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Abstract

The paper studies the existence and uniqueness of local solutions and the blowup of solutio
initial boundary value problem for improved Boussinesq type equationutt − uxx − uxxtt = σ(u)xx .
By a Galerkin approximation scheme combined with the continuation of solutions step by st
the Fourier transform method, it proves that under rather mild conditions on initial data, the a
mentioned problem admits a unique generalized solutionu ∈ W2,∞([0, T ];H2(0,1)) as long as
σ ∈ C2(R). In particular, whenσ(s)= asp , wherea 	= 0 is a real number andp > 1 is an integer,
speciallya < 0 if p is an odd number, the solution blows up in finite time. Moreover, two exam
of blowup are obtained numerically.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We consider the following initial boundary value problem (IBVP) of the impro
Boussinesq type equation

utt − uxx − uxxtt = σ(u)xx on (0,1)× (0,∞), (1.1)

ux(0, t)= 0, ux(1, t)= 0, t > 0, (1.2)
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u(x,0)= ϕ(x), ut (x,0)=ψ(x), 0� x � 1, (1.3)

whereσ(s) is a given nonlinear function. Equations of type (1.1) are a class of ess
model equations appearing in physics and fluid mechanics. Especially whenσ(s) = s2,
Eq. (1.1) becomes the improved Boussinesq (IBq) equation

utt − uxx − uxxtt = (u2)xx, (1.4)

which can be obtained from the exact hydrodynamical set of equations and is u
describe wave propagation at right angles to the magnetic field, and also to appro
“bad” Boussinesq equation

utt − uxx − uxxxx = (u2)xx, (1.5)

see Makhankov [8]. Eq. (1.5) is a well-known model equation derived by Bouss
in 1872 to describe shallow-water waves, see [1,2]. And it also arises in a large
of physical phenomena including the propagation of ion-sound waves in a plasm
nonlinear lattice waves, see [3,6,8]. The study of the Boussinesq equation has r
attracted considerable attention of many mathematicians and physicists, see [1,3
Especially, Levine and Sleeman [7] studied in detail the initial value Dirichlet prob
for the equation of type (1.5) and proved the nonexistence of global positive solu
both weak and classical for a general class of initial data. Whenσ(s)= as3, where and in
the sequela ( 	= 0) is a real number, Eq. (1.1) becomes the modification of the impr
Boussinesq (IMBq) equation

utt − uxx − uxxtt = a(u3)xx, (1.6)

which is used to study the properties of anharmonic lattice and the propagation of no
Alfvén waves, see [8]. When the boundary condition (1.2) is substituted by

u(0, t)= u(1, t)= 0, t > 0, (1.7)

the author studied the existence and nonexistence of global solutions for problem
(1.7), (1.3) and especially obtained the global existence and uniqueness of gene
solution for IBVP (1.7), (1.3) of IMBq equation (1.6), witha > 0, and the nonexistence
global generalized solutions for IBVP (1.7), (1.3) of IBq equation (1.4), see [13].

In this paper, by a Galerkin approximation scheme combined with the continuat
solutions step by step and the Fourier transform method, which are completely dif
from those used in [13], we first investigate the existence and uniqueness of gene
solution of problem (1.1)–(1.3). Second, forσ(s)= asp, Eq. (1.1) becomes

utt − uxx − uxxtt = a(up)xx, (1.8)

where and in the sequelp (> 1) is an integer and speciallya < 0 if p is an odd number
and we prove that the solution of problem (1.8), (1.2), (1.3) blows up in finite time u
appropriate conditions on initial data. Moreover, forp = 2 andp = 3, by virtue of the
ordinary difference scheme, two examples of blowup are obtained numerically.

The plan of the paper is as follows. The main results and some notations are st
Section 2. The existence and uniqueness of solution of problem (1.1)–(1.3) are dis
in detail in Section 3. Two blowup theorems are proved and two numerical exampl
given in Section 4.
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2. Statement of main results

We first introduce the following abbreviations

Lp = Lp(0,1), H k =Hk(0,1), ‖ · ‖p = ‖ · ‖Lp, ‖ · ‖ = ‖ · ‖L2,

where 1� p � +∞, k = 1,2, . . . . The notation(· , ·) for the L2-inner product will
also be used for the notation of duality pairing between dual spaces. Define the F
transformˆ :L2 → l2, for anyf ∈ L2, f̂ (k) = 2

∫ 1
0 f (x)coskπx dx = fk , k = 0,1, . . . .

Obviouslyf−k = fk (k = 0,1, . . .). Let f̃ = (f0, . . . , fk, . . .), thenf̃ ∈ l2, f (x)= f0/2+∑∞
k=1fk coskπx and 2‖f ‖2 = f 2

0 /2 + ∑∞
k=1f

2
k . The notationf̃ � 0 (> 0) denotes

fk � 0 (> 0), k = 0,1, . . . , and a similar notation is used for̃f � 0 (< 0).
The above mentioned Fourier transform has the following properties.

Lemma 2.1 [12]. (I) If f ∈H 1, f ′(0)= f ′(1)= 0, then(f ′′)k = −(kπ)2fk , k = 0,1, . . . .
(II) If f 1, f 2, . . . , f p ∈H 1, then

(f 1 . . . f p)k = 21−p ∑
r1+···+rp=k

f 1
r1
. . . f

p
rp ,

whereri (i = 1, . . . , p) are integers.

Let A= {v(x) | v ∈ H 2, v′(0)= v′(1) = 0}, thenA is a Hilbert space under the nor
‖v‖A = ‖v‖H2 = (‖v‖2 + ‖vxx‖2)1/2. The sequence{e0 = 1/2, ek = coskπx}∞k=1 is an
orthogonal basis inL2 and at the same time inA. For anyv ∈ A, v =∑∞

k=0vkek in A,
wherevk = v̂(k), and the corresponding̃v = (v0, v1, . . . , vk, . . .). Let Ã = {ṽ | ṽ ∈ l2,
(0,π2v1, . . . , (kπ)

2vk, . . .) ∈ l2} andÃ be equipped with the norm

‖ṽ‖Ã = ‖v‖A =
[

1

2

(
v2

0/2+
∞∑
k=1

(
1+ (kπ)4)v2

k

)]1/2

,

then, Ã andA are isometrically isomorphic, sõA is also a Hilbert space. LetXm and
Am be respectively the subspaces spanned by{e0, e1, . . . , em} in L2 and inA, the operator
Pm :L2 →Xm be an orthogonal projection, i.e., for anyf ∈ L2, Pmf = f m =∑m

k=0fkek .
Let f̃ m = (f0, . . . , fm,0, . . .), X̃m = {f̃ m | f ∈ L2}, ‖f̃ m‖X̃m = ‖f m‖Xm = ‖f m‖, and a
similar notation is used for̃fm � 0 (> 0) andf̃ m � 0 (< 0).

