Ballots and Plane Trees

John Riordan
The Rockefeller University, New York, New York 10021

Received August 6, 1969

The correspondence of certain plane trees and binary sequences reported by D. A. Klarner in [1], and a ballot interpretation of the latter, are used to make an independent evaluation of the number of classes of isomorphic, $(k+1)$ valent, planted plane trees with $k n+2$ points. This provides an interesting multivariable identity for b:nomial coefficients.

1. The binary sequences in [1] are those sequences ($b_{1}, \ldots, b_{k n-k}$) with $b_{i}=0$ or 1 , such that $b_{1}+\cdots+b_{j k} \geqslant j, j=1(1) \frac{n-2}{n-2}$ and $b_{1}+\cdots+b_{k n-k}=n-1$. Write

$$
c_{j}=b_{j k-k+1}+\cdots+b_{j k}, j=1(1) \overline{n-1}
$$

and consider the sequences $\left(c_{1}, c_{2}, \ldots, c_{n-1}\right)$ such that

$$
c_{1}+\cdots+c_{j} \geqslant j, j=1(1) \overline{n-2} \quad \text { and } \quad c_{1}+\cdots+c_{n-1}=n-1 .
$$

Each element of the sequence is of course either zero or a positive integer. If any c_{i} has the value i, i of k binary elements are 1 and their positions may be chosen in $\binom{k}{i}$ ways. Each sequence $\left(c_{1}, \ldots, c_{n-1}\right)$ replaces $\binom{k}{c_{1}} \cdots\binom{k}{c_{n}}$ binary sequences and the total number of binary sequences is the weighted sum of, for brevity, c-sequences, with the weight of a c-sequence the number of binary sequences it replaces. To illustrate, for $n=4$, the c-sequences and their weights are

c_{1}	c_{2}	c_{3}	Weights
3	0	0	$\binom{(k)}{3}$
2	1	0	$\binom{k}{2}\binom{k}{1}$
2	0	1	$\binom{k}{2}\binom{k}{1}$
1	2	0	$\binom{k}{2}\binom{k}{k}$
1	1	1	k^{3}

The number of binary sequences for $n=4$ is

$$
\binom{k}{3}+3\binom{k}{1}\binom{k}{2}+k^{3}=\frac{1}{4}\binom{4 k}{3} .
$$

Interpreting c_{j} as the content of (number of objects contained in) cell j, the sequence $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is a distribution of n like objects into n cells arrayed on a line, such that the total content of cells 1 to j is at least j. As noticed in my paper [3], this distribution problem is identical with the classification of weak lead ballot lattice paths ending on the diagonal by their horizontal segment sequence. If $D\left(n ; k_{1}, \ldots, k_{n}\right)$ is the number of such paths ending at (n, n) with k_{i} horizontal segments of length i, so that $n=k_{1}+2 k_{2}+\cdots+n k_{n}$, the enumerator of paths by horizontal segment specification is defined by

$$
D_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum D\left(n ; k_{1}, \ldots, k_{n}\right) x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

with summation over all partitions $1^{k_{1} \cdots n^{k_{n}}}$ of n. The evaluation of D_{n} given, a little disguised, in [3] is with $k=k_{1}+k_{2}+\cdots k_{n}$, $n=k_{1}+\cdots+n k_{n}$.

$$
\begin{equation*}
D_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum \frac{1}{n+1}\binom{n+1}{k} \frac{k!}{k_{1}!\cdots k_{n}!} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}} \tag{1}
\end{equation*}
$$

In this notation, the number of binary sequences is $D_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)$, with $x_{i}=\binom{k}{i}$ and since this number is also $(1 / n)\binom{k n}{n-1}$, the following identity appears

$$
\begin{equation*}
\frac{1}{n+1}\binom{k n+k}{n}=\sum \frac{1}{n+1}\binom{n+1}{k} \frac{k!}{k_{1}!\cdots k_{n}!}\binom{k}{1}^{k_{1}} \cdots\binom{k}{n}^{k_{n}} . \tag{2}
\end{equation*}
$$

2. To determine* the enumerator $D_{n} \equiv D_{n}\left(x_{1}, \ldots, x_{n}\right)$, classify the paths by the first contact with the diagonal. Write $D_{n}{ }^{*} \equiv D_{n}{ }^{*}\left(x_{1}, \ldots, x_{n}\right)$ for the enumerator of paths with first diagonal contact at lattice point (n, n), the strict lead ballots. Then

$$
\begin{equation*}
D_{n}=\sum_{k=1}^{n} D_{k}^{*} D_{n-k}\left(D_{0}=1\right) \tag{3}
\end{equation*}
$$

