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Abstract

The paper studies the existence and uniqueness of local solutions and the blowup of solutions to the
initial boundary value problem for improved Boussinesq type equatiof uxx — uxxrr = 0 (i) xx-
By a Galerkin approximation scheme combined with the continuation of solutions step by step and
the Fourier transform method, it proves that under rather mild conditions on initial data, the above-
mentioned problem admits a unique generalized solulienW22° ([0, T1; H2(0, 1)) as long as
o €C%R). In particular, wherv (s) = as?, wherea # 0 is a real number ang > 1 is an integer,
speciallya < 0 if p is an odd number, the solution blows up in finite time. Moreover, two examples
of blowup are obtained numerically.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We consider the following initial boundary value problem (IBVP) of the improved
Boussinesq type equation

Upp — Uxx — Uxxrs =0 (W) xx  0N(0, 1) x (0, 00), (11)
ux(0,1)=0, u,(1,t)=0, >0, (1.2)
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u(xvo):(p(-x)v ul(-xso)zl/f(x)s 0<x<17 (13)

whereo (s) is a given nonlinear function. Equations of type (1.1) are a class of essential
model equations appearing in physics and fluid mechanics. Especially age= 52,
Eq. (1.1) becomes the improved Boussinesq (IBq) equation

Upr — Uxx — Uxxtr = (Mz)xxv 1.4

which can be obtained from the exact hydrodynamical set of equations and is used to
describe wave propagation at right angles to the magnetic field, and also to approach the
“bad” Boussinesq equation

Urr — Uxx — Uxxxx = (MZ)XXa (15)

see Makhankov [8]. Eqg. (1.5) is a well-known model equation derived by Boussinesq
in 1872 to describe shallow-water waves, see [1,2]. And it also arises in a large range
of physical phenomena including the propagation of ion-sound waves in a plasma and
nonlinear lattice waves, see [3,6,8]. The study of the Boussinesq equation has recently
attracted considerable attention of many mathematicians and physicists, see [1,3-5,7,8].
Especially, Levine and Sleeman [7] studied in detail the initial value Dirichlet problem
for the equation of type (1.5) and proved the nonexistence of global positive solutions
both weak and classical for a general class of initial data. WHeh= as2, where and in

the sequek (# 0) is a real number, Eq. (1.1) becomes the modification of the improved
Boussinesq (IMBq) equation

Upr — Uxx — Uxxtt = a(us)xx’ (16)

which is used to study the properties of anharmonic lattice and the propagation of nonlinear
Alfvén waves, see [8]. When the boundary condition (1.2) is substituted by

u©0,t)=u(1,r)=0, >0, .7

the author studied the existence and nonexistence of global solutions for problem (1.1),
(1.7), (1.3) and especially obtained the global existence and uniqueness of generalized
solution for IBVP (1.7), (1.3) of IMBg equation (1.6), with> 0, and the nonexistence of
global generalized solutions for IBVP (1.7), (1.3) of IBg equation (1.4), see [13].

In this paper, by a Galerkin approximation scheme combined with the continuation of
solutions step by step and the Fourier transform method, which are completely different
from those used in [13], we first investigate the existence and uniqueness of generalized
solution of problem (1.1)—(1.3). Second, to¢s) = as”, Eq. (1.1) becomes

Urp — Uxy — Uxxrr = AU )xx, (1.8)

where and in the sequel (> 1) is an integer and specially < 0 if p is an odd number,
and we prove that the solution of problem (1.8), (1.2), (1.3) blows up in finite time under
appropriate conditions on initial data. Moreover, foe= 2 and p = 3, by virtue of the
ordinary difference scheme, two examples of blowup are obtained numerically.

The plan of the paper is as follows. The main results and some notations are stated in
Section 2. The existence and uniqueness of solution of problem (1.1)—(1.3) are discussed
in detail in Section 3. Two blowup theorems are proved and two numerical examples are
given in Section 4.
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2. Statement of main results

We first introduce the following abbreviations
L,=L,01, H'=HOYD, [-lp=M-lee, I-1=1"lzp
where 1< p < 400, k =1,2,.... The notation(-, ) for the Ly-inner product will
also be used for the notation of duality pairing between dual spaces. Define the Fourier
transform”: Ly — 12, for any f € Ly, f(k) = 2[01f(x) coskmxdx = fi, k=0,1,....
Obviouslyf_; = fi (k=0,1,...). Let f = (fo, ..., fr....), thenf €12, f(x)= fo/2+
S, fecoskmx and 2112 = f2/2 + Y24 f&. The notationf > 0 (> 0) denotes

ft>0(>0),k=0,1,..., and a similar notation is used fgr< 0 (< 0).
The above mentioned Fourier transform has the following properties.

Lemma2.1[12]. () If f e HY, £/(0)= f'(1) =0, then(f")x = —(kn)2fi, k=0,1, ....
() If fL £2,..., fP € HY, then

(Fro =227 Y

rit+etrp=k

wherer; (i =1,..., p) are integers.