Now, we state the main results of the paper.

Theorem 2.1. Assume thatσ ∈ C2(R), ϕ,ψ ∈ A. Then problem(1.1)–(1.3)admits a
unique generalized solutionu ∈ W2,∞([0, T ];A), where0< T < T 0 and [0, T 0) is the
maximal time interval of existence ofu. Moreover, if sup0�t<T 0 ‖u(t)‖A < +∞, then
T 0 = +∞.

For problem (1.8), (1.2), (1.3), we have the following blowup theorems.

Theorem 2.2. Assume that



338 Z. Yang, X. Wang / J. Math. Anal. Appl. 278 (2003) 335–353

m

(i) ϕ ∈A, ψ ∈A, ϕ̃ � 0, ψ̃ � 0, speciallyϕ0 � −2(|a|p)−1/(p−1);
(ii) one of the following conditions holds:

(H1) a > 0, p (� 4) is an even number,ϕp < 0 andψ1< 0.

(H2) a > 0, p = 2, ϕ1 � −1
aπ2

[
(1+π2)(1+4π2)

8

]1/2
, ϕ2 � −[2(1+π2)3

1+4π2

]1/4(−ϕ1
aπ2

)1/2
, ψ2 �[ 1+π2

1+4π2

]1/2
ψ1< 0.

(H3) a < 0, p (� 3) is an odd number,ψ1< 0.

Then the solutionu of problem(1.8), (1.2), (1.3), which exists on[0, T 0) as Theorem2.1,
blows up in finite timẽT , i.e.,

u(0, t)→ −∞, ∥∥u(t)∥∥→ +∞ ast → T̃ −,

where and in the sequel̃T is different for different problems.

Theorem 2.3. Assume that

(i) a < 0, ϕ ∈A, ψ ∈A, ϕ̃ � 0, ψ̃ � 0, speciallyϕ0 � 2(−ap)−1/(p−1);
(ii) one of the following conditions holds:

(H4) p (� 4) is an even number,ϕp > 0 andψ1> 0.

(H5) p = 2, ϕ1 � −1
aπ2

[
(1+π2)(1+4π2)

8

]1/2
, ϕ2 �

[2(1+π2)3

1+4π2

]1/4( ϕ1
−aπ2

)1/2
, ψ2 �[ 1+π2

1+4π2

]1/2
ψ1> 0.

(H6) p (� 3) is an odd number,ψ1> 0.

Then the solutionu of problem(1.8), (1.2), (1.3), which exists on[0, T 0) as Theorem2.1,
blows up in finite timẽT , i.e.,

u(0, t)→ +∞, ∥∥u(t)∥∥→ +∞ ast → T̃ −.

3. Local existence of solutions

Proof of Theorem 2.1. We give the proof of Theorem 2.1 by five steps.

Step 1. The Galerkin approximation.We look for approximate solutions of proble
(1.1)–(1.3) of the form

um(t)=
m∑
k=0

umk (t)ek,

whereũm(t)= (um0 (t), . . . , umm(t),0, . . .) satisfy

¨̃um(t)= f̃ (um(t)), t > 0, (3.1)

ũm(0)= ϕ̃m → ϕ̃ in Ã, ˙̃um(0)= ψ̃m → ψ̃ in Ã, (3.2)

and · = d/dt, ϕ̃m = (ϕ0, . . . , ϕm,0, . . .), ψ̃m = (ψ0, . . . ,ψm,0, . . .), f̃ (um(t)) =
f (um(t))k = −k2π2/(1+ k2π2)(um(t) + σ(um(t))k), k = 0,1, . . . ,m. By the Lipschitz
k
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continuity ofσ(s) and the Sobolev embedding theorem, for anyu,v ∈Am ⊂Xm,∥∥f̃ (u)− f̃ (v)∥∥
X̃m

� L‖u− v‖Xm � L‖u− v‖Am, (3.3)

whereL is a local Lipschitz constant. SincẽXm andRm+1 are isometrically isomorphic
it follows from o.d.e.’s theory inRm+1 [9] that for anym, problem (3.1), (3.2) admits
unique noncontinuable solutioñum(t)= (um0 (t), . . . , umm(t),0, . . .) defined on the maxima
intervalJm.

Step 2. A lemma of continuation of solutions.We consider the following initial value
problem of o.d.e.’s

¨̃u(t)= f̃ (u(t)), t > 0, ũ(0)= ϕ̃, ˙̃u(0)= ψ̃, (3.4)

whereũ(t)= (u0(t), . . . , uk(t), . . .), f̃ (u(t))= (f (u(t))0, . . . , f (u(t))k, . . .), f (u(t))k =
[−k2π2/(1+ k2π2)](uk(t)+σ(u(t))k), k = 0,1, . . . , ϕ̃ = (ϕ0, . . . , ϕk, . . .), ψ̃ = (ψ0, . . . ,

ψk, . . .).

Lemma 3.1. Assume that

(i) σ ∈ C2(R), ϕ ∈A, ψ ∈A.
(ii) The solutionũ(t) of problem(3.4) exists on an intervalJ = [0, d] or J = [0, d)

(d � 0), ũ(t) ∈ Ã, t ∈ J ; and the correspondingu ∈ W2,∞(J ;A) is a solution of
problem(1.1)–(1.3)onJ . The solutioñum(t) of problem(3.1), (3.2)exists on intervals
[0, dn] ⊂ Jm, {dn} ⊂ J , dn → d (n → ∞) and ‖ũm(t) − ũ(t)‖Ã < θ , t ∈ [0, dn],
whereθ is a positive constant independent ofdn.

