Barkauskas and P.J. Slater, Disjoint dominating sets in trees, Sandia

Laboratories Report, SAND 7810875, 1978.

[4] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: R.D.

Ringeisen, and F.S. Roberts, eds., Applications of Discrete Mathematics (SIAM, Philadelphia,

PA, 1988) 189-199.
[5] D.W. Bange, A.E. Barkauskas and P.J. Slater, Disjoint domination algorithms for trees,

presented at the First Clemson University/ONR Mini-Conference on Discrete Mathematics,

October, 1986.
[6] M.W. Bern, E.L. Lawler and A.L. Wong, Why certain subgraph computations require only

linear time, in: Proceedings 26th Annual Symposium on the Foundations of Computer Science

(Portland, OR, 1985) 117-125.

[7] M.W. Bern, E.L. Lawler and A.L. Wong, Linear time computation of optimal subgraphs of

decomposable graphs, J. Algorithms 8 (1987) 216-235.

[8] T. Beyer, Proskurowski, S. Hedetniemi and S. Mitchell, Independent domination in trees, in:

Proceedings Eight S.E. Conference on Combinatorics, Graph Theory and Computing (Utilitas

Mathematics, Winnipeg, 1977) 231-328.

[9] H.L. Bodlaender, Polynomial algorithms for chromatic index and graph isomorphism on partial

k-trees, Tech. Rept. RUU-CS-87-17, Dept. of Computer Science, Univ. of Utrecht, Nether-

lands, October 1987.

[lo] H.L. Bodlaender, Dynamic programming on graphs with bounded tree-width, Ph.D. Thesis,

MIT/LCS/TR-394, Massachusetts Institute of Technology, June 1987; and Tech. Rept.
RUU-CS-87-22, Dept. Computer Science, Univ. Utrecht, Netherlands, November 1987.

[ll] R.B. Borie, R. Gary Parker and Craig A. Tovey, Automatic generation of linear algorithms

from predicate calculus descriptions of problems on recursively constructed graph families,

preprint, Georgia Institute of Technology, July 1988.

[12] E.J. Cockayne, S. Goodman and S.T. Hedetniemi, A linear algorithm for the domination

number of a tree, Inform. Process. Lett. 4 (1975) 41-44.

[13] E.J. Cockayne and S.T. Hedetniemi, Optimal domination in graphs, IEEE Trans. Circuits and
Systems CAS-22 (1975) 855-857.

[14] G.J. Chang and G.L. Nemhauser, R-domination on block graphs, Oper. Res. Lett. 1 (1982)
214-218.

[15] C.J. Colbourn, P.J. Slater and L.K. Stewart, Locating-dominating sets in seriesparallel

254 D.L. Grinstead, P.J. Slater

networks, Proceedings 16th Annual Conference on Numerical Mathematics and Computing,

Winnipeg, 1986, Congr. Numer. 56 (1987) 135-162.

[16] A.K. Dewdney, Fast Turing reductions between problems in NP, Chapter 4: Reductions

between NP-complete problems, Report #71, Dept. Computer Science, Univ. Western Ontario,

1981.

[17] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems,

Theoret. Comput. Sci. 1 (1976) 237-267.

[18] M.R. Garey, D.S. Johnson and R.E. Tarjan, 1976, unpublished.

[19] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness (Freeman, New York, 1979).

(201 D.L. Grinstead, Algoritmic templates and multiset problems in graphs, Ph.D Thesis, Univ. of

Alabama in Huntsville, 1989.

(211 D.L. Grinstead and P.J. Slater, On the minimum intersection of minimum dominating sets in

seris-parallel graphs, 1988, submitted for publication.

[22] D.S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms 6 (1985)

434-451.

[23] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher,

eds, Complexity of Computer Computations (Plenum, New York, 1972) 85-103.

[24] T. Kikuno, N. Yoshida and Y. Kakuda, A linear algorithm for the domination number of a

series-parallel graph, Discrete Appl. Math. 5 (1983) 299-311.

[25] D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms (Addison-

Wesley, Reading, MA, 1968) 334-338.

(261 E.L. Lawler and P.J. Slater, A linear time algorithm for finding an optimal dominating subforest
of a tree, in: Graph Theory with Applications to Algorithms and Computer Science, Kalamazoo,

MI, 1984 (Wiley, New York, 1985) 501-506.

[27] S. Mahajan and J.G. Peters, Algorithms for regular properties in recursive graphs, in:

Twenty-fifth Annual Allerton Conference on Communications, Control, and Computing, 1987,

14-23.
[28] J. Pfaff, R. Laskar and S.T. Hedetniemi, Linear algorithms for independent domination and

total domination in seriesparallel graphs, Congr. Numer. 45 (1985) 71-82.

[29] N. Robertson and P.D. Seymour, Graph minors II: Algorithmic aspects of tree-width, J.

Algorithms 7 (1986) 309322.

[30] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings 10th Annual ACM

Synposium on Theory of Computing (Association for Computing Machinery, New York, 1978)

216-226.

[31] D. Seese, Tree-partite graphs and the complexity of algorithms, Tech. Rept. P-MATH-08/86,
Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut fur Mathematik, Berlin, 1986.

[32] P.J. Slater, R-domination in graphs, J. Assoc. Comput. Mach. 23 (1976) 446-450.

1331 K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combinatorial problems

on series-parallel graphs, J. Assoc. Comput. Mach. 29 (1982) 623-641.

[34] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972)

146-160.
[35] T.V. Wimer, Linear algorithms on k-terminal graphs, Ph.D. Dissertation, Computer Science

Department, Clemson University, 1987.