Let A= {v(x) | v e H2, v'(0) = v/(1) = 0}, thenA is a Hilbert space under the norm
lvlla = lvll g2 = (V1 + [l I Y2. The sequencéeg = 1/2, ex = coskmx}22, is an
orthogonal basis irL, and at the same time iA. For anyv € A, v =Y ;2 jurex in A,
where v, = d(k), and the corresponding = (vo, v1, ..., vk,...). Let A= {¥ | ¥ € I3,
(0, 72v1, ..., (k)v, ...) € 12} and A be equipped with the norm

oo 1/2
~ 1
151l = llvlla = [E(vé/u S+ (/m)“)vg)] ,

k=1

then, A and A are isometrically isomorphic, sd is also a Hilbert space. Lex” and
A™ be respectively the subspaces spannetkfyes, ..., e,} in Lo and inA, the operator
P, : L — X" be an orthogonal projection, i.e., forafiye Lo, P, f = f™ =Y {_o frex-
Let f" = (fo, ..., fn, O, ), X" ={f" | f €L, If™gm = IIf™lx» =1/, and &
similar notation is used fof” > 0 (> 0) and /™ < 0 (< 0).

Now, we state the main results of the paper.

Theorem 2.1. Assume that € C%(R), ¢, ¥ € A. Then problem(1.1)—(1.3)admits a

unique generalized solutiome W2 ([0, T]; A), where0 < T < T% and [0, T9) is the
maximal time interval of existence of Moreover, ifsupy¢, 7o [[u(?)]la < +o0, then

70 = 4o0.
For problem (1.8), (1.2), (1.3), we have the following blowup theorems.

Theorem 2.2. Assume that
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() g €A, ¥ eA, ¢<0,¥ <0, speciallypo < —2(|a|p) /P~ b;
(i) one of the following conditions holds
(H1) @ >0, p (=4 is an even numbey, <0andy < 0.

_ —1 [ (A47?) (14472 71/2 2(1+7%)391/4 =1\ 1/2
(H2) a>0,p=2,¢1< F[ﬁ] ,¢2<—[m] (F%) y Y2 <

[%]”%K 0.

(H3) a <0, p (= 3)is anodd number <O.

Then the solutiom of problem(1.8), (1.2), (1.3)which exists o0, 79 as Theoren2.1,
blows up in finite tim&, i.e.,

u(0,1) > —o0, |lu@®)| - +oo asr— T,

where and in the sequ@ is different for different problems.
Theorem 2.3. Assume that

() a<0,9eA, ¥ €A, @>0 v >0, speciallygy > 2(—ap)~V/ P~
(i) one of the following conditions holds
(Ha) p (>4 is an even numbep, > 0andy > 0.

_ 2 2y11/2 2311/4 1/2
(Hs) p = 2, ¢l>ﬁ[w]/, ¢2>[2(1+n)]/( ‘;012)/, Vo >

2.1/2 l+471'2 —anm
[1143;2] 1> o0.
(He) p (= 3)is an odd number); > 0.

Then the solutiom of problem(1.8), (1.2), (1.3)which exists o0, 79 as Theoren2.1,
blows up in finite tim&’, i.e.,

u(0,1) — +o0, Hu(t) || — 400 ast— T .

3. Local existence of solutions
Proof of Theorem 2.1. We give the proof of Theorem 2.1 by five steps.

Step 1. The Galerkin approximationWe look for approximate solutions of problem
(1.1)—(1.3) of the form

m
w0 =Y up (e,
k=0

wherei™ (1) = (uf (t), ..., upy (1), 0, ...) satisfy

a"(t) = f(u™®), t>0, (3.1)

"0)=¢" >¢ inA, @"O)=y"—>¢ inA, (3.2)

and - = d/dt, @" = (¢0,...,¢m0,..), U™ = (Yo,....,¥m,0,..), fW" (1)) =
F@™ ) = —k*72/ L+ K22 @ (t) + o @™ (t)e), k=0,1,...,m. By the Lipschitz
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continuity ofo (s) and the Sobolev embedding theorem, for any € A™ C X™,
£ @)= f@)] gn < Lllu—vlixn <Llu—vllam, (3.3)

whereL is a local Lipschitz constant. Sincé” andR"+! are isometrically isomorphic,
it follows from o.d.e.s theory irR™+1 [9] that for anym, problem (3.1), (3.2) admits a
unique noncontinuable solutiait (1) = (uf (2), ..., uy (t),0,...) defined on the maximal
interval J,,.

Step 2. A lemma of continuation of solution&Ve consider the following initial value
problem of o.d.e.’s

i) =fu®), >0, aO=¢, uO=4y, (3.4)

whereii(t) = (uo(t), ..., ux(t),...), fu@®) = (f@@))o, ..., @)k, )y fu@®)e =
(=272 /(A + K222 (ur () + o @), k=01, ..., ¢ = (00, . ... ¢k, ...), ¥ = (Yo, ...,
Wiy ...).

Lemma 3.1. Assume that

() 0 €C3R),peA, ¥ cA.