(iii) There exists an open sphereQ ⊂ R × Ã such that the graph of̃u(t) on J : G =
{(t, ũ(t)) | t ∈ J } ⊂Q, and the distance

ρ(∂Q,G)= inf
(s,ṽ)∈∂Q, (t,ũ(t))∈G

{|s − t| + ∥∥ṽ − ũ(t)∥∥
Ã

}
� 3θ,

where∂Q is the boundary ofQ.

Then there exists a positive constantd ′ (> d) and a subsequence of{ũm}, still denoted by
{ũm}, such thatũm(t) andũ(t) are all continued to interval[0, d ′] and∥∥ũm(t)− ũ(t)∥∥

Ã
< 3θ, t ∈ [0, d ′]. (3.5)

Moreover,

um → u weak∗ inW2,∞([0, d ′];A),
um → u strongly inC1([0, d ′];L2) (3.6)

asm→ ∞, and the corresponding limit functionu ∈ W2,∞([0, d ′];A) is a solution of
problem(1.1)–(1.3)on [0, d ′].
Proof. For anyb0: 0 � b0 < d (if d = 0, takeb0 = 0), sincedn → d (n→ ∞), without
loss of generality we assume thatb0< dn < d (if d = 0, takedn ≡ 0) for anyn. We consider
the following initial value problem:

¨̃vm(t)= f̃ (vm(t)), t > 0, ṽm(0)= ũm(b0), ˙̃vm(0)= ˙̃um(b0). (3.7)
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We denote the neighborhood of the graphG in R × Ã by

G(δ)= {
(s, w̃) ∈ R × Ã | ρ((s, w̃),G)< δ},

the neighborhoods of(b0, ũ
m(b0)) in R × Ãm and(b0, u

m(b0)) in R ×Am respectively by

µ̃m(θ)=
{
(s, w̃) ∈ R × Ãm | |s − b0| +

∥∥w̃− ũm(b0)
∥∥
Ã
< θ

}
,

µm(θ)=
{
(s,w) ∈ R ×Am | |s − b0| +

∥∥w− um(b0)
∥∥
A
< θ

}
. (3.8)

It follows from the isometrically isomorphism of̃A andA that(s, w̃) ∈ µ̃m(θ) if and only
if (s,w) ∈µm(θ). For any(s, w̃) ∈ µ̃m(θ), by (3.8) and assumption (ii),

ρ
(
(s, w̃),

(
b0, ũ(b0)

))
� |s − b0| +

∥∥w̃− ũm(b0)
∥∥
Ã

+ ∥∥ũm(b0)− ũ(b0)
∥∥
Ã
< 2θ,

i.e., µ̃m(θ)⊂G(2θ). Hence,

Cm(θ)= sup
(s,w)∈µm(θ)

∥∥f̃ (w)∥∥
X̃m

� C
(‖w‖A + 1

)
�M1, (3.9)

where and in the sequelC,Mj (j = 1,2, . . .) andM denote positive constants depend
only onθ . From (3.3) we know that̃f (w) :Am → X̃m is Lipschitz continuous onµm(θ),
and thus from the theorem of existence and uniqueness of solution of o.d.e.’s we d
that for anym, problem (3.7) admits a unique solutionṽm(t) on [0, h] ⊂ [0, hm] and(

t, ṽm(t)
) ∈ µ̃m(θ)⊂G(2θ), t ∈ [0, h], (3.10)

where h = min{θ, θ/M1}, hm = min{θ, θ/Cm(θ)}. Take b0 = max{0, d − h/2}, d ′ =
b0 + h (> d), and let

ũm(t)=
{
ũm(t), 0� t < b0,

ṽm(t − b0), b0 � t � d ′. (3.11)

It follows from the uniqueness of solution of problem (3.1), (3.2) that the solutionũm(t) is
continued to[0, d ′] and for eachm(

t, ũm(t)
) ∈G(2θ), t ∈ [0, d ′]. (3.12)

For Ã andA are isometrically isomorphic, by (3.12) and (3.1),∥∥um(t)∥∥
A

�M,
∥∥umtt (t)∥∥A = ∥∥f̃ (um(t))∥∥

Ã
� C

∥∥um(t)∥∥
A

�M,

∥∥umt (t)∥∥A � ‖ψm‖A +
t∫

0

∥∥f̃ (um(τ))∥∥
Ã
dτ �M, t ∈ [0, d ′]. (3.13)

By (3.13), we can choose a subsequence of{um}, still denoted by{um}, such that (3.6
holds. By the Lagrange mean value theorem, (3.13) and (3.6),∥∥σ (um(t))− σ (u(t))∥∥�M

∥∥um(t)− u(t)∥∥→ 0 (3.14)

uniformly on[0, d ′] asm→ ∞. Lettingm→ ∞ in (3.1), (3.2), we deduce from (3.6) an
(3.14) thatũ(t) is a solution of problem of (3.4) on[0, d ′].
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Rewrite problem (3.4) as(
utt − uxx − uxxtt − σ(u)xx, ek

)= 0 on(0,∞),(
u(0), ek

)= (ϕ, ek),
(
ut (0), ek

)= (ψ, ek), k = 0,1, . . . . (3.15)

Sinceutt − uxx − uxxtt − σ(u)xx ∈L2, t ∈ [0, d ′], and{ek}∞k=0 is dense inL2 andA,

utt − uxx − uxxtt = σ(u)xx in L2, t ∈ [0, d ′],
u(0)= ϕ, ut (0)=ψ in A,

i.e.,u ∈W2,∞([0, d ′];A) is a generalized solution of problem (1.1)–(1.3) on[0, d ′].
By the sequential weak∗ lower semicontinuity of the norm inL∞([b0, d

′]; Ã) and
(3.10),∥∥ũ(t)− ũ(b0)

∥∥
Ã

�
∥∥ũ(t)− ũ(b0)

∥∥
L∞([b0,d

′];Ã)
� lim
m→∞ inf

∥∥ũm(t)− ũm(b0)
∥∥
L∞([b0,d

′];Ã)
= lim
m→∞ inf

∥∥ṽm(t − b0)− ũm(b0)
∥∥
L∞([b0,d

′];Ã) < θ, t ∈ [b0, d
′].

