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1. INTRODUCTION

The problem presented in this paper is a model related to the collinear
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notoriously difficult. The search for a full solution has motivated a great

deal of work but was unsuccessful due in part to the possibility of chaotic
behavior discovered by Poincaré in the 1880’s and 1890’s [3].

The cause of complicated behavior in the three-body problem lay in the
fact that solutions can pass near triple collision. In 1974 R. McGehee intro-
duced a transformation which allowed him to extend the phase space to
triple collision in the collinear three-body problem. McGehee studied the
flow on the collision manifold in some detail in order to understand orbits
which pass near to triple collision [ 1]. His analysis is essentially a tool for
understanding systems containing triple collisions.

In 1994, Meyer and Wang showed that the structure of the stable
manifold for triple-collision in the phase space of the collinear three-body
problem is complicated [2]. They also show the existence of symbolic
systems which describe the dynamics but to state the symbolic dynamics
requires tracking the stable manifold for triple-collision between binary
collisions, a notorious problem at best.

In an effort to study the global effect on the dynamics of the collinear
three-body problem due to the existence of orbits which pass near triple-
collision we present a special model which is a caricature of the collinear
three-body problem. The goal of this paper is to describe the dynamics of
this model. The main theorem, that the set of sequences of allowed bounces
can be described by a sub-shift of finite type, suggests that a similar result
might be possible in the collinear three-body problem.

Rather than three point masses on a line we introduce a fixed bumper
between two point masses restricted to a line. This bumper has infinite
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inertia and zero mass. The presence of the bumper allows for the existence
of complicated dynamics and the phase space for this model is qualitatively
similar to that of the collinear three-body problem. In this setting we can
apply standard dynamical systems techniques and answer some of the
questions which remain open in the collinear three-body problem. For the
model, we are able to follow the branches of the one-dimensional unstable
manifold of triple-collision on the collision manifold in the case of equal
masses. We are also able to give a complete list of possible dynamics when
the two masses are equal.

We begin with a detailed statement of the model for equal masses and
give the equations of motion. We next perform a change of variables to
McGehee coordinates and define the collision manifold. We then study the
induced flow on the collision manifold. We use our knowledge of the flow
on the collision manifold to show how the stable manifold for triple
collision sits inside the phase space. With this description, we show what
sequences of left and right bounces can occur, our main goal.

2. EQUATIONS OF MOTION

Our model consists of two bodies restricted to a line with positions ¢,
and ¢,, masses m; =m,=1 and initial conditions ¢;(0)<0<¢g,(0) (see
Fig. 1). We denote their momenta by p, =m, ¢, and p, =m,¢q,.

We define a bumper to be a fixed massless point so that when either body
reaches the bumper, the body bounces elastically. For this paper, the
bumper is fixed at the origin. If g, =0 at time ¢ then we say that the body
with position ¢; bounced at time ¢, that is, p;(t*)= —p,;(t7). If ¢, =0 at
time ¢ then we say that there was a left bounce at time ¢ and denote a left
bounce with the symbol L. If ¢, =0 at time ¢ then we say that there was
a right bounce at time ¢ and denote a right bounce with the symbol R. By
choosing initial conditions on either side of the bumper, ¢,(0) <0< ¢,(0),
the position ¢, is always non-positive and the position ¢, is always non-
negative.

If at some time ¢, ¢,(¢) = g,(#) =0 we say there is a triple collision at time t.
We will not continue solutions beyond triple collision (see Theorem 8.1).
If a solution begins in triple collision, we say that the solution is an ejection
orbit, and we denote the collision by the symbol E. A solution which ends

q1 0 q2

Fic. 1. Schematic of the collinear one-bumper two-body problem.



380 SAMUEL R. KAPLAN

in triple collision is a collision orbit, and we denote the collision by the
symbol C.

When the bodies are away from the bumper, they move under the
Hamiltonian system with energy H=1/2(p7+ p3)—(¢>—q:)'. Between
bounces solutions are constrained by the two integrals of the two-body
problem, total energy, H, and total momentum, p, + p,. At a bounce, the
momentum of one of the bodies changes sign. (A body cannot hit the
bumper with zero momentum.) This resets the total momentum which will
be constant until the next bounce. Since the total energy, H, depends on
the squares of the momenta, a bounce does not change the total energy.
The model system has only one constant of motion, H.

We set the total energy to be negative. This bounds the distance between
the two bodies. Since the two bodies cannot escape to infinity and since the
bodies are mutually attracting, solutions which are defined for all time
must pass through an infinite number of bounces. By keeping track of
left and right bounces we can associate a solution to an itinerary of L’s
and R’s. Our goal is to determine what itineraries are realized by solutions
of the model.

3. THE GEOMETRY OF THE PHASE SPACE

If we plot the positions the bodies in R? as a pair (q,, g,), then the
configuration space, or set of allowed positions of the bodies, is a subset of
the closed second quadrant since ¢,(7) <0< ¢,(¢). Fixing the total energy
to be 1 <0, the distance between the two bodies is bounded by — 1/A. This
maximum mutual distance can only occur when p,=p,=0. The line
¢»— ¢, = —1/h acts like the boundary of a Hill’s region for our configu-
ration space. The vector field associated with the Hamiltonian, H, is

Q2

q1

FiG. 2. Configuration space for negative energy.
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undefined at triple collision; thus, the origin must be excluded from our
configuration space. The whole configuration space is a filled triangle with
vertices (1/h,0), (0, —1/h), and (0, 0) minus the origin. Positions along
¢, =0 correspond physically with a left bounce, and positions along ¢, =0
correspond physically with a right bounce. The phase space in Hamiltonian
coordinates is not compact (Fig. 2).

4. CHANGE OF VARIABLES

To compact our phase space we will use a technique of McGehee’s [1]
in which the singularity at ¢, =¢, =0 is replaced by a collision manifold.
The collision manifold provides a tool for study of how orbits behave as
they pass near triple-collision. This transformation is accomplished by a
change of variables to polar coordinates and a rescaling of time.

For a point in configuration space, we denote its distance to the origin
by the term r** and its argument with the positive ¢, -axis as 0 (see Fig. 3).
Notice that 0 is bounded by 7/2 and 7 since we are working in the second
quadrant. Associated to the new coordinates » and 6 are radial and angular
momenta. The coordinates u and v in the following change of variables are
related to these momenta.