(i) The solutioni(r) of problem(3.4) exists on an intervall = [0,d] or J = [0, d)
(d>0), i) € A, teJ;and the corresponding € W2 (J; A) is a solution of
problem(1.1)—(1.3pnJ. The solutioni™ (¢) of problem(3.1), (3.2)exists on intervals
[0,dy) C I, {dn} C J, dy — d (n — 00) and [|@"(t) — i)l ; < 6, t € [0,dy],
wheref is a positive constant independentdyf

(i) There exists an open sphe@ c R x A such that the graph ofi(r) on J: G =
{(t,u(®)) |t € J} C Q, and the distance

p(®0,G)=  inf {Is =11+ |o—a@]| ;} =39,

(5,9)€dQ, (1,ii(1))eG

whered Q is the boundary oD.

Then there exists a positive constahi(> d) and a subsequence (f"}, still denoted by
{a™}, such thati™ (+) andi(¢) are all continued to interval0, d'] and

|a™ @) —a@)| ; <30, 1€[0,d. (3.5)
Moreover,

u™ —u  weak in W2 ([0,d'1; A),

u™ — u  strongly inC*([0,d']; L?) (3.6)

asm — oo, and the corresponding limit functiom € W2°°([0, d’]; A) is a solution of
problem(1.1)—(1.3)on [0, d'].

Proof. For anybg: 0 < bg < d (if d =0, takebg = 0), sinced, — d (n — o0), without
loss of generality we assume thiat< d, < d (if d = 0, taked,, = 0) for anyn. We consider
the following initial value problem:

M=), >0, PO =a"bo), VO =i"(bo).  (3.7)
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We denote the neighborhood of the graplin R x A by
G©®) ={(s,w)eRx A|p((s,d),G) <8},
the neighborhoods abo, it (bg)) in R x A™ and(bg, u™ (bg)) iN R x A™ respectively by
A (®) = {(s. ) € R x A™ | |s = bo| + [ — & (bo) | 5 < 6},
tm (@) = {(s,w) e R x A" [ |s — bo| + | w —u" (bo) | , <6} (3.8)

It follows from the isometrically isomorphism of and A that (s, W) € fi,»(9) if and only
if (s, w) € u,(0). Forany(s, ) € i, (0), by (3.8) and assumption (ii),

p((s. ), (bo, #(b0))) < Is = bol + | — " (bo) | ; + @™ (bo) — (bo) | 5 < 26,
i.e., im(0) C G(29). Hence,

Cu@) = sup | fw)]zn <C(llwlla+1) <M, (3.9)
(s,w)€um©0)

where and in the sequél, M; (j =1, 2,...) andM denote positive constants depending

only ond. From (3.3) we know thaf (w) : A” — X™ is Lipschitz continuous o, (9),

and thus from the theorem of existence and uniqueness of solution of o.d.e.'s we deduce

that for anym, problem (3.7) admits a unique solutiéfi(z) on [0, 4] C [0, h,,] and

(1, 0™ (1)) € am () C G(20), 1 €0, h], (3.10)

where h = min{#,6/M1}, h,, = min{6,0/C,,(0)}. Take bg = max0,d — h/2}, d' =
bo+h (> d), and let

u™ (1), 0< 1 < bo,

U"(t —bg), bo<t<d. (3.11)

It follows from the uniqueness of solution of problem (3.1), (3.2) that the solutitn) is
continued tq0, d’'] and for eachn

(t,d"(1)) € G(20), t€[0,d"]. (3.12)

For A andA are isometrically isomorphic, by (3.12) and (3.1),

[ o <m. ol = [Fa )< cleol, <m,
t
luf* @], <1¥™ +/|| f"@)] ;dr <M, te€[0,d". (3.13)
0

By (3.13), we can choose a subsequencéubf}, still denoted by{u™}, such that (3.6)
holds. By the Lagrange mean value theorem, (3.13) and (3.6),

o™ @) —o(u®)| < M|u™@) —u@)| -0 (3.14)

uniformly on[0, d'] asm — co. Lettingm — oo in (3.1), (3.2), we deduce from (3.6) and
(3.14) thatii(z) is a solution of problem of (3.4) oi®, d'].
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Rewrite problem (3.4) as

(”tt — Uxx — Uxxrt — 0 (U)xx, Ek) =0 on(0, c0),
(u(O), ek) = (¢, ek), (uz(O), Ek) = e), k=0,1,.... (3.15)
Sinceu;; — uxx — uxxy — 0 (U)xx € L2, 1 €[0,d'], and{ex )32, is dense inL; and A,

Upp — Uy — Uxxrr =0 (U)xx  IN Lo, 1 €[0,d'],
u@® =9, w,O0)=v IinA,

i.e.,u e W2([0,d']; A) is a generalized solution of problem (1.1)—(1.3)[Ond’]~.
By the sequential wedklower semicontinuity of the norm i ([bo, d']; A) and
(3.10),

|a@) — o) ; < @) —d@o)| ,_ 1p.an. 2
< Jim inf @™ (1) — ™ (bo) HLN([bo,d'];A)
:nllinooinfﬂﬁ’"(t — bo) — i (bg) HLOC([bO’d,];A) <0, telbg,d].
(3.16)
From (3.16), (3.11), (3.10) and assumption (ii) we deduce that

@™ () — i(r) ||A < @™ (1) — ™ (bo) HA + | (bo) — it (bo) HA + | (bo) — i (r) H/;
<36, telbo,d], (3.17)
and therefore (3.5) holds. The proof of Lemma 3.1 is completed.