[^0]To determine $D_{n}{ }^{*}$, classify the weak lead ballots by length of initial segment, that is, by

$$
D_{n}=\sum_{k=1}^{n} x_{k} D(n ; k)
$$

Then, by the obvious relation of weak lead and strict lead ballots,

$$
\begin{equation*}
D_{n}^{*}=\sum_{k=1}^{n+1} x_{k+1} D(n-1, k), \quad n=2,3, \ldots \tag{4}
\end{equation*}
$$

while $D_{1}{ }^{*}=x_{1}=D_{1}$. By (3) and (4)

$$
\begin{align*}
D_{n}= & x_{1} D_{n-1}+x_{2} \sum_{j=1}^{n-1} D(j, 1) D_{n-j-1}+\cdots+x_{k+1} \sum_{j=k}^{n-1} D(j, k) D_{n-j-1} \\
& +\cdots+x_{n} D(n-1, n-1) \tag{5}
\end{align*}
$$

Hence $D(n ; 1)=D_{n-1}, \quad D(n ; 2)=D_{n-2}+D_{n-3} D_{1}+\cdots+D_{0} D_{n-2}=$ $D_{n-2}(2)$, the convolution of the sequence $\left(D_{0}, \ldots, D_{n-2}\right)$ with itself. By induction it is found that $D(n ; k)=D_{n-k}(k)$, a k-th convolution. Thus (5) implies

$$
\begin{equation*}
D_{n}=\sum_{k=1}^{n} x_{k} D_{n-k}(k) \tag{6}
\end{equation*}
$$

and, if $D=D(x, y)=\sum y^{n} D_{n}\left(x_{1}, \ldots, x_{n}\right)$, it follows that

$$
\begin{equation*}
D=1+x_{1} y D+x_{2}(y D)^{2}+\cdots+x_{k}(y D)^{k}+\cdots \tag{7}
\end{equation*}
$$

which effectively determines the D_{k}.
3. To find Eq. (1), write $\delta=y D$, so that (7) may be rewritten

$$
\begin{align*}
y & =\delta\left(1+x_{1} \delta+x_{2} \delta^{2}+\cdots\right)^{-1} \\
& =\delta\left(1-A_{1} \delta-A_{2} \delta^{2} \cdots\right) \tag{8}
\end{align*}
$$

with

$$
A_{n} \equiv A_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum(-1)^{k+1} \frac{k!}{k_{1}!\cdots k_{n}!} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

which follows from the relation of elementary symmetric functions with homogeneous product sums (cf. [4, p. 188]). Since

$$
\delta=y\left(1+D_{1} y+D_{2} y^{2}+\cdots\right)
$$

it follows from the formula for reversion of series ($[4$, p. 149]) that

$$
\begin{equation*}
D_{n}=\sum \frac{1}{n+1}\binom{n \cdot \mid \cdot k}{k} \frac{k!}{k_{1}!\cdots k_{n}!} A_{1}^{k_{1}} \cdots A_{n}^{k_{n}} . \tag{9}
\end{equation*}
$$

Setting $x=x_{1}=x_{2}=\cdots$, and noting that $A_{n}(x)=x(1-x)^{n-1}$,

$$
\begin{align*}
D_{n}(x, \ldots, x)=d_{n}(x) & =\sum_{k=1}^{n} \frac{1}{n+1}\binom{n+k}{k}\binom{n-1}{k-1} x^{k}(1-x)^{n-k} \\
& =(1-x)^{n} H_{n}\left(x(1-x)^{-1}\right), \tag{10}
\end{align*}
$$

with

$$
H_{n}(x)=\sum_{k=1}^{n} \frac{1}{n+1}\binom{n+k}{k}\binom{n-1}{k-1} x^{k} .
$$

From (10) it follows that

$$
d_{n}(x)=\sum \frac{1}{n+1}\binom{n+1}{k}\binom{n-1}{k-1} x^{k},
$$

which is (1) with $x=x_{1}=x_{2}=\cdots$.
4. Returning to plane trees, write $x_{i}=\binom{k}{i}$ in (7) so that

$$
\begin{align*}
D & =1+\binom{k}{1} y D+\cdots+\binom{k}{i}(y D)^{i}+\cdots+\binom{k}{k}(y D)^{k} \\
& =(1+y D)^{k} \tag{11}
\end{align*}
$$

or if $w=1+y D$

$$
\begin{equation*}
1-w+y w^{k}=0, \tag{11a}
\end{equation*}
$$

the solution of which (cf. [2]) is

$$
\begin{equation*}
w=1+y D=1+\sum_{n=1} \frac{1}{n}\binom{k n}{n-1} y^{n}, \tag{12}
\end{equation*}
$$

which proves the identity (2).

References

1. D. A. Klarner, Correspondences between plane trees and binary sequences, J. Combinatorial Theory 9 (1970), 401-411.
2. G. Pólya and G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Springer, Berlin, 1925, Vol. I, Section 3, Problem 211.
3. J. Riordan, Ballots and trees, J. Combinatorial Theory 6 (1969), 408-411.
4. J. Riordan, "Combinatorial Identities," Wiley, New York, 1968.

[^0]: * I owe the form of the derivation below to correspondence with Colin Mallows, my former colleague at Bell Telephone Laboratories, on what seemed at first, to both of us, a non-ballot problem.