The change of variables to polar coordinates, (r, 0, u, v) is

q,=r**cos 0 g,=1r**sin 0

pr=r""(ucos@—vsin®)  p,=r"""(usinO+vcos0).

q2

2/3

\9

q1

F1G. 3. Change to polar coordinates.
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We also let dt =r dr. Then in t-time or fictitious time, and in the new
coordinates, the differential equations becomes

dr _3

a2

do _

dr_v

775
dr_v +2u + V(0)
dv 1 ,
E——EMU—V(O),

where V(0) = (cos 0 —sin ) ~' is the angular potential function (see Fig. 4)
and V' denotes dV/d6.

Since r decouples from the system, we may consider the flow in (0, u, v)
coordinates separately. Also, for r =0, dr/dt =0 so the set of configurations
at triple collision forms an invariant manifold. In these coordinates, the
energy equation becomes

$u” 4+ 30° 4+ V(0) =r*"h.

So for r=0, we have a relationship between 6, u, and v which defines
what is called a triple collision manifold. We shall denote this manifold by
the symbol M (see Fig. 5).

M={(0,u,v)|u*+v>+2V(0)=0and n/2<0<r}.
On M, we use the energy relation to write du/dt = 1/2v°. This means that

the flow on M is non-decreasing in the u direction. Although this flow has
no direct physical meaning for the original system (except in the 2=0

V()
} } - 6
s 3 T
1 2 4
V2
-1

FiG. 4. Plot of angular potential V(0).
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FiG. 5. The collision manifold M and its critical points.

case), real orbits which come close to triple collision must approach the
collision manifold and by continuity, must mimic the behavior of the flow
on M.

To this point, we have not incorporated the bumper and how it affects
the flow. Looking back to the polar change of variables, we see that when
0=m/2, ¢, hits the bumper so p, changes sign. In polar coordinates, this
means df/dt changes sign, so v=d6f/dr changes sign. The analysis at 6 ==
is the same, at the bumper the v-coordinate changes sign. We may now
amend the definition of the collision manifold to include this identification
at the bumper.

sz/{(n/Z, u, v) ~(n/2, u, —v) and}.

(7, u, v) ~ (7, u, —v)

For the rest of the paper we shall picture the collision manifold as M and
let solutions jump at its boundary.' Solutions on this piece-wise smooth
flow are the same qualitatively as on .. We shall not distinguish between
M and & and simply write M for the collision manifold.

5. STUDY OF EQUILIBRIA

To understand the flow for our whole phase space, we must first describe
the flow on M. We begin with the equilibria on M.

' One may ask if there is a third change of variables taking M to a smooth manifold with
an associated smooth flow. The answer is yes, namely, w= —vsin'?20 dr=sin*320dT.
However, this coordinate system is cumbersome and unrevealing.
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THEOREM 5.1. The collision manifold, M, has six critical points. In
(0, u, v) coordinates they are

P, =(3n/4, —Y/2,0) P,=(3n/4,2,0)
St =(n/2, =/2,0)  Sh=(n/2,./2,0)
St =(n, —/2,0) S5 =(7,/2,0)

The equilibrium points P, and P, are saddles. The other four points are not
equilibria under the vector field. Because of the identification at the bound-
aries, solutions beginning at these points can not be continued. The points
S’ and S" behave like spiral sources, S’ and S, behave like spiral sinks
on M.

Proof. From the vector field it is clear that P, and P, are saddles. For
shorthand, we shall denote the vector field by F. For P, the matrix DF|p,
has eigenvalues —2'% —2-%% and 2Y* and associated eigenvectors
(0, 1,0), (1,0,27%%), and (1, 0, —2'*) respectively. Likewise, P, is a saddle
as the matrix DF|,, has eigenvalues 2'4, 2734 and —2"* and associated
eigenvectors (0, —1,0), (1,0,2**), and (—1, 0, 2'/*) respectively.

To prove the claims about S}’,, it enough to show that S/ acts as a
source on M as the rest of the claim follows from the symmetries of the
vector field (see Lemma 6.1).

In a deleted neighborhood of S’ there are no rest points, so for a solu-
tion near S, du/dr is positive except as the solution crosses v=0. Since
v=0 is the isocline for df/dv =0, the solution crosses v =0 orthogonally.
So, in a small deleted neighborhood of S*, solutions move away from S’.
It is in this sense that S%” are sinks and S5 are sources. ||

THEOREM 5.2.  Solutions in the basin of S’y on M pass through an infinite
number of bounces.

Proof. Let 0 be positive and look at a rectangular neighborhood of S?
as pictured in Fig. 6. For ¢ small enough, we can use the energy equation
to write u as a function of # and v so we can project the flow to 6, v coor-
dinates.

For an orbit near S’ to terminate after a finite number of circuits, the
solution must come in to S tangent to some angle « measured from the
vertical in the 0, v-plane. Since in this ¢ neighborhood of S, dv/dr ~1>0,
it must be that a > 7/2 else the orbit would come in to S’ decreasing in the
v coordinate. However for v <0, df/dr <0 so the orbit is moving to the left,
away from S, and, as shown above, solutions cross v =0 orthogonally.
Since no solution can terminate at S’ by coming in tangent, every solution
crosses @ =7 an unbounded number of times as t increases. ||
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0=m—-90 O0=m

F1G. 6. Rectangular neighborhood of S%.

6. SYMMETRY OF SOLUTIONS

The equations of motion in McGehee coordinates, hence the flow, have
two symmetries: a mirror symmetry and a time symmetry, reversibility. The
symmetries are easy to verify. Reversibility is standard in Hamiltonian
systems and the mirror symmetry is present because we are considering the
special case of equal masses. Since the two bodies have the same mass we
can switch their roles yielding the mirror symmetry. These symmetries
apply to any solution, not just ones on M.

LeEmMmA 6.1. There are two symmetries to the flow:

Mirror Symmetry Reversibility
-~ 3z
0=——10 = —
> 7 u
v=—v v=—v
T=—7

If (0, u, v) is a solution in time © If (0, u, v) is a solution in time ©

then so is (0, u, ) in t then so is (0, u, 0) in 7.