Step 3. Local existence of solutionslaked =0, J = [0, O] (a single point) and,, =0
(n=1,2,...) in Lemma 3.1. Obviously problem (3.4) admits a solutign) = ¢ (€ A),
teld, satisfyingi?(O) = v; and the correspondingr) = ¢ (€ A) is a solution of problem
(1.1)—(1.3) onJ, satisfyingu,(0) = v. For anym, problem (3.1), (3.2) admits a solution
") = @™, t €[0,d,], satisfyinga™ (0) = ™. Since||¢" — ¢l ; = 0 (m — o0), there
exists a positive constarst such that|¢™ — ¢|; < 6. Take a bounded open sphere
01 C R x A such that(0,$) € Q1 and p(dQ1, (0, $)) > 36, then the conditions of
Lemma 3.1 are satisfied. Therefore, there exists a positive comstdepending only on
6 and a subsequen¢a’™} c {#™} such thati>™(r), ii(r) are all continued ont0, b1],
(3.5) and (3.6) hold (substituting” andd’ there byu’™ andb; respectively) and the
corresponding € W22([0, b1]; A) is a solution of problem (1.1)—(1.3) 40, b1].

Take a sequendé1,} C [0, b1], b1, — b1 (n — o0). By (3.5), for anyn, m,

|t @) —ii@)] ; <61 (=30), t€[0,bal. (3.18)

Take a bounded open sphafe C R x A such that the graph of(t) on [0, b1]: G1 =
{(,u(t)) | t €[0,b1]} C Q2 and p(dQ2, G1) > 301. Hence, by Lemma 3.1, there exists
a positive constank, (> b1) and a subsequend@?™} c {i#'"} such thati®>™(r) and
i(r) are all continued ontf0, b>], (3.5) and (3.6) hold (substituting”, & andd’ there by
u™ 61 andb, respectively), and the corresponding W2°([0, by]; A) is a solution of
problem (1.1)—(1.3) of0, b2].
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Repeating above process, we get a series of bounded open sgherés C Q2 C
... C Q, C -+, the radius ofQ,, tends to infinity as: — oo, a monotonically increas-
ing sequencgb,} and a subsequendg™™}: (i} C {a"~ 1"} c --- C {@™} such that
™™ () andi(r) are all continued ontd0, b,], (3.5) and (3.6) hold (substituting™,
0 andd’ there byu™™, 6, (= 3'9) and b, respectively), and the correspondings
W?2>([0, b,]; A) is a solution of problem (1.1)—(1.3) 48, b,,1, whereb,, are positive con-
stants depending only ahandn. Since{b,} is monotonically increasing, lil, « b, =
T9 < 0o. By the standard diagonal process, we can choose a diagonal sediérite
such that for any compact subinteryal 7] C JO =10, 79, lim,u_ o0 inf Jym D [0, T]
and

u™" —u weak in W>*([0, T; A),
u™™ — u  strongly inC*([0, T1; L) (3.19)

asm — oo andu € W2°°([0, T']; A) is a solution of problem (1.1)—(1.3) @0, T'].

Step 4.7° = [0, T0) is the maximal interval of existence @), and thus is that ofi(z).
If 70 = 400, obviously the claim is valid.
If 7O < 400, while ii(¢) could be continued past to the rightBf, then

sup [a®] ;= sup |u@®)|, <-+oo. (3.20)
0<t<T0 0<r<T10

Take a sequence of numbgt,} c [0,7°), d, — T° (n — 00), then there must be a
positive constant such that whem: is sufficiently large, for any

™™ @) —a@)| ; <v. tel[0dyl. (3.21)

In fact, sinceA = A* (the dual space o), for anyn € A, |In]la = 1, we deduce from
(3.19) that(u™ ™ (1), n) — (u(r),n) (m — 00), t € [0, T?). Hence whemn is sufficiently
large,

@™ @) < (@, n)[+1< Ju@)] , +1. 1€10.79,
A

sup [a™" @) —aw]z< sup [a"" 0] ;+ sup [a®]z
0<t<T0 0Lt <T0 0<r<T10
<2 sup || ;+1<v. (3.22)
0Lt <T10
Therefore (3.21) holds.

By (3.21), we can choose a bounded open splggiefrom the above-mentioned open
sphere sequence such that the grapiof over J%: Gro = {(t,ii(2)) |t € J%) C 0y, and
p(@Qny, G1,) = 3v. Therefore, we deduce from Lemma 3.1 that there is a positive constant
bpo (> 79 and a subsequence g}, still denoted by{ii""}, such thati”™™ () and
u(z) are all continued ontg0, b,,,], (3.5), (3.6) and the other conclusions of Lemma 3.1
hold (substituting:™, 6 andd’ there byu™", v andb,,, respectively). This contradicts
the fact thatr © = supib,,}. Therefore /9 = [0, T°) is the maximal interval of existence of
u(t) andu(r).
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From above proving process we see that if@sypro lu(?)[l4a < +oc, there must be
T0 = +00. In fact, if 70 < +o0, repeating above arguments one gets that there exists a
positive constanb,, > 79 such thati(r) andu(r) are all continued ontg0, bnol, Which
contradicts the fact thd0, 7°) is the maximal interval of existence 6tr) andu(r).