(3.16)

From (3.16), (3.11), (3.10) and assumption (ii) we deduce that∥∥ũm(t)− ũ(t)∥∥
Ã

�
∥∥ũm(t)− ũm(b0)

∥∥
Ã

+ ∥∥ũm(b0)− ũ(b0)
∥∥
Ã

+ ∥∥ũ(b0)− ũ(t)
∥∥
Ã

< 3θ, t ∈ [b0, d
′], (3.17)

and therefore (3.5) holds. The proof of Lemma 3.1 is completed.✷
Step 3. Local existence of solutions.Taked = 0, J = [0,0] (a single point) anddn ≡ 0
(n= 1,2, . . .) in Lemma 3.1. Obviously problem (3.4) admits a solutionũ(t) = ϕ̃ (∈ Ã),
t ∈ J , satisfying ˙̃u(0)= ψ̃ ; and the correspondingu(t)= ϕ (∈A) is a solution of problem
(1.1)–(1.3) onJ , satisfyingut (0)= ψ . For anym, problem (3.1), (3.2) admits a solutio
ũm(t)= ϕ̃m, t ∈ [0, dn], satisfying ˙̃um(0)= ψ̃m. Since‖ϕ̃m − ϕ̃‖Ã → 0 (m→ ∞), there
exists a positive constantθ such that‖ϕ̃m − ϕ̃‖

Ã
< θ . Take a bounded open sphe

Q1 ⊂ R × Ã such that(0, ϕ̃) ∈ Q1 and ρ(∂Q1, (0, ϕ̃)) � 3θ , then the conditions o
Lemma 3.1 are satisfied. Therefore, there exists a positive constantb1 depending only on
θ and a subsequence{ũ1,m} ⊂ {ũm} such thatũ1,m(t), ũ(t) are all continued onto[0, b1],
(3.5) and (3.6) hold (substitutingum andd ′ there byu1,m andb1 respectively) and the
correspondingu ∈W2,∞([0, b1];A) is a solution of problem (1.1)–(1.3) on[0, b1].

Take a sequence{b1n} ⊂ [0, b1], b1n → b1 (n→ ∞). By (3.5), for anyn,m,∥∥ũ1,m(t)− ũ(t)∥∥
Ã
< θ1 (= 3θ), t ∈ [0, b1n]. (3.18)

Take a bounded open sphereQ2 ⊂ R × Ã such that the graph of̃u(t) on [0, b1]: G1 =
{(t, ũ(t)) | t ∈ [0, b1]} ⊂ Q2 andρ(∂Q2,G1) � 3θ1. Hence, by Lemma 3.1, there exis
a positive constantb2 (> b1) and a subsequence{ũ2,m} ⊂ {ũ1,m} such thatũ2,m(t) and
ũ(t) are all continued onto[0, b2], (3.5) and (3.6) hold (substitutingum, θ andd ′ there by
u2,m, θ1 andb2 respectively), and the correspondingu ∈W2,∞([0, b2];A) is a solution of
problem (1.1)–(1.3) on[0, b2].
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Repeating above process, we get a series of bounded open spheresQn: Q1 ⊂ Q2 ⊂
· · · ⊂ Qn ⊂ · · · , the radius ofQn tends to infinity asn→ ∞, a monotonically increas
ing sequence{bn} and a subsequence{ũn,m}: {ũn,m} ⊂ {ũn−1,m} ⊂ · · · ⊂ {ũm} such that
ũn,m(t) and ũ(t) are all continued onto[0, bn], (3.5) and (3.6) hold (substitutingum,
θ and d ′ there byun,m, θn (= 3nθ) and bn respectively), and the correspondingu ∈
W2,∞([0, bn];A) is a solution of problem (1.1)–(1.3) on[0, bn], wherebn are positive con-
stants depending only onθ andn. Since{bn} is monotonically increasing, limn→∞ bn =
T 0 � ∞. By the standard diagonal process, we can choose a diagonal sequence{ũm,m}
such that for any compact subinterval[0, T ] ⊂ J 0 = [0, T 0), limm→∞ inf Jmm ⊃ [0, T ]
and

um,m → u weak∗ in W2,∞([0, T ];A),
um,m → u strongly inC1([0, T ];L2

)
(3.19)

asm→ ∞ andu ∈W2,∞([0, T ];A) is a solution of problem (1.1)–(1.3) on[0, T ].

Step 4.J 0 = [0, T 0) is the maximal interval of existence ofũ(t), and thus is that ofu(t).
If T 0 = +∞, obviously the claim is valid.

If T 0<+∞, while ũ(t) could be continued past to the right ofT 0, then

sup
0�t<T 0

∥∥ũ(t)∥∥
Ã

= sup
0�t<T 0

∥∥u(t)∥∥
A
<+∞. (3.20)

Take a sequence of number{dn} ⊂ [0, T 0), dn → T 0 (n → ∞), then there must be
positive constantν such that whenm is sufficiently large, for anyn∥∥ũm,m(t)− ũ(t)∥∥

Ã
< ν, t ∈ [0, dn]. (3.21)

In fact, sinceA = A∗ (the dual space ofA), for anyη ∈ A, ‖η‖A = 1, we deduce from
(3.19) that(um,m(t), η)→ (u(t), η) (m→ ∞), t ∈ [0, T 0). Hence whenm is sufficiently
large,∣∣(um,m(t), η)∣∣� ∣∣(u(t), η)∣∣+ 1 �

∥∥u(t)∥∥
A

+ 1, t ∈ [0, T 0),

sup
0�t<T 0

∥∥ũm,m(t)− ũ(t)∥∥
Ã

� sup
0�t<T 0

∥∥ũm,m(t)∥∥
Ã

+ sup
0�t<T 0

∥∥ũ(t)∥∥
Ã

� 2 sup
0�t<T 0

∥∥ũ(t)∥∥
Ã

+ 1< ν. (3.22)

Therefore (3.21) holds.
By (3.21), we can choose a bounded open sphereQn0 from the above-mentioned ope

sphere sequence such that the graph ofũ(t) overJ 0: GT 0 = {(t, ũ(t)) | t ∈ J 0} ⊂Qn0 and
ρ(∂Qn0,GT0)� 3ν. Therefore, we deduce from Lemma 3.1 that there is a positive con
bn0 (> T

0) and a subsequence of{ũm,m}, still denoted by{ũm,m}, such thatũm,m(t) and
ũ(t) are all continued onto[0, bn0], (3.5), (3.6) and the other conclusions of Lemma
hold (substitutingum, θ andd ′ there byum,m, ν andbn0, respectively). This contradict
the fact thatT 0 = sup{bm}. Therefore,J 0 = [0, T 0) is the maximal interval of existence o
ũ(t) andu(t).
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From above proving process we see that if sup0�t<T 0 ‖u(t)‖A < +∞, there must be

T 0 = +∞. In fact, if T 0 < +∞, repeating above arguments one gets that there ex
positive constantbn0 > T

0 such thatũ(t) andu(t) are all continued onto[0, bn0], which
contradicts the fact that[0, T 0) is the maximal interval of existence ofũ(t) andu(t).