Proof. The calculations are straightforward and left to the reader. |
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7. THE FLOW ON THE COLLISION MANIFOLD

A solution passing through several bounces has an associated itinerary of
L’s and R’s. If a solution is on the stable manifold for P, then we end its
itinerary with the symbol C. If a solution is on the unstable manifold for
P, then we begin its itinerary with the symbol E. On M, however, P, and
P, each have a stable and unstable manifold. To distinguish the unstable
manifold of P, and P, on M we begin the itinerary with the symbol P,
or P,. To distinguish the stable manifold of P, and P, on M we end the
itinerary with the symbol P, or P,. We next determine the itinerary of one
branch of the one-dimensional unstable manifold of P,. This will be
enough information to determine the itinerary of all the branches of stable
and unstable manifolds at P, and P, on M.

THEOREM 7.1. One branch of the unstable manifold of P, follows
the itinerary P,LRLRRR..., the other branch follows the itinerary
P RLRLLL....

Proof (outline of proof). We can find the location of the first intersec-
tion of the unstable manifold with the plane § = /2 analytically. The sur-
face corresponding to zero momentum given by the relation p, + p, =0, or
in McGehee coordinates, u(cos 0 + sin 0) + v(cos @ —sin ) =0 is invariant
under the flow. The intersection of the zero momentum manifold and M
are solutions. One of the arcs of intersection passes through P, and since
the vector field points away from P, along this arc, this is the unstable
manifold of P,. It is easy to check that the first intersection of the unstable
manifold with the plane § =7/2 is at u=v= —1. That is P, L has a u-coor-
dinate of —1.

One can use technical estimates (see Lemma 7.2) to continue following
the branches of the unstable manifold of P, and show that the solution
continues across M and intersects the plane at 6 =7 with a negative
u-coordinate. That is the points P, LR and P,RL each have a negative
u-coordinate. By symmetry (see Lemma 6.1) the stable manifold for P,
pulls back two bounces to be just above the unstable manifold for P,. That
is, the points on M with the itinerary RLP, and LRP, are just above u =0.
This says that the solution for the unstable manifold bounces at least twice
more. With a second technical estimate (see Lemma 7.3) we can verify that
the solution is then caught in the basin for S5”. See Figs. 7 and 9. |

Lemma 7.2. The points P, LR, and P,RL each have a negative u-coor-
dinate.

Proof. Recall that on M, du/dr =v?/2 and df/dr =v. From this we see
that du/d0=v/2. For the initial condition, P, R, that is at =0, 0=m,
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84 St

Fi1G. 7. The first two bounces on one unstable branch of P, and its time-symmetric stable
manifold of P,.

u=—1, v=—1, we can rewrite v as —./ —u*>—2V(0). We now want to
bound the derivative, du/do.
For n/2 <0 <n we have

Since the solution stays below P, whose u-coordinate is %2, the function
u(0), is strictly decreasing hence invertible so 6(u) is well-defined and

2 do 2

VAR N

We integrate these three terms to see if the change in 0 is greater than
—n/2. If so, then 6 crossed /2 before u reached zero. We also make the
inequalities strict since neither bound on df/du maintains equality for the
entire path between P,L and P,LR.

_L°:7172_ 2du<j:1;lzdu<—j:122_ _ du
i ”

—2arcsin(2 %) < 0(0) —0(—1) < —2 arc sin(2 ~1?)

7 —2arcsin(2~"*) < 0(0) < g
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Ce— upper bound
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lower bound

L

L u
-1 —-0.5

FiG. 8. Plot upper and lower bounds for 6(u) for the path between P, L and P, LR.

Since 0(0) <m/2, the curve 6(u) crossed n/2 for u<0 hence the u-coor-
dinate of P, LR is negative. |

LemmA 7.3.  The point P LRLR is in the basin of S%.

Proof. We know that the u-coordinate of P, RL is negative, but we
need a lower bound for it as well. From Lemma 7.2 we have the inequality

2 do

ﬁ — 2 du

A lower bound for the u-coordinate of P, RL is the value for which the

curve, which bounds the path from P,R to P,RL from below, crosses
0=mn/2 (see Fig. 8). That is, we want to solve for u, such that

_f“;liz du=—n/)2

S

2 arc sin(2 ~'4) + 2 arc sin(u 2 =) =g_

Since u, <0 we know that arc sin(u,) <u,.

2u.2 "> 2 arcsin(u,2 " "*)==—2arcsin(27"4)

S

u, >273 <72T— 2 arc sin(21/4)>

> —0.26.
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Since the u-coordinate of P, RL is negative, the u-coordinate of LRP, is
positive. Since P, RL is below LRP,, it must cross to the right, so P RLR
exists. We next want to show that the u-coordinate of P, RLR is larger than
the absolute value of the u-coordinate of P, RL. It is enough to show that
the u-coordinate of P, RLR is larger than 0.26.

To do this, we calculate the value of u, so that

uy 2 4
J,uy 7,7\/5 — uz du = E

The solution to this equation is the boundary between initial conditions
whose sum of initial and final u-coordinates is positive and those whose
sum is negative. Notice that we are now assuming that we are crossing
from left to right, that is v > 0.

f 2z  a.T
oy /ﬁ_uz 2

4 arc sin(u,2 %) =g

u,2~"* =sin(n/8)
u, =/ (/2)/2 = 0.455.

Since the u-coordinate of Py RL > —0.26 > —u, we have that the u-coor-
dinate of P; RLR >u,>0.26, that is, the u-coordinate of P; RLR > u-coor-
dinate of RLP,. The u-coordinate of P, RLR is less that the u-coordinate
of RP, since the inequality held for their pre-images under the return map.
Since P; RLR is between RP, and RLP,, it must cross to the right. Since
P,RLRL is above LP,, it is trapped in the basin of S’ (Fig. 9). 1|

0
m [
VI o
.. ™/
- 7
—1/2 =

F1G. 9. The time-7 plots of the 0 and u coordinates of the unstable branch of P, shown
in Fig. 7. At time 7 = 7*, the solution passes through the right face for the first time. Note that
—0.26 <u(t*) <0.
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8. BLOCK REGULARIZATION

One calls a triple-collision (block) regularizable if solutions can be
extended past triple-collision with continuity with respect to initial condi-
tions (see [ McG]). As in the collinear three-body problem, triple-collision
is not regularizable for this model.

THEOREM 8.1. Triple collision is not block regularizable.