Step 5. The uniqueness of solution of probléhil)—(1.3) Assume thatui,us €
W22([0,T]; A) (0 < T < T9) are two solutions of problem (1.1)—(1.3). bet= u1 — u,
thenw satisfies

Wy — Wyx — Wyxrr =0 (U xx —02)xx 0N(0,1) x (O, T, (3.23)
wy(0,1) =wy(1,1)=0, 0<r<T,
wx,00=0, w;x,0=0, 0<x<1l (3.24)

Multiplying (3.23) bywy, integrating the resulting expression ovért), and making use
of the Sobolev embedding theorem and the Cauchy inequality gives

1d
537 (17 + w4 e ]*) = = (0" wpuse = o' w2uzr, wa)
< s * + o’ (u20) [ Jx ] + | (u20” (wz + 8u2)) 0| 3, o) |

< wa]?+ (w0 >+ Jwn)|?), 0<t<T, (3.25)

where 0< § < 1, C(T) is a positive constant depending only BnApplying the Gronwall
inequality to (3.25) one gets

[w: @] = [wx @] = |we @] =0, 0<r<T° (3.26)

Thereforew(t) =0, i.e.,u1(r) = uz(t), ¢ € [0, T?). Theorem 2.1 is proved.o

4. Blowup of solutions
In order to prove Theorems 2.2 and 2.3, we first give two lemmas.

Lemma 4.1. Assume that(¢) satisfies

i) +an() =>cn (1), t>0, 1n(0) = no, 1(0) =11, (4.1)

wherea, ¢, r are real numbers¢ > 0, r > 1, and o > (a/c)Y =D if o > 0, no > 0 f
a < 0, n1 > 0. Then there exists a finite constdhtsuch thaty(r) — +o00 asr — T,
where

+oo

T = / [26‘(77r+1 - 77(r)+l)/(r +1) —a(n?—n3) + nf]_l/zdn < 400. 4.2)
10
Proof. By assumptions of Lemma 4.1, we claim that
n(t) >no. H(t)>0, >0. (4.3)
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In fact, if there exists & (> 0) such thaty(z) > no, t € [0, 1), while n(tg) = g, note that
en”t—a > eyt — o >0, then it follows from (4.1) that

t

n(t) =n+ / n(@)(en M) —a)dr >n >0, te(0 1), (4.4)
0

i.e., n(r) is monotonically increasing ofD, ro], n(tg) > no = 0, which contradicts the
assumption. Hence(t) > no, t > 0. Applying this fact to (4.4) gives(s) > 0,¢ > 0.

Multiplying inequality in (4.1) by 2(z) and integrating the resulting expression over
(0, 1) one gets

2
72 > r—c(nr“(r) —np™) —a(n?@) —nd) +nZ=h@), t>0. (4.5)

+1

sinceh(r) = 27()i (1) (en” 1) — @) > 29 (i) eny ™t — @) > 0,1 0, h(t) > h(0) =
n2 > 0,¢ > 0. Hence (4.5) yields

‘ 2% 1/2
i/ [H—l(”rﬂ(’) =) —a(n?®) —ng) + nﬂ >1, 1>0 (4.6)
Integrating (4.6) ovef0, T'] gives the conclusion of Lemma 4.10

Lemma 4.2 [10,11]. Assume thatf is a quasimonotone increasing function @nx
D(f) — RN, wherel = [0, T] and D(f) is a closed convex set iRV containing the
setu? = {x e RN | x > u(r) for somer € I}.

If the functions:(r), v(r) € C(I; RN) satisfy the following conditions

(@) u(0) <v(0),
(b) u()— f(t,u) <v(@)— f(@t,v)forrel,
(c) fislocally Lipschitz continuous on bothandx in I x D(f),

thenu(®) <v(),tel.

Proof of Theorem 2.2. Under the assumptions of Theorem 2.2, from Theorem 2.1
we deduce that problem (1.8), (1.2), (1.3) admits a unique generalized solution
W2%([0,T]; A), 0< T < T°, andii(r) = (uo(t), ..., ux(t),...), defined on[0, T9), is
a unique noncontinuable solution of problem (3.4) and

i(1) <0, ii()<0, tel0,T9. (4.7)

In fact, we consider the auxiliary problem of (3.1), (3.2),

A+ K22 (1) + K2n2ul (1) = —k*m 2o (W™ (1)), — e, 1> 0,

up O =g, uy Q) =y, k=0,1...,m, (4.8)
wheres (u™ (1)) = 21 Pa Zr1+m+r1,=k upy (1) ... u?; (t) ande > Oisaconstant. By o.d.e.'s
theory inR™*1, for any compact subinterval’ C J,,, whene is sufficiently small, the
solutionu™ (t; &) = (ug (t; €), ..., um(t: €),0,...) of problem (4.8) exists od,, and

@"(1;6) <0, @"(1;6) <0, 1eJ;ands>0. (4.9)
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1. Infact, if there is &q: 0 < ko < m such thatkzg(o; €) = Y, = 0, then takingc = ko,

ri=ko,rj=0,j#i (i, j=1,..., p) respectively and letting— 0" in (4.8) gives

(1+ kgm?)iiy: (0; &) < —k§m°pro[1+ ap(po/2)P 1] —& < —& <. (4.10)
From (4.10) and the continuity af" (1, &) we deduce that there exists a right neighborhood
of 0: (0, §) such thatkzg(t; €) <y, =0and thung(t; €) < @iy < 0,1€(0,9).