Step 5. The uniqueness of solution of problem(1.1)–(1.3). Assume thatu1, u2 ∈
W2,∞([0, T ];A) (0< T < T 0) are two solutions of problem (1.1)–(1.3). Letw = u1 −u2,
thenw satisfies

wtt −wxx −wxxtt = σ(u1)xx − σ(u2)xx on (0,1)× (0, T ], (3.23)

wx(0, t)=wx(1, t)= 0, 0 � t � T ,
w(x,0)= 0, wt (x,0)= 0, 0 � x � 1. (3.24)

Multiplying (3.23) bywt , integrating the resulting expression over(0, t), and making use
of the Sobolev embedding theorem and the Cauchy inequality gives

1

2

d

dt

(∥∥wt(t)∥∥2 + ∥∥wx(t)∥∥2 + ∥∥wxt (t)∥∥2)= −(σ ′(u1)u1x − σ ′(u2)u2x,wxt
)

�
∥∥wxt (t)∥∥2 + ∥∥σ ′(u1(t)

)∥∥2
∞
∥∥wx(t)∥∥2 + ∥∥(u2σ

′′(u1 + δu2)
)
(t)
∥∥2

∞
∥∥w(t)∥∥2

�
∥∥wxt (t)∥∥2 +C(T )(∥∥wx(t)∥∥2 + ∥∥w(t)∥∥2)

, 0< t � T , (3.25)

where 0< δ < 1,C(T ) is a positive constant depending only onT . Applying the Gronwall
inequality to (3.25) one gets∥∥wt(t)∥∥= ∥∥wx(t)∥∥= ∥∥wxt (t)∥∥= 0, 0 � t < T 0. (3.26)

Thereforew(t)≡ 0, i.e.,u1(t)≡ u2(t), t ∈ [0, T 0). Theorem 2.1 is proved.✷

4. Blowup of solutions

In order to prove Theorems 2.2 and 2.3, we first give two lemmas.

Lemma 4.1. Assume thatη(t) satisfies

η̈(t)+ αη(t)� cηr(t), t > 0, η(0)= η0, η̇(0)= η1, (4.1)

whereα, c, r are real numbers,c > 0, r > 1, and η0 � (α/c)1/(r−1) if α > 0, η0 � 0 if
α � 0, η1 > 0. Then there exists a finite constantT̃ such thatη(t)→ +∞ as t → T̃ −,
where

T̃ =
+∞∫
η0

[
2c
(
ηr+1 − ηr+1

0

)/
(r + 1)− α(η2 − η2

0

)+ η2
1

]−1/2
dη <+∞. (4.2)

Proof. By assumptions of Lemma 4.1, we claim that

η(t) > η0, η̇(t) > 0, t > 0. (4.3)
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In fact, if there exists at0 (> 0) such thatη(t) > η0, t ∈ [0, t0), while η(t0)= η0, note that
cηr−1 − α > cηr−1

0 − α � 0, then it follows from (4.1) that

η̇(t)� η1 +
t∫

0

η(τ)
(
cηr−1(τ )− α) dτ > η1> 0, t ∈ (0, t0), (4.4)

i.e., η(t) is monotonically increasing on[0, t0], η(t0) > η0 � 0, which contradicts the
assumption. Henceη(t) > η0, t > 0. Applying this fact to (4.4) giveṡη(t) > 0, t > 0.

Multiplying inequality in (4.1) by 2̇η(t) and integrating the resulting expression o
(0, t) one gets

η̇2(t)� 2c

r + 1

(
ηr+1(t)− ηr+1

0

)− α(η2(t)− η2
0

)+ η2
1 = h(t), t > 0. (4.5)

Sinceḣ(t)= 2η(t)η̇(t)(cηr−1(t)− α)� 2η(t)η̇(t)(cηr−1
0 − α)� 0, t � 0, h(t)� h(0)=

η2
1 > 0, t � 0. Hence (4.5) yields

η̇(t)
/[ 2c

r + 1

(
ηr+1(t)− ηr+1

0

)− α(η2(t)− η2
0

)+ η2
1

]1/2

� 1, t � 0. (4.6)

Integrating (4.6) over[0, T ] gives the conclusion of Lemma 4.1.✷
Lemma 4.2 [10,11]. Assume thatf is a quasimonotone increasing function onI ×
D(f ) → RN , whereI = [0, T ] andD(f ) is a closed convex set inRN containing the
setu� = {x ∈ RN | x � u(t) for somet ∈ I }.

If the functionsu(t), v(t) ∈ C(I ; RN) satisfy the following conditions:

(a) u(0)� v(0),
(b) u̇(t)− f (t, u)� v̇(t)− f (t, v) for t ∈ I ,
(c) f is locally Lipschitz continuous on botht andx in I ×D(f ),

thenu(t)� v(t), t ∈ I .

Proof of Theorem 2.2. Under the assumptions of Theorem 2.2, from Theorem
we deduce that problem (1.8), (1.2), (1.3) admits a unique generalized solutiou ∈
W2,∞([0, T ];A), 0< T < T 0, and ũ(t) = (u0(t), . . . , uk(t), . . .), defined on[0, T 0), is
a unique noncontinuable solution of problem (3.4) and

ũ(t)� 0, ˙̃u(t)� 0, t ∈ [0, T 0). (4.7)

In fact, we consider the auxiliary problem of (3.1), (3.2),

(1+ k2π2)ümk (t)+ k2π2umk (t)= −k2π2σ
(
um(t)

)
k
− ε, t > 0,

umk (0)= ϕk, u̇mk (0)=ψk, k = 0,1, . . . ,m, (4.8)

whereσ(um(t))k = 21−pa
∑
r1+···+rp=k umr1(t) . . .u

m
rp
(t) andε > 0 is a constant. By o.d.e.