Proof. The equilibrium, P, has a two-dimensional stable manifold and
a one dimensional unstable manifold. The unstable manifold lies entirely
on M.

Pick a small disk of initial conditions centered about the invariant line,
0=3n/4, v=0 parallel to the u—v plane with a u-coordinate close to
that of P,. Following this disk of initial conditions forms a tubular
neighborhood of solutions which lead to and near triple collision at P,.
This tube splits up and part of that neighborhood follows one arm up to
S’ and part follows up the other arm to S, (see Theorem 7.1).

So near an orbit leading to triple collision is an orbit which has ¢,
bouncing at the bumper several times consecutively while ¢, moves off or
vice versa. So there is no way to continue triple collision preserving
continuity with respect to initial conditions This is the same reason that
triple-collision is not regularizable in the collinear three-body problem. ||

9. PROPERTIES OF THE FULL FLOW

We will denote the phase space for the model as ..
M={(0,u,v) |u”+0>+2V(0)<0and /2 <O < n}.

The phase space is bounded by M and a disk in the plane § = z/2 of radius
ﬂ centered at u = v =0 corresponding to a left bounce and second disk in
the plane 8 =z of radius ﬂ centered at u =v =0 corresponding to a right
bounce. Orbits in the phase space continue past bounces the same way as
on M, namely by changing the sign of the v coordinate at the time of the
bounce.

Comparison to Hamiltonian Coordinates

To assist the reader’s understanding of the new coordinates, we compare
it to the Hamiltonian coordinate system. The origin, a singularity in
Hamiltonian coordinates, has been blown up to be all of M. The boundary
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of Hill’s region (¢, + ¢, = —1/h) has become the #-axis (where r is at a
maximum).

What had been the g,-axis now corresponds to the intersection of the
new phase space and the 6 =z plane. This intersection we call the right face
of the phase space. Likewise, the ¢,-axis corresponds to the intersection of
the new phase space and the 6 =7/2 plane. This intersection we call the left
face. See Fig. 10.

Left bounces occur on the left face. Right bounces occur on the right
face. For an orbit to be near triple collision in configuration space means
the orbit is near M in McGehee coordinates.

Ejection-Collision Orbit

There is a connecting orbit between P, and P, in the interior of M. For
0=3n/4 and v=0, both df/dr and dv/dr vanish. Thus the wu-direction
between P, and P, forms a one-dimensional invariant manifold, EC, with
the differential equation du/dt = (1> —/2)/2.

=0 0=m/2

0=mn/2 0=

FiG. 10. The two top figures are the configuration space in rectangular and polar coor-
dinates. The bottom picture is of M and the §-axis in ..
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The solution of this differential equation on the set where 0 =7n/4 and
v=01s

u(t) = /2 tanh (K —7/./8),

where K is a constant of integration determined by the initial condition.
This function is strictly decreasing from P, to P,. Thus solutions with
initial conditions on this line are defined for all time and have an a-limit
set at P, and an w-limit set at P,. The radial coordinate along this solution
is increasing for u >0 and decreasing for u <0 and zero at P, and P,. Since
the f-coordinate is invariant, there are no bounces. Thus a solution along
this line in backwards time comes from ejection and in forwards time goes
to collision. These solutions are called the ejection-collision orbits.

For an orbit in the interior of M to begin in collision or end in collision
(respectively ejection or collision), is must limit onto P, in forward time or
limit onto P, in backward time. This is equivalent to saying that ejection
orbits are in the unstable manifold of P, and that collision orbits are in the
stable manifold of P,. These manifolds are the key to understanding the
dynamics of the flow and are related by the symmetries of the differential
equations in McGehee Coordinates.

Physical Interpretation of the Line v=0 on the Faces

On each face the line v =0 is fixed by the identity corresponding to a
bounce. Initial conditions on these lines corresponds to setting one body at
the bumper with zero momentum. This body can not leave the bumper so
the set of such conditions is invariant under the flow. The other body
moves along the solution to a central force problem since it is attracted to
the body trapped at the bumper. So initial conditions on the line v =0 at
either face can be easily solved. Moreover, initial conditions not on the line
v=0 on either face can not limit onto the line v =0 at either face except
at the fixed points S/, S%, S%, S%. For the remainder of this paper, we shall
treat the line v =0 on either face as a line of fixed points.

10. ASSIGNING SYMBOL SEQUENCES

In order to understand the dynamics of the phase space we want to
assign a symbol sequence to every solution of the equations of motion. We
shall assign an itinerary of bounces for each solution in the full phase space
just as we did when we were restricted to M. Every time a solution passes
through a left bounce, or equivalently, the left face, we shall append the
sequence of bounces by an L. Likewise, every time a solution passes
through a right bounce, or equivalently, the right face, we shall append the
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sequence of bounces by an R. If a solution ends in triple collision, we shall
end the sequence by C. If a solution begins in triple collision, we shall begin
its sequence with an E (for ejection).

In this way, we can map any solution in the phase space to a symbol
sequence space. Thus the symbol sequence space is the union of biinfinite
sequences of L’s and R’s, left-infinite sequences of L’s and R’s ending in C,
right-infinite sequences of L’s and R’s beginning with E and finite sequences
of L’s and R’s beginning with E and ending with C. Any solution on the
ejection-collision orbit maps to the sequence EC, for example.

We can use the symmetries in the previous section to say how the
itinerary of an initial condition changes if we apply a symmetry to that
initial condition. Let L=R, R=L, E=FE and C=C. Then the time
symmetry transforms the itinerary (a,a,as---a,) to (a,a,_,---a,) and
back again. If @, =FE then the time symmetry transforms the itinerary
(Ea,ay ---a,) to (a,---asa,C) and back again. The mirror symmetry
transforms the itinerary (a,a,a;---a,) to (a,a,a,---a,). The main
problem of describing the dynamics of the collinear one-bumper two-body
problem is asking if the map from solution to symbol sequences is onto
and if it is not onto, what sequences are missed and why. To do this we
must next set-up a return map on an appropriately chosen Poincaré slice.

11. CHOICE OF POINCARE SLICE

In order to choose a Poincaré slice we must find a manifold of codimen-
sion-one which is transverse to the flow and through which all or almost
all orbits pass. The following lemmas make the location of bounces, that is
the left and right faces of the phase space, a natural choice for our Poincaré
slice.