2. If there is ak1: 0 < ky <m, tg € J; andtg > 0 such thaii” (r; ) < 0, t € [0, tg),
while 127{"100; g) =0, thenit™(¢;¢) <0, t € (0,79]. Takingt = t9, k = k1 andr; = k1,
ri=0,j#i (G j=1,..., p)in(4.8)gives

(L+K3m2)id (10: &) < K3l (10 &)[1+ ap(ufy (10: £)/2)" ] — ¢
< —kim?ull. (t0; &)[1+ ap(¢o/2P ] — & <. (4.11)
(4.11) implies that there is a left neighborhoodi@f (1o — 8, 10) such thal‘zlf{"l(t; &) >0,
t € (to — 8, to), Which contradicts the assumption.

So (4.9) is valid.

By the continuous dependence of solutions of o.d.e.’s for the parameter, ketting
in (4.9) gives

W) <0, @) <0, tedy, (4.12)
whereu™ (¢) is a solution of problem (3.1), (3.2). By the arguments of the proof of Theo-
rem 2.1, we can choose a subsequente”} from {z"} such that limy,—, oo INf Jiy m O Jo,
and for any compact subintervaf c J°,

||ﬁmm — ﬁ||c1(j0;lz) —0 (413)

asm — oo. (4.13) implies that (4.7) holds.
Rewrite problem (3.4) as (wheegu) = au”)

(1+k2n2)ﬁk([):—k2n2<uk(t)+21pa Z I,{rl(t)...urp([)), t >0,

Hetrp=k
ey (4.14)

ur0) =g, Q) =y, k=0,1,.... (4.15)
1. If assumption (H) holds, then taking =1,r = p, r; =—-1andr; =1,r; =0,

j#i (@, j=1,..., p) respectivelyin (4.14) gives

L+ 72)ii(0) + van(t) = 2Y Papa?n? X (0)z(r), >0, (4.16)
wheren (1) = —u1(t) (= 0), z(t) = —up(t) (= 0), v1 = 72[1+ (po/2)?~tap] < 0, and the
factuo(t) = Yot + ¢o < ¢o (t > 0) has been used. Note that) > 0 andz(r) > —¢, > 0,
it follows from (4.16) that
wherev = v1/(1472), c = —2"Papr2¢,/(1+ 7). Applying Lemma 4.1 to (4.17) one
gets that there exists a finite const@nsuch that)(r) — +oo ast — T, where

+oo
~ -1/2
T= / [2¢(n” — ¢F) ) p — v(n? — ¢2) + w2] 72 dn < +o0. (4.18)
—¢1
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Sinceu(0, 1) = uo(t)/2+ Y poq ux () < ur(®), lu®)|? > ust) = n?(),
u(0,1) > —oo, |u(®)| - +oo ast— T,

2. Ifassumption (H) holds, thentaking =1,r; =0,r; =1andr, =-1,r; =2, j #i
(i,j =12, after that takingk = 2,7, =0,r; =2andr, =r; =1, j #i (i,j=12)
respectively in (4.14) gives

L+ 7H(t) + 721+ apo)ii(t) > an?7G(HZ(1),

A+ 47D)Z(1) + 4L+ ago)z(t) = 2an’i?, 1> 0, (4.19)
whereij(r) = —u1(t), Z2(1) = —u2(t). Let (1) = [2(1 + 72 (1 + 472)1Y?n* (1) /2a7?,
Z2(t) = (L4 72)z*(t) Jam?, then we have

i) = an* (0 + 0t OF@), @) = B0 +n*2(), >0,

n*(0) = no, 7*(0) = n1, z*(0) = zo, 2*(0) = z1, (4.20)

where

0<a=-n21+apo)/(1+ 7% < B =—4r%(1+ ago)/ (L + 47?),
no= —2a712<p1/[2(1+ 7t2)(1+ 47'[2)]1/2,

m = —2an%y1 /[2(1+ 72 (1 + 472)] 2,

Z0=—a7'[2(p2/(1+7'[2), z1=—an21//2/(1+712).

We consider the following initial value problem

i(t) = an(t) + n(0)z(r),  Z(t) = Bz(t) +n?(t), >0,
1n(0) = no, 1(0) = 1, z(0) = zo, 2(0) = 21, (4.21)
wheren(t) > no, z(t) > zo, n(t) > 0,z(¢t) > 0,¢ > 0. Obviously, (4.21) is equivalent to the
problem
t
() = n1+/(n(r)z(r) +an(r))dr,

0
t

z(t) =z1+/(n2(r)+ﬁz(r)) dr, t>0,

0
1n(0) = no, z(0) = zo. (4.22)
By assumption (H), zo > /70 > 1/+/2,z1 > n1/+/2 > 0, and thus
2 =), t>0. (4.23)

In fact, if there exists &y > 0 such that:(+) > /n(t), t € (0, tp), while z(tg) = /1 (t0),
then it follows from the second equation in (4.22) that
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Io
2,/n(10)z(to) = 2z12(t0) + 2z(to) /(nz(r) + Bz(1))dt
0

