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The correspondence of certain plane trees and binary sequences reported 
by D. A. Klarner in [l], and a ballot interpretation of the latter, are used to 
make an independent evaluation of the number of cla3ses of isomorphic, (k + l)- 
valent, planted plane trees with kn + 2 points. This provides an interesting 
multivariable identity for bi,lomial coefficients. 

1. The binary sequences in [l] are those sequences (b, ,..., bknek) 
with bi = CI or 1, such that b, + ... + bjl, > j, j = l(1) n - 2 and 
b, + a*. + bknplc = II - 1. Write 

cj = bjk-/c+l + -.. + bjb , j = l(1) IZ - 1 

and consider the sequences (cl , c2 ,..., c,J such that 

(‘I + ..a + cj >, j, j = l(1)n - 2 and c1 + *** + c,-1 = n - 1. 

Each element of the sequence is of course either zero or a positive integer. 
If any cj has the value i, i of k binary elements are 1 and their positions 
may be chosen in (f) ways. Each sequence (cl ,..., c,-J replaces (,“,) 0.0 (c”,> 
binary sequences and the total number of binary sequences is the weighted 
sum of, for brevity, c-sequences, with the weight of a c-sequence the 
number of binary sequences it replaces. To illustrate, for IZ = 4, the 
c-sequences and their weights are 

C2 Weights 

3 0 0 (3 

2 1 0 (x:, 

2 0 1 m 

1 2 0 m 
1 1 1 k3 
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The number of binary sequences for n = 4 is 

(3 + 3 (:,(;) + k3 = i (y)- 

Interpreting cj as the content of (number of objects contained in) cell j, 
the sequence (cl, c2 ,..., c,) is a distribution of n like objects into n cells 
arrayed on a line, such that the total content of cells 1 to j is at least j. 
As noticed in my paper [3], this distribution problem is identical with the 
classification of weak lead ballot lattice paths ending on the diagonal 
by their horizontal segment sequence. If D(n; k, ,..., k,) is the number 
of such paths ending at (n, n) with ki horizontal segments of length i, 
sothatn=k,+2k,+-.. + nk, , the enumerator of paths by horizontal 
segment specification is defined by 

4(x, >..., x,) = c D(n; k, ,..., k,) xp *.a x2 

with summation over all partitions I”1 *.. nkn of IZ. The evaluation 
of D, given, a little disguised, in [3] is with k = k, + k, + ... k, , 
n = k, + .*. + nk, . 

&(x1 ,..., x,1 = c & i” ; ‘) k,! (f; k,! xp ‘*’ x2+ (l) 

In this notation, the number of binary sequences is D,_,(x, ,..., xn-& 
with xi = (!) and since this number is also (l/n)(l$), the following 
identity appears 

(2) 

2. To determine* the enumerator D, = D,(x, ,..., x,J, classify the 
paths by the first contact with the diagonal. Write D,* = D,*(x, ,..., x,) 
for the enumerator of paths with first diagonal contact at lattice point 
(n, n), the strict lead ballots. Then 

D, = i Dk*D+k (D, = 1). 
L=l 

(3) 

* I owe the form of the derivation below to correspondence with Colin Mallows, 
my former colleague at Bell Telephone Laboratories, on what seemed at first, to both 
of us, a non-ballot problem. 
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To determine Dn*, classify the weak lead ballots by length of initial 
segment, that is, by 

D, = i x,D(n; k). 
k=l 

Then, by the obvious relation of weak lead and strict lead ballots, 

n+1 
D*= * c xk+An - 1,Q n = 2, 3,..., (4) 

k=l 

while D,* = x1 = D, . By (3) and (4) 

n-1 n-1 

D, = x~D+~ + x2 1 D(j, 1) Dn-j-l + .a- + xk+l c Xi, k) Dn+ 
j=l j=k 

+ a-’ + x,D(n - I, n - 1). (5) 

Hence D(n; 1) = D,_, , D(n; 2) = Dnp2 + D,-,D, + **. + DOD,-, = 
D,-,(2), the convolution of the sequence (D, ,..., On-J with itself. By 
induction it is found that D(n; k) = D,-,(k), a k-th convolution. Thus (5) 
implies 

Dn = f ~&a-&), (6) 
k=l 

and, if D = D(x, y) = C yTLDn(xl ,..., x,), it follows that 

D = 1 + x,yD + x,(~D)~ + ... + x,(yD)” + ... , (7) 

which effectively determines the Dk . 

3. To find Eq. (l), write 6 = yD, so that (7) may be rewritten 

y = S(1 + x,6 + x,62 + *-*)-I 

= S(1 - A,6 - A,62 . ..). 
(8) 

with 

A, = A,(x, )...) x,) = 1 (-l)K+l k , “i k , x? *I. x>, 
1. n. 

which follows from the relation of elementary symmetric functions with 
homogeneous product sums (cf. [4, p. 1881). Since 

6 = ~(1 + D,y + D2y2 + *.-I 
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it follows from the formula for reversion of series ([4, p. 1491) that 

Dn=~--&i”;“) k,k!k ,Al”‘...A:. (9) 1. n’ 

Settingx=x,=x,=***, and noting that A,(x) = x(1 - x)+l, 

-n+k ,x--l 
&(x,..., 4 = ddx) = k$l J& ( k )(k _ 1) x”(l - x)“-k 

with 
= (1 - x)” H,(x(I - x)-l), (10) 

f&(x) = k$l + (” ; “)(;: I :, Xk* 
From (10) it follows that 

Ux) = c y& (” Q ‘)(E z :, Xk, 
which is (1) with x = x, = x2 = ... . 

4. Returning to plane trees, write xf = (3 in (7) so that 

D = 1 + G, yD + **. + (;)(yD)” + 0.. + (;,(yQk 

= (1 + ~0)” 

orifw= 1 +yD 
1 -w+yyw”=O, 

the solution of which (cf. [2]) is 

(11) 

(IW 

which proves the identity (2). 
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