Recall that bounces occur when 6 equals /2 or =, that is, at the left and
right faces of M. Because of the identification at a bounce, we only need to
consider half of each face. We join the half of the left face (at 0 =7/2, v <0)
to half of the right face (at § =n, v>0) to form our Poincaré slice, 2. We
define the Poincaré map on X' to be the first return to X under the flow.
We will denote the Poincaré map by the symbol .

LemMmA 11.1.  All solutions which pass though the left or right face do so
transversely.

Proof. Tt is enough to show that solutions which reach the left or right
face have a tangent vector with a non-zero f-component since the left and
right faces are perpendicular to the #-axis. Since df/dtr=v, the tangent
vector has a non-zero f-component except at v =0. However such points
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are fixed by the identification at the bounces. No solution can land on
this line since that would mean a mass could hit the bumper with zero
momentum. ||

LemMMA 11.2.  Except for solutions whose initial conditions are along the
line 0=3n/4, v=0 or on the critical points of the vector field on M, all
solutions pass through at least one bounce.

Proof. 1In the classic two-body problem, for negative energy, any initial
condition leads to double collision in finite time. In our model, the bumper
interferes with the path towards collision unless the two bodies collide at
the origin, i.e., a triple collision orbit. If we follow triple-collision orbits
in backwards time, all of them will tend towards double collision. The
bumper will interfere unless the two bodies ejected from the origin, i.e., an
ejection orbit. The ejection-collision orbit in the two-body problem where
ejection and collision both occur at the origin must be symmetric about the
origin, that is, along such a solution, @ =3x/4. The only invariant set with
this condition is the ejection-collision orbit we identified in Section 1.
Except this ejection-collision orbit, then, all solutions in the interior of .#
pass through at least one bounce.

The same argument applies to the case of zero energy, hence all solutions
on M pass through at least on bounce except the critical points of the
vector field on M. |

12. THE STABLE MANIFOLD FOR TRIPLE COLLISION

We want to understand how the two-dimensional stable manifold for
triple-collision, W*(P,), intersects 2. This is the key to unlocking the
dynamics because if two points on X2 have different itineraries under the
flow, then along any path on X connecting these points, there is at least
one initial condition which cannot decide which itinerary to follow and
thus leads to triple collision. The pieces of W*(P,) break up 2 into regions
with common itineraries. If we can understand how W?*(P,) intersects X,
we then have a way to describe allowed sequences of left and right bounces
without further bounces in between.

As stated in the previous section, we can label each piece of stable
manifold by the itinerary of that piece. For example, the sequence RC
means all those points which begin at a right bounce and end in triple
collision.

The curves LC and RC cut X into four regions. In the interior of these
regions we know the first two symbols of the itinerary of each initial
condition. The regions can be labeled LR, LL, RR, and RL. If we continue
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LL | RR

LC RC

FiG. 11. The first pullback of the stable manifold for triple collision divides 2 into four
regions.

to pull back the stable manifold of triple-collision we can continue labeling
regions with the appropriate dynamics.

With respect to further pullbacks, though, LC and RC are as far as exact
solutions can take us. To continue pulling back the stable manifold for
triple collision we must rely on the geometry of the flow (for proofs) or
numerics (for pictures).

Reversibility says that if we take LC and flip it about u =0 we get EL.
Since we are pulling pieces of stable manifold backwards in time, it is
exactly EL and ER which determine which points on LC and RC pull back
to the left and which to the right (Fig. 11).

For free we get that the stable manifold for collision and the unstable
manifold for ejection intersect transversely (see Fig. 12).

Fic. 12. Transverse intersection of LC (solid) and EL (dashed).
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LeEmMmA 12.1.  We can solve for the implicit equations for RC and LC
on X. In u, v coordinates, for LC we have the relation:

o(u—v)((2e+1)n+sAB+2Q)+ A*>=0,

where Q =arctan(sA~'(B—2B~")), A=./4— B> B=u+v, s=sign(B)
and ¢ =1 + 5 —s% The equation for RC is obtained by reflecting LC over the
U-axis.

Proof. The proof is a lengthy series of unrevealing calculations.

Since there are no bounces in the course of orbits whose initial condi-
tions are on LC, the orbit is entirely a collinear two-body problem. We
proceed to calculate LC in three steps:

1. In a mutual distance coordinate p = ¢, — ¢,, we solve the original
Hamiltonian system for time as a function of p, #(p).

2. We find the time to collision, t* =#(0) as a function of the initial
conditions.

3. An initial condition on the left half of 2" is on LC if the collision
occurs at ¢, =¢,=0. Since the center of mass moves linearly, we set
at* + =0 where a = (p,(0) + p,(0))/2 and f=(gq,(0) + ¢,(0))/2. It is now
only a matter of changing variables to u and v to see that the relation
at* + =0 becomes the relation stated in this Lemma.

Step 1. Let p=¢q,—¢q, be the mutual distance and p.= (¢, +¢,)/2
denote the center of mass. Then

2
f=lo—tr=Pr— 1= — = —2p
g : : : (42_611)2

-2

so we have a second-order differential equation for p. Taking the second
derivative of p, we have

1

pe=13(G1+G2)=3(p + pa) =0.
That is p, is linear in real time ¢,
pt)=p0) 14 p,(0).

For the moment we are assuming there is no bumper. Suppose that the
two bodies collide at time ¢*. This binary collision corresponds to a triple
collision in the collinear one-bumper two-body problem if the collision
takes place at the bumper, that is if

at*+ =0,
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where o= .(0)=(p,(0)+ p»(0))/2 and f=p.(0)=1(q,(0)+¢40))/2. We
want to find all the initial conditions on the left face so that the relation
at* + =0 holds.

First we must compute ¢* for initial conditions on the left face. We begin
with the second-order differential equation for p,

-2

p==2p

ft p'/')'ds=r . —2p~2p ds

s=0 s =

This last equation is the energy equation in the center of mass reference
frame. The energy, k, is determined by the initial conditions, p(0) and p(0).

The energy relation yields two first-order autonomous differential
equations,

p=+/20k+2p7")

Separating and integrating we have,

J ds=J[ ds
-0./2 k+2p’1) 5=0
i\/l2k <pR +L—k arc tan <1%F:'ZR>> =t+C,

where R=./2+2p". Solving for 7, (p) we have

t(p)= 7_\/ <pR+\/17arctan<\/ikZR>>

where C are constants of integration.