Io
> 27120 + 2/(n2(r)z(r) + Bn(1)) dr. (4.24)
0
By (4.24) and the first equation in (4.22),
fo
2y n(10)z(t0) — n(to) > 2z1z0 — N1+ / n(0)z(r)(2n(r) — 1) dt
0
140]
+ /(2/3 —a)n(r)dr > 0. (4.25)
0
Therefore, whem = 1o,

d
E[Z(” =V ]=2/n0z@) — @) /2y/n@) > 0. (4.26)

(4.26) implies that there is & > 0 such thatz(r) — /n(t) < z(t0) — /n(to) =0, ¢t €
(to — 8, tp), which contradicts the assumption. Hence (4.23) is valid.
Substituting (4.23) into the first equation in (4.21) gives

i) =an@ +n¥40, >0, n@=n. @0 =n. (4.27)
Applying Lemma 4.1 to (4.27) gives that there exists a finite consTarguch that
n(t) — +oo and thus () — +oo (t —> T7).

Let X (1) = (n(1), z(1), v(), w(®))" , wherev(r) = (1), w(t) = z(t), Xo = (n0, 20, N1,
27, £, X) = (), w(t), an(t) +n(t)z(t), Bz(t) +n?(1))T . Rewrite problem (4.21) as

X)) =f@t, X), t>0, X (0) = Xo. (4.28)
Rewrite problem (4.20) as
X*t) = f@t, X", >0, X*(0) = Xo, (4.29)

where X*(t) = (n*(t), 2*(t), v*(t), w* )T, v*(t) = 7*(), w*(t) = z*(r). A simple ve-
rification shows that forany: 0< 7 < T9, f(t,X):I x D(f) - R%is quasimonotone
increasing and locally Lipschitz continuous on bondX in I x D(f), wherel = [0, T]
andD(f) ={X = (n,z,v,w)T | n>no, 2> z0, v >0, w >0} Cc R*is a closed convex
set andD(f) D XZ ={Y e R*| Y > X(r) for somer € I}. So by Lemma 4.2 and the
arbitrariness of’: 0< 7 < 79,

X*®) =X, teJ’=][0,T19. (4.30)

Thereforen*(t) = n(t) — +oo, z*(t) > z(t) — +oc0 ast — T —, and thus(0, 1) — —oo
and|ju(t)| — +ooast — 7.

3. If the assumption (k) holds, then in (4.14) taking = 1, taking 1 for(p + 1)/2
times and—1 for (p — 1)/2 times respectively imy, ...,r,, and takingr; =1,r; =0,
JEIA, j=1,..., p) respectively gives
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1+ ﬂz)ii(t) +vn(t) = —Zlfpanznp(t), t>0,
n(0) = —g1, 1(0) = =91, (4.31)

where n(t) = —u1(r), v = 72(1 + ap(po/2)?~1) < 0. Applying Lemma 4.1 to prob-
lem (4.31) one gets that there exists a finite consfan® < 7 < +oo such thaty (1) —
+o00 ast — T~ and thusu(0, t) — —oo and ||u(t)|| — +oo ast — T . Theorem 2.2 is
proved. O

Proof of Theorem 2.3. Sinceg, ¢ € A, from Theorem 2.1 we deduce that problem (1.8),
(1.2), (1.3) admits a unique generalized solution W2 ([0, T]; A),0< T < TP,
(i) If assumption (H) or (Hs) holds, letv = —u, thenv satisfies

Urt — Uxx — Uxxtt = _a(vp)xx on (0, 1) x (0, TO)» (4-32)
v (0,1)=v,(1,1)=0, 1€[0,TO),
v(x,0)=—px), v, 0=—-v(kx), 0<x<Ll (4.33)

Applying Theorem 2.2 to problem (4.32), (4.33) gives the conclusion of Theorem 2.3.
(ii) If assumption (H) holds, still letv = —u, thenv satisfies

Vit — Uxx — Vs =a(0P)xxe 0N (0, 1) x (O, TO): (4-34)
and conditions (4.33). Applying Theorem 2.2 to problem (4.34), (4.33) gives the conclu-

sion of Theorem 2.3. Theorem 2.3 is proved:

Example 1. For initial boundary value problem (1.2), (1.3) of IBq equation (1.4) (i.e.,
a=1andp =2in (1.8)), if we take initial data

@ (x) = ¢o/2+ ¢1COSTX + @2 COS 2T X,
Y(x) =Y COSTX + Y2COS 2 x, (4.35)
where o < —1, 91 < —[(1 + 721 + 472)1Y?/V/Br2, 92 < —[2(1 + 72302/ (1 +
A2y YA Yo < [(L 4 72) /(A + 47212y < 0, then a simple verification shows that
the assumptions of Theorem 2.1 and assumptions (i) and £)ifHTheorem 2.2 hold. So,
by Theorems 2.1 and 2.2, the corresponding problem (1.4), (1.2), (1.3) admits a unique

generalized solution € W22([0,T]; A), 0< T < T9, and there exists a finite constant
T such that

u(0,1) > —oo, |u@®)|—+oo ast—T". (4.36)