theory inRm+1, for any compact subintervalJ ∗
m ⊂ Jm, whenε is sufficiently small, the

solutionũm(t; ε)= (um0 (t; ε), . . . , umm(t; ε),0, . . .) of problem (4.8) exists onJ ∗
m, and

˙̃um(t; ε) < 0, ũm(t; ε) < 0, t ∈ J ∗
m andt > 0. (4.9)
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1. In fact, if there is ak0: 0 � k0 �m such thaṫumk0(0; ε)=ψk0 = 0, then takingk = k0,
ri = k0, rj = 0, j 	= i (i, j = 1, . . . , p) respectively and lettingt → 0+ in (4.8) gives(

1+ k2
0π

2)ümk0(0; ε)� −k2
0π

2ϕk0
[
1+ ap(ϕ0/2)p−1]− ε � −ε < 0. (4.10)

From (4.10) and the continuity of¨̃um(t, ε) we deduce that there exists a right neighborh
of 0: (0, δ) such thaṫumk0(t; ε) < ψk0 = 0 and thusumk0(t; ε) < ϕk0 � 0, t ∈ (0, δ).

2. If there is ak1: 0 � k1 � m, t0 ∈ J ∗
m and t0 > 0 such thaṫũm(t; ε) < 0, t ∈ [0, t0),

while u̇mk1(t0; ε) = 0, then ũm(t; ε) < 0, t ∈ (0, t0]. Taking t = t0, k = k1 and ri = k1,
rj = 0, j 	= i (i, j = 1, . . . , p) in (4.8) gives(

1+ k2
1π

2)ümk1(t0; ε)� k2
1π

2umk1(t0; ε)
[
1+ ap(um0 (t0; ε)/2)p−1]− ε

� −k2
1π

2umk1(t0; ε)
[
1+ ap(ϕ0/2)p−1]− ε < 0. (4.11)

(4.11) implies that there is a left neighborhood oft0: (t0 − δ, t0) such thatu̇mk1(t; ε) > 0,
t ∈ (t0 − δ, t0), which contradicts the assumption.

So (4.9) is valid.
By the continuous dependence of solutions of o.d.e.’s for the parameter, lettingε→ 0

in (4.9) gives
˙̃um(t)� 0, ũm(t)� 0, t ∈ Jm, (4.12)

whereũm(t) is a solution of problem (3.1), (3.2). By the arguments of the proof of Th
rem 2.1, we can choose a subsequence{ũm,m} from {ũm} such that limm→∞ inf Jm,m ⊃ J 0,
and for any compact subintervalJ̃ 0 ⊂ J 0,

‖ũm,m − ũ‖C1(J̃ 0;l2) → 0 (4.13)

asm→ ∞. (4.13) implies that (4.7) holds.
Rewrite problem (3.4) as (whereσ(u)= aup)

(1+ k2π2)ük(t)= −k2π2
(
uk(t)+ 21−pa

∑
r1+···+rp=k

ur1(t) . . .urp (t)

)
, t > 0,

(4.14)

uk(0)= ϕk, u̇k(0)=ψk, k = 0,1, . . . . (4.15)

1. If assumption (H1) holds, then takingk = 1, ri = p, rj = −1 andri = 1, rj = 0,
j 	= i (i, j = 1, . . . , p) respectively in (4.14) gives

(1+ π2)η̈(t)+ ν1η(t)� 21−papπ2ηp−1(t)z(t), t > 0, (4.16)

whereη(t)= −u1(t) (� 0), z(t)= −up(t) (� 0), ν1 = π2[1+ (ϕ0/2)p−1ap] � 0, and the
factu0(t)=ψ0t + ϕ0 � ϕ0 (t > 0) has been used. Note thatż(t)� 0 andz(t)� −ϕp > 0,
it follows from (4.16) that

η̈(t)+ νη(t)� cηp−1(t), t > 0, η(0)= −ϕ1, η̇(0)= −ψ1, (4.17)

whereν = ν1/(1+π2), c= −21−papπ2ϕp/(1+ π2). Applying Lemma 4.1 to (4.17) on
gets that there exists a finite constantT̃ such thatη(t)→ +∞ ast → T̃ −, where

T̃ =
+∞∫ [

2c
(
ηp − ϕp1

)/
p− ν(η2 − ϕ2

1

)+ψ2
1

]−1/2
dη <+∞. (4.18)
−ϕ1
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Sinceu(0, t)= u0(t)/2+∑∞
k=1uk(t)� u1(t), ‖u(t)‖2 � u2

1(t)= η2(t),

u(0, t)→ −∞, ∥∥u(t)∥∥→ +∞ ast → T̃ −.

2. If assumption (H2) holds, then takingk = 1, ri = 0, rj = 1 andri = −1, rj = 2, j 	= i
(i, j = 1,2), after that takingk = 2, ri = 0, rj = 2 andri = rj = 1, j 	= i (i, j = 1,2)
respectively in (4.14) gives

(1+ π2) ¨̄η(t)+ π2(1+ aϕ0)η̄(t)� aπ2η̄(t)z̄(t),

(1+ 4π2) ¨̄z(t)+ 4π2(1+ aϕ0)z̄(t)� 2aπ2η̄2, t > 0, (4.19)

where η̄(t) = −u1(t), z̄(t) = −u2(t). Let η̄(t) = [2(1 + π2)(1 + 4π2)]1/2η∗(t)/2aπ2,
z̄(t)= (1+ π2)z∗(t)/aπ2, then we have

η̈∗(t)� αη∗(t)+ η∗(t)z∗(t), z̈∗(t)� βz∗(t)+ η∗2(t), t > 0,

η∗(0)= η0, η̇∗(0)= η1, z∗(0)= z0, ż∗(0)= z1, (4.20)

where

0 � α = −π2(1+ aϕ0)/(1+ π2)� β = −4π2(1+ aϕ0)/(1+ 4π2),

η0 = −2aπ2ϕ1
/[

2(1+ π2)(1+ 4π2)
]1/2

,

η1 = −2aπ2ψ1
/[

2(1+ π2)(1+ 4π2)
]1/2

,

z0 = −aπ2ϕ2/(1+ π2), z1 = −aπ2ψ2/(1+ π2).