Now we need to study these two functions of mutual distance, p. First
we take the limit of 7 (p) as p approaches zero since this will determine
the values of C, .

Since

lim pR=lim \/p(kp+2)=0

p—0 p—0
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we have

1+k
lim arc tan< +xp >= lim arctan(x)=

p=0 v —kpR/ x—ox

With these limits in hand we can evaluate the limit of #,(p) as p goes to
Z€ero:

1N

limz,(p)=C, Fr(—2k)=

p—0

The branch, ¢, (p), corresponds to an initial condition of 5(0) > 0, that is
the two bodies are heading away from each other. This means for small p,
dt, /dp should be positive. Since we want ¢, (0)=0 we have C, =
n(—2k) =2

To find C_ we must determine the maximum p as a function of k and
evaluate 7. (pPmax) and set 7_(pPoax) =1, (Pmax). We do this because we
want the branches to meet so that we can pass from one to the other con-
tinuously. We will soon see that p =0 when p is at its maximum, hence it
is the condition for the point which connects the branches of 7_ and ¢ .

Calculating dt , /dp we have

dt+_l/dp_ 1

dp  ldt Sak+2p Y

which has a singularity when p= —2/k, that is p,..= —2/k. Now we
evaluate ¢, (—2/k).

Since
lim pR= lim plkp+2)=0
p— —2/k p— —2/k
we have
1+k
lim arc tan <+p> = lim arctan(x)= _Z
p— —2/k _kpR X— — o0 2

We can calculate the limit of 7, (p) as p increases to p,,.x:

lim ¢, (p)=2n(—2k)" %2

P = Pmax

Setting 7, (Pimax) = _( Pmax) We have that C_ =37(—2)*2% We have solved
for t ,(p), time as a function of mutual distance for the solution.
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Step 2. What we would like is the function which tells us time to
collision given an initial condition. Since the time elapsed from ejection
to collision is 47( —2k)~*? the function which gives us time to collision,
4 (p) =dm(—2k) 2 —1,(p)

We now drop the subscript + and write ¢ = (p) as a branched function.

3m( —2k) 2 — L <R 2 > if 5(0) >0
. (—2k) \?kp+\£)_—k 'p()
n(—2k)3/2+ﬂ<pR+ﬁ> if p(0) <0,
where
® = arc tan <\/1—i/i€ZR>
We define 6= —1 when (5(0)) is negative and g =1 otherwise. Then for

s=sign of p, =1+s5—s Using g, we can rewrite t*(p) as

ag

J2k

—a(—2k) (20 +1) n+2/ —k pR+20).

*(p)=2+0)n(—2k) ¥ — PR+20(—2k) " w

Now we must change variables to (6, u, v) coordinates and find the time
to collision for initial conditions on the left face, that is, initial conditions
of the form 6(0) =7x/2, v(0) >0 and u(0)* +v(0)* < 2.

Recall the change of variables from Hamiltonian coordinates to
McGehee coordinates.

gi=r"*cos0  p,=r"Y(ucosO—uvsin0)
q,=r**sin 0 p>,=r""3(usin 0+ vcos 0).
When 0 =7/2 the change of variables becomes
q,=0 pr=—r""P
/3 pr=—r .

42:’”2

We will use the energy relation to eliminate r in a moment. For now we
retain r to keep the algebra simple. In addition, we define the terms
A=./4—B* B=u+v, and s =sign(B).
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pP=q—q,=r"

p=pr—pi=r Plutv)=r"'"B
k==p 2 L 2/3(u—i—v—i—2)(u—i—u—2)——lr’2/3A2
277,72 2

R= ki) 1= (u—}-v)2 lu +v] sB

223 ﬁ p13 ﬂ 13

Simplifying terms which appear in the expression for *(p) we have

y B
2/~kpR= 2<ﬁ 1/3>( 2/3)<\/§r1/3>=sAB

1 A ? 2/3 2 2

Therefore, we can rewrite ¢* as

t*(p)=0a(—2k)*?*((20 +1) n +s4AB +2Q),

where Q = arc tan(s4 ~'(B—2B~

) (Figs. 13 and 14).
Step 3.

We now return to simplifying terms in the relation at* + f = 0.

1

1
Pl0) =5 (p1(0) + px(0)) =5 (u—v) r 1"

1 1
p0) =3 (¢,(0) + ¢,(0)) = 3 203

},2/3 3/2 r
(2k)—2/3=<Az> ==

Finally we can simplify the left-hand side of the needed relation, since

at* + f=3(p1(0)+ px(0)) £* + 3(¢1(0) + ¢45(0))

and we need at* + =0 for triple collision, we have

0:%(1/!—1)) _1/3t*+1 2/3



COLLINEAR ONE-BUMPER TWO-BODY PROBLEM 401

i
4r(—2k)3/2

om(—2k)~3/2

ty

“— p
—2/k

FiG. 13. Plot of the two branches of #(p).

Simplifying yields

O=(u—v)t*+r
0=(u—v)a(—=2k)*((20+ 1) +5AB+2Q)+r
0=(u—v)ord 26+ 1) n+sAB+2Q) +r
O=c(u—0v)((20+1)n+sAB+2Q)+ 4° |

—2/k |

' ¢
om(—2k)3/2 4m(—2k)~3/?

F1G. 14. Solution of p as a function of time, .
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13. SYMBOLIC DYNAMICS OF SOLUTIONS

A piece of stable manifold for triple collision will split under one
pullback of @ if it intersects either EL or ER. The point of intersection has
no pre-image under ¢ and serves as a divider between points with a
pre-image on the left face and nearby points with a pre-image on the right
face. Conversely, if a piece of stable manifold for triple collision does not
intersect either EL or ER then it will not split under one pullback of .

The curves ER and RC intersect at one point along = 0. This means
that the top part of RC will switch sides and pull back to LRC, while the
bottom part of RC will pull back to the same side and be denoted RRC.
Each of these new curves will have two end points on the boundary of X.
The initial conditions on RC near to but above u =0 will just miss triple
collision, move up the ejection-collision orbit and out along the stable
manifold of P, to make the top point of LRC. All of LRC is above u=0
which we can show by studying the flow on M (see Theorem 13.2). The
initial conditions on RC just below u =0 likewise become the top point of
RRC. The bottom point of RRC is below the bottom point of RC. The top
points of the second pullbacks are easy to solve for directly and have coor-
dinates (—1, 1) and (1, 1) respectively on 2. By mirror symmetry, we know
the positions of RLC and LLC.