Now we give a numerical experiment to demonstrate the correctness of Example 1. Let
@o=—2000,p1 = g2 = Y1 =y = —1000 in (4.35), and rewrite Eq. (1.4) as

Ut —Uxx — Uxxt = (uz)xm Ur="v. (4-37)

Letr = jr,wherej is a nonnegative integer,= 0.002 is the time step length and= 0.05
is the space step length. By the ordinary difference method
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vli, jl—wli, j —1]

wli, j1= . + o(1), (4.38)
woli. 1= uli — 1, j]— 2u}[li2,j] +uli +1, j] o). (4.39)
o vli—=1,j1—vli—1,j— 11— 2v[i, j14 2vli, j — 114+ v[i + 1, j]

Uxxtli, ]] = h2
T
_ w + o(h?7), (4.40)
het
2r: o5 2rs - 2r. .
Wt j1 = IR AZ2CLAT A LI 2 (4.41)
wli, j1="TT AT o) (4.42)

we get the following difference scheme:

—vli — 1, j1+ 2+ h?)vli, j1—vli +1, j]
=h%uli, j — U+t (uli — 1, j1 - 2uli, j1+uli — 1, j1)
+7(u’li + 1, j1— 20P[i, j1+u?li — 1, j1)
4+ (=vli =1, j —U+2v[i,j — 1 —v[i +1,j —1]),
uli, j + 1 =uli, j1+ toli, j). (4.43)

And by the scheme we get the graphs of the numerical solutions of the corresponding
problem (1.4), (1.2), (1.3) at=0, 6, 10, 13, 15, 20 and 30, respectively, which show that
the solutions:(x, r) develop a pronounced negative spike gradually at the poinD as

t — T, seeFigs. 1, 2 and 3. And this fact corresponds with (4.36).

Example 2. For initial boundary value problem (1.2), (1.3) of the IMBq equation (1.6), if
we takea = —1 and initial data
o(x) =¢o/2, ¥(x) =11 COST X, (4.44)

wheregg > 2/+/3, ¥1 > 0. Obviouslyg, ¥ € A, ¢ >0 andy > 0, i.e., the assumptions
of Theorem 2.1 and assumptions (i) and (igfHof Theorem 2.3 hold. Therefore,

0.2 7 0.6  Oh— 1

—5000;
—100005
—150002
—20000;

Fig. 1.j =0, 6, 10, 13, 15.
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—ZOOOOE
—40000;
—600005
—80000::
—lOOOOO::

Fig. 2. j = 20.

-200000
-400000
-600000
-800000

-1x10°

-1.2x10°

Fig. 3./ = 30.

the corresponding problem (1.6), (1.2), (1.3) admits a unique generalized saludion
W2°°([0,T]; A), 0< T < T9, andu blows up in finite timeT', i.e.,

u(0,1) = +oo, |u@®)|—+oo ast— T~ (4.45)
Similarly, takepg = 2400,11 = 100Q and rewrite Eq. (1.6) as
U — Uxx — Uxxt — _(u3)xx’ Ur=v. (446)

Lets = jr,wherer = 0.0005 and: = 0.05 are respectively the time and space step length.
By the same difference scheme as shown in (4.38)—(4.40) and

3._1’._23.’.+3.+1’.
@l 1= R Z 2T L]

o oouli, j+ 1] —uli, j—1]
uli, jl= o

—v[i — 1, j14+ 2+ h®)vli, j1—vli + 1. j]
=h%uli, j — U+t (uli — 1, j1 - 2uli, j1+uli — 1, j1)
— (i + 1, j1— 23, j1+ i — 1, j])
+ (—vli =1, j — U+ 2v[i, j — 1] —vli + 1, j — 1]),
uli, j + 1 =uli, j — 1]+ 27vli, jl, (4.49)

+o(h?), (4.47)

+o(t?), (4.48)
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Fig.4.j=0,5,6,7, 8.

400000

300000

200000

100000

Fig. 5./ = 11.

we get the graphs of the numerical solutions of the corresponding problem (1.6), (1.2),
(2.3),witha=-1,atj =0, 5, 6, 7, 8 and 11, respectively, which show that the solutions
u(x,t) develop a pronounced positive spike graduallyat 0 ast — 7, see Figs. 4
and 5. And this fact corresponds with (4.45).

Now, we make another experiment to show how the above-mentioned difference scheme
works on a non-blowup solution. By the homogeneous balance method, see [14], we easily
find a solitary wave solution

V2
M(X,t)— ﬁ (450)
of the IMBq equation (1.6), witlh = —1, and
V2 V2
ux(O,t)——m, ux(l,t)——m,
V2 V2
u(x,O)—H—x, u,(x,O)——m. (451)
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Fig. 6. j = 10.

Fig. 7. = 20.

By the same difference scheme as shown in (4.38)—(4.40) and (4.47)—(4.49), we get the
graphs of the numerical solutions of problem (1.6), (4.51), with—1, atj = 10 and 20,

see Figs. 6 and 7. The comparison of the graphs of the numerical solution with the exact
solution of problem (1.6), (4.51), with = —1, shows that the difference scheme is stable

at least in time intervdl0, 0.01] D [0, 0.0055.
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