We consider the following initial value problem

η̈(t)= αη(t)+ η(t)z(t), z̈(t)= βz(t)+ η2(t), t > 0,

η(0)= η0, η̇(0)= η1, z(0)= z0, ż(0)= z1, (4.21)

whereη(t)� η0, z(t)� z0, η̇(t)� 0, ż(t)� 0, t > 0. Obviously, (4.21) is equivalent to th
problem

η̇(t)= η1 +
t∫

0

(
η(τ)z(τ )+ αη(τ))dτ,

ż(t)= z1 +
t∫

0

(
η2(τ )+ βz(τ))dτ, t > 0,

η(0)= η0, z(0)= z0. (4.22)

By assumption (H2), z0 � √
η0 � 1/

√
2, z1 � η1/

√
2> 0, and thus

z(t)�
√
η(t), t > 0. (4.23)

In fact, if there exists at0 > 0 such thatz(t) >
√
η(t), t ∈ (0, t0), while z(t0) = √

η(t0),
then it follows from the second equation in (4.22) that
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2
√
η(t0)ż(t0)= 2z1z(t0)+ 2z(t0)

t0∫
0

(
η2(τ )+ βz(τ))dτ

> 2z1z0 + 2

t0∫
0

(
η2(τ )z(τ )+ βη(τ))dτ. (4.24)

By (4.24) and the first equation in (4.22),

2
√
η(t0)ż(t0)− η̇(t0) > 2z1z0 − η1 +

t0∫
0

η(τ)z(τ )
(
2η(τ)− 1

)
dτ

+
t0∫

0

(2β − α)η(τ ) dτ � 0. (4.25)

Therefore, whent = t0,

d

dt

[
z(t)−√

η(t)
]= (

2
√
η(t)ż(t)− η̇(t))/2

√
η(t) > 0. (4.26)

(4.26) implies that there is aδ > 0 such thatz(t) − √
η(t) < z(t0) − √

η(t0) = 0, t ∈
(t0 − δ, t0), which contradicts the assumption. Hence (4.23) is valid.

Substituting (4.23) into the first equation in (4.21) gives

η̈(t)� αη(t)+ η3/2(t), t > 0, η(0)= η0, η̇(0)= η1. (4.27)

Applying Lemma 4.1 to (4.27) gives that there exists a finite constantT̃ such that
η(t)→ +∞ and thusz(t)→ +∞ (t → T̃ −).

Let X(t)= (η(t), z(t), v(t),w(t))T , wherev(t) = η̇(t), w(t) = ż(t), X0 = (η0, z0, η1,

z1)
T , f (t,X)= (v(t),w(t), αη(t)+ η(t)z(t), βz(t)+ η2(t))T . Rewrite problem (4.21) a

Ẋ(t)= f (t,X), t > 0, X(0)=X0. (4.28)

Rewrite problem (4.20) as

Ẋ∗(t)� f (t,X∗), t > 0, X∗(0)=X0, (4.29)

whereX∗(t) = (η∗(t), z∗(t), v∗(t),w∗(t))T , v∗(t) = η̇∗(t), w∗(t) = ż∗(t). A simple ve-
rification shows that for anyT : 0< T < T 0, f (t,X) : I ×D(f )→ R4 is quasimonotone
increasing and locally Lipschitz continuous on botht andX in I ×D(f ), whereI = [0, T ]
andD(f ) = {X = (η, z, v,w)T | η � η0, z � z0, v � 0, w � 0} ⊂ R4 is a closed conve
set andD(f ) ⊃ X� = {Y ∈ R4 | Y � X(t) for somet ∈ I }. So by Lemma 4.2 and th
arbitrariness ofT : 0< T < T 0,

X∗(t)�X(t), t ∈ J 0 = [0, T 0). (4.30)

Therefore,η∗(t)� η(t)→ +∞, z∗(t)� z(t)→ +∞ ast → T̃ −, and thusu(0, t)→ −∞
and‖u(t)‖ → +∞ ast → T̃ −.

3. If the assumption (H3) holds, then in (4.14) takingk = 1, taking 1 for(p + 1)/2
times and−1 for (p − 1)/2 times respectively inr1, . . . , rp , and takingri = 1, rj = 0,
j 	= i (i, j = 1, . . . , p) respectively gives
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1. Let
(1+ π2)η̈(t)+ νη(t)= −21−paπ2ηp(t), t > 0,

η(0)= −ϕ1, η̇(0)= −ψ1, (4.31)

whereη(t) = −u1(t), ν = π2(1 + ap(ϕ0/2)p−1) � 0. Applying Lemma 4.1 to prob
lem (4.31) one gets that there exists a finite constantT̃ : 0< T̃ < +∞ such thatη(t)→
+∞ ast → T̃ − and thusu(0, t)→ −∞ and‖u(t)‖ → +∞ ast → T̃ −. Theorem 2.2 is
proved. ✷
Proof of Theorem 2.3. Sinceϕ,ψ ∈A, from Theorem 2.1 we deduce that problem (1
(1.2), (1.3) admits a unique generalized solutionu ∈W2,∞([0, T ];A), 0< T < T 0.

(i) If assumption (H4) or (H5) holds, letv = −u, thenv satisfies

vtt − vxx − vxxtt = −a(vp)xx on (0,1)× (0, T 0), (4.32)

vx(0, t)= vx(1, t)= 0, t ∈ [0, T 0),

v(x,0)= −ϕ(x), vt (x,0)= −ψ(x), 0 � x � 1. (4.33)

Applying Theorem 2.2 to problem (4.32), (4.33) gives the conclusion of Theorem 2.3
(ii) If assumption (H6) holds, still letv = −u, thenv satisfies

vtt − vxx − vxxtt = a(vp)xx on (0,1)× (0, T 0), (4.34)

and conditions (4.33). Applying Theorem 2.2 to problem (4.34), (4.33) gives the co
sion of Theorem 2.3. Theorem 2.3 is proved.✷
Example 1. For initial boundary value problem (1.2), (1.3) of IBq equation (1.4) (
a = 1 andp = 2 in (1.8)), if we take initial data