We would like to continue pulling back pieces of stable manifold and to
verify if they intersect EL and if so how often. To verify these intersections,
we need a technical lemma.

LemMa 13.1. Let a be the v coordinate of the intersection of u=0 and
LCon X. Let ¢: [—ﬁ, a) — R so that x+— the v coordinate of @ of v=x
and u=0. Then ¢ is strictly increasing on [ —ﬁ, a).

Proof. Notice that dv/df = —1/2u— V'(6)/v is monotonic in u. For a
fixed 0, suppose that two solutions crossed the fixed § plane with the same
v coordinate. Then the top solution has a larger u coordinate hence by the
monotonicity of dv/df will move to the left of the bottom one as 6 increases
(see Fig. 15).

Since momentum is an integral of motion between bounces, we can use
the momentum manifolds, defined as p, + p, =constant or in 0, u and v
coordinates (eliminating r using the energy equation), the expression

h 12
cos 0 +sin 6) + v(cos @ — sin 6
is constant.

Intersections of momentum manifolds with the left face, are shown in
Fig. 16. This relation says that for the initial conditions of ¢ if |v,| > |v,],



COLLINEAR ONE-BUMPER TWO-BODY PROBLEM 403

FiG. 15. Top point must decrease in v faster as u increases.

then the momentum at v=v,, u=0 is greater in magnitude than the
momentum at v =v,, u=0. We have chosen initial conditions for ¢ so that
if for a fixed 6, two solutions crossed the fixed 6 plane with the same v
coordinate then the top solution has a larger momentum in absolute value,
hence the initial condition for the top solution is to the left of the initial
condition for the bottom solution. But we have already noted that the top
solution would move to the left of the bottom solution thus preserving
monotonicity. ||

THEOREM 13.2. The piece of stable manifold for P, with itinerary LRC
does not intersect EL.

Proof. The endpoints of LRC are LP, and LRP,. From our study of
the flow on M, we know that LRP, has a positive u-coordinate (see
Theorem 7.1). We also know that the endpoints of LRC are to the left
of LC. Since LC and LRC are pieces of stable manifold for P,, they cannot
intersect. Therefore all of LRC is to the left of LC.

Above u=0, LC is left of EL. Therefore if LRC and EL did intersect,
any point of intersection would have to have a negative u-coordinate. Thus,
it is enough to show that LRC is above the line u =0 (see Fig. 17).

F1G. 16. Intersection of momentum manifolds and the left face as seen from inside M.
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LRC RLC
u=20

FI1G. 17. The arc LRC is above the line u=0.

To see that LRC is above u=0, we map both LRC and the portion of
the line u=0 described in Lemma 13.1 (see Fig. 17), under g. The arc
LRC maps to the top part of RC and its right-most point is at v=1 and
u=1. By Lemma 13.1 the v coordinates of points on the line =0 which
cross to the right face are strictly increasing. The left-most point of the
image is at v=1 and u= —1 (see Fig. 18). Since the images under @ of
LRC and u=0 do not intersect, neither do LRC and u=0. |

By symmetry both RLC and LRC are above u=0 and do not cut EL
and ER. These two curves are pulled back to LRLC and RLRC.

Recall that the bottom portion of LC pulls back to LLC and the bottom
portion of RC pulls back to RRC. Since RRC and LLC lie above LC and
RC, they must cut EL and ER (see Fig. 19). The top portion of LLC is

FiG. 18. The image of LRC and the part of u =0 which crosses from left to right.
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LLRC RRLC
LRC RLC
LRLC — ; RLRC

EL ER

Fi1G. 19. Caricature of first and second pullbacks of LC and RC.

pulled back to RLLC which has the same end points as RLRC but is closer
to the boundary of 2. Likewise for LRRC. The bottom portion of LLC is
pulled back to the same side as LLLC. The bottom point of LLLC is below
the bottom point of LLC. Likewise for RRRC. For the next pullback, it is
clear that the curves LRRC and RLLC do not intersect EL and ER. It is
also clear that LLLC and RRRC do intersect EL and ER. It is not clear
if RLRC and LRLC intersect EL and ER.

THEOREM 13.3.  The piece of stable manifold for P, with itinerary LRLC
does not intersect EL.

Proof. By Theorem 13.2, LRC is above u=0. By the reversibility the
curve ERL is below u=0 so LRC and ERL do not intersect. By mirror
symmetry, RLC and ELR do not intersect. Since RLC and ELR do not
intersect, their pre-images under @, LRLC and EL, do not intersect. ||

By symmetry both RLRC and LRLC intersect neither EL nor ER. These
two curves are pulled back to LRLRC and RLRLC. The endpoints of
LRLRC lie on either side of EL and so by continuity must intersect EL at
least once.

It is not necessary to verify that LRLRC and EL intersect exactly once.
If they did intersect more that once, loops would form and move around
in the regions as described in Theorem 13.4, not affecting the description of
allowed itineraries. Were loops to form then given some allowed finite
itinerary, there might be several regions which achieve this itinerary. To
keep track such loops would be a very difficult task as is pointed out in
Mayer and Wang [2] (see figure).
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THEOREM 13.4. The set of allowed itineraries in the one-bumper

two-body problem with equal masses is described by the sub-shift of finite-
type with the restriction of only finite repetitions of L or R.

ﬁmte

bl

>R
/

/’X

‘:U‘:U?d

h

ﬁnite

Proof. Using the pieces of stable and unstable manifold for triple-colli-
sion with itineraries ER, EL, RC, LC, RLC, LRC, RLRC, LRLC, RLRLC
and LRLRC we cut X into sixteen regions numbered 1 through 16 as in
Fig. 20.