ϕ(x)= ϕ0/2+ ϕ1 cosπx + ϕ2 cos 2πx,

ψ(x)=ψ1 cosπx +ψ2 cos2πx, (4.35)

where ϕ0 � −1, ϕ1 � −[(1 + π2)(1 + 4π2)]1/2/√8π2, ϕ2 � −[2(1 + π2)3ϕ2
1/(1 +

4π2)π4]1/4, ψ2 � [(1 + π2)/(1 + 4π2)]1/2ψ1 < 0, then a simple verification shows th
the assumptions of Theorem 2.1 and assumptions (i) and (ii)(H2) of Theorem 2.2 hold. So
by Theorems 2.1 and 2.2, the corresponding problem (1.4), (1.2), (1.3) admits a
generalized solutionu ∈W2,∞([0, T ];A), 0< T < T 0, and there exists a finite consta
T̃ such that

u(0, t)→ −∞, ∥∥u(t)∥∥→ +∞ ast → T̃ −. (4.36)

Now we give a numerical experiment to demonstrate the correctness of Example
ϕ0 = −2000,ϕ1 = ϕ2 =ψ1 = ψ2 = −1000 in (4.35), and rewrite Eq. (1.4) as

vt − uxx − vxxt = (u2)xx, ut = v. (4.37)

Let t = jτ , wherej is a nonnegative integer,τ = 0.002 is the time step length andh= 0.05
is the space step length. By the ordinary difference method
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vt [i, j ] = v[i, j ] − v[i, j − 1]
τ

+ o(τ), (4.38)

uxx[i, j ] = u[i − 1, j ] − 2u[i, j ] + u[i + 1, j ]
h2

+ o(h2), (4.39)

vxxt [i, j ] = v[i − 1, j ] − v[i − 1, j − 1] − 2v[i, j ] + 2v[i, j − 1] + v[i + 1, j ]
h2τ

− v[i + 1, j − 1]
h2τ

+ o(h2τ ), (4.40)

(u2)xx[i, j ] = u2[i − 1, j ] − 2u2[i, j ] + u2[i + 1, j ]
h2 + o(h2), (4.41)

ut [i, j ] = u[i, j + 1] − u[i, j ]
τ

+ o(τ), (4.42)

we get the following difference scheme:

−v[i − 1, j ] + (2+ h2)v[i, j ] − v[i + 1, j ]
= h2v[i, j − 1] + τ (u[i − 1, j ] − 2u[i, j ] + u[i − 1, j ])

+ τ (u2[i + 1, j ] − 2u2[i, j ] + u2[i − 1, j ])
+ (−v[i − 1, j − 1] + 2v[i, j − 1] − v[i + 1, j − 1]),

u[i, j + 1] = u[i, j ] + τv[i, j ]. (4.43)

And by the scheme we get the graphs of the numerical solutions of the correspo
problem (1.4), (1.2), (1.3) atj = 0, 6, 10, 13, 15, 20 and 30, respectively, which show
the solutionsu(x, t) develop a pronounced negative spike gradually at the pointx = 0 as
t → T̃ −, see Figs. 1, 2 and 3. And this fact corresponds with (4.36).

Example 2. For initial boundary value problem (1.2), (1.3) of the IMBq equation (1.6
we takea = −1 and initial data

ϕ(x)= ϕ0/2, ψ(x)=ψ1 cosπx, (4.44)

whereϕ0 � 2/
√

3, ψ1 > 0. Obviouslyϕ,ψ ∈ A, ϕ̃ � 0 andψ̃ � 0, i.e., the assumption
of Theorem 2.1 and assumptions (i) and (ii)(H6) of Theorem 2.3 hold. Therefore

Fig. 1.j = 0, 6, 10, 13, 15.
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n

gth.
Fig. 2.j = 20.

Fig. 3.j = 30.

the corresponding problem (1.6), (1.2), (1.3) admits a unique generalized solutiou ∈
W2,∞([0, T ];A), 0< T < T 0, andu blows up in finite timẽT , i.e.,

u(0, t)→ +∞, ∥∥u(t)∥∥→ +∞ ast → T̃ −. (4.45)

Similarly, takeϕ0 = 2400,ψ1 = 1000, and rewrite Eq. (1.6) as

vt − uxx − vxxt = −(u3)xx, ut = v. (4.46)

Let t = jτ , whereτ = 0.0005 andh= 0.05 are respectively the time and space step len
By the same difference scheme as shown in (4.38)–(4.40) and

(u3)xx[i, j ] = u3[i − 1, j ] − 2u3[i, j ] + u3[i + 1, j ]
h2

+ o(h2), (4.47)

ut [i, j ] = u[i, j + 1] − u[i, j − 1]
2τ

+ o(τ2), (4.48)

−v[i − 1, j ] + (2+ h2)v[i, j ] − v[i + 1, j ]
= h2v[i, j − 1] + τ (u[i − 1, j ] − 2u[i, j ] + u[i − 1, j ])

− τ (u3[i + 1, j ] − 2u3[i, j ] + u3[i − 1, j ])
+ (−v[i − 1, j − 1] + 2v[i, j − 1] − v[i + 1, j − 1]),

u[i, j + 1] = u[i, j − 1] + 2τv[i, j ], (4.49)
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(1.2),
ions

cheme
easily
Fig. 4.j = 0, 5, 6, 7, 8.

Fig. 5.j = 11.

we get the graphs of the numerical solutions of the corresponding problem (1.6),
(1.3), witha = −1, atj = 0, 5, 6, 7, 8 and 11, respectively, which show that the solut
u(x, t) develop a pronounced positive spike gradually atx = 0 ast → T̃ −, see Figs. 4
and 5. And this fact corresponds with (4.45).

Now, we make another experiment to show how the above-mentioneddifference s
works on a non-blowup solution. By the homogeneous balance method, see [14], we
find a solitary wave solution

u(x, t)=
√

2

1+ x + t (4.50)

of the IMBq equation (1.6), witha = −1, and

ux(0, t)= −
√

2

(1+ t)2 , ux(1, t)= −
√

2

(2+ t)2 ,

u(x,0)=
√

2
, ut (x,0)= −

√
2

2
. (4.51)
1+ x (1+ x)
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get the

exact
ble

helped
Fig. 6.j = 10.

Fig. 7.j = 20.

By the same difference scheme as shown in (4.38)–(4.40) and (4.47)–(4.49), we
graphs of the numerical solutions of problem (1.6), (4.51), witha = −1, atj = 10 and 20,
see Figs. 6 and 7. The comparison of the graphs of the numerical solution with the
solution of problem (1.6), (4.51), witha = −1, shows that the difference scheme is sta
at least in time interval[0,0.01] ⊃ [0,0.0055].
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