Region 1 is bounded by M and LRC (see Fig. 20). Region 2 is bounded
by M and LRLC. Region 3 is bounded by M, the left portion of LRLRC
and the bottom portion of EL. Region 4 is bounded by M, the right
portion of LRLRC and the bottom portion of EL. Region 5 is bounded by
the top half of LC, LRC, LRLC, the left portion of LRLRC and the middle
portion of EL. Region 6 is bounded by the top half of LC and the top
portion of EL. Region 7 is bounded by M, the bottom half of LC, the
middle portion of EL and the right portion of LRLRC. Region 8 is bounded

FiG. 20. Regions of X' for Theorem 13.4.
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above and below by M, by the top portion of EL and the bottom half
of LC. Regions 9 through 16 are bounded similarly.

With this partition, we can show how each region maps in backwards
time, that is we can find its pre-image under . First, we note that the
curve EL in backwards time must map to P, and so points near EL must
leave a neighborhood of P, along its one-dimensional stable manifold
on M. The bottom point of EL(P,L) is on the one-dimensional unstable
manifold of P, so points nearby likewise pull back to the stable manifold
of P, triple-collision, i.e. LC and RC.

We can now pull back each region and see how these pullbacks stretch
over the regions. Let us go through several examples carefully. Region 1 is
bounded by M and LRC. By Theorem 13.2, LRC does not intersect EL so
it pulls back to RLRC. So, region | pulls back to region 10.

Region  Preimage Under p

1 all of 10 @E
2 all of 11 and 12 @D
3 across 13 and 15
C|l—
RLRLRC
4 across 6 and 8 %

Fic. 21. Preimages of the left regions 1 to 4.
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Region  Preimage Under p

6 all of 9

7 across 6 and 8 <~
LLRLR

8 across 6 and 8

R(
5 across 13 and 15

F1G. 22. Preimages of the left regions 5 to 8.

10

11

FiG. 23. Regions of X' for Theorem 13.4.
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Fi1G. 24. Directed graph describing how the regions move under preimages of ¢.

Region 2 is bounded by M and LRLC. By Theorem 13.3, LRLC does
not intersect EL so it pulls back to RLRLC. So, region 2 pulls back to all
of regions 11 and 12.

Region 3 is bounded by M, the left portion of LRLRC and the bottom
portion of EL. The left portion of LRLRC pulls back to RLRLRC. A small
neighborhood of the bottom point of EL(P, L) in region 3 pulls back to a
neighborhood of RC so RC is a boundary of the pre-image of region 3. So,
the pre-image of region 3 is a wedge that cuts across regions 13 and 15.

Region 4 is bounded by M, the right portion of LRLRC and the bottom
portion of EL. The right portion of LRLRC pulls back to LLRLRC. A
small neighborhood of the bottom point of EL in region 4 pulls back to a
neighborhood of LC so LC a boundary of the pre-image of region 4. So,
the pre-image of region 4 is a wedge that cuts across regions 6 and 8.

By continuing to analyze the pullbacks of the boundaries of each region,
we can say how each region pulls back (see Figs. 21-23). Region 5 must
map across 13 and 15. Region 6 must map to region 9. Finally, regions 7
and 8 must each map across both 6 and 8. By symmetry, we can construct
a directed graph to describe how all the regions interact. (Fig. 24).

We can reduce the graph in Fig. 24. That is, regions 3 and 5 each map
onto (different parts of) the same regions. This means that regions 3 and
5 can be combined into a new region 3'. By symmetry, regions 11 and 13

Fi1G. 25. Directed graph for reduced regions.
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FiG. 26. Directed graph using left and right bounce symbols.

can be combined into a new region 11’. Since regions 4 and 7 map onto
(different parts of) the same regions, regions 4 and 7 can be combined
into 4'. Likewise, regions 12 and 15 can be combined into 12'. This yields
the graph in Fig. 25.

We can replace each number in the new graph by which bounce each
region corresponds to, L or R. This yields the graph in Fig. 26.

Assume for example that we have some string of three or more right
bounces, then we must be at R,4. The only way to leave for another region
is Ry, —» L, - R,,. What follows next must be a left bounce. If it is through
L, then it is possible to have a string of two or more left bounces. If it
is through L5 then the next bounce must be on the right. However,
after that right can be a long string of lefts (Ly — R,;, = R, ), a single
left followed by a right (Ly — R,;, > R5), or a long string of rights
(L3 = R,»). This gives rise to the diagram in Fig. 27.

By symmetry, we get the diagram stated in the Theorem.

The infinite strings are omitted since initial conditions can be chosen in
the interior of the phase space close enough to S’ and S% so that its
itinerary begins with a sequence of L’s or R’s of arbitrary but finite length.
The limiting case is on the collision manifold or along v=0 and 0 =7/2
or n, which are fixed by the identification at binary collisions.

Using our partition of the left and right faces we have shown that any
allowed itinerary can be generated by the directed graph in stated in the

finite

G
[ >r
L

~
4R$1‘{O

finite
Fic. 27. Analysis of Fig. 26.
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Theorem. We next show that the converse is true, that is, the map from
orbits to itineraries is onto the set of itineraries allowed by the directed
graph in stated in the Theorem.

For each (reduced) region we draw a schematic square whose four sides
correspond to the region’s boundaries (see Fig. 28). With the orientation
induced by the square, we see that vertical strips pull back to vertical
strips. If a region has two pre-images, we see that a vertical strip pulls back
to a vertical strip stretched across both pre-images (see Fig. 29). The reader
is referred to Figs. 21 and 22.

In region 1, a strip from LP, to LRP, pulls back to a strip from RLP,
to RLRP, in region 10.

In region 2, a strip from LRP, to LRLP, pulls back to a strip from M
(including the point RLRP,) to ER in region 11’ and to a strip from ER
to M (including the point RLRLP,) in region 12'.

In region 3’, a strip from M to EL pulls back to a strip from RP, to ER
in region 11’ and to a strip from EL to M in region 12'. A strip from M
to LRP, pulls back to a strip from M (including the point RLRP,) to EL
in region 11’ and to a strip from EL to M in region 12'. A strip from LP,
to EL pulls back to a strip from RP, to RLP, in region 11'. A strip from
LP, to LRP, pulls back to a strip from M (including the point RLRP,) to
RLP, in region 11".

LP, EL
M| 1 |LRC PL| ¢ |LC
LRP, M
M| 2 |LRLC ILC| 6 | M
LRLP, EL
M and LP, EL
LRLC
PL| § |LRC c| 8 |M
LC v=0
EL and LRP; M

F1G. 28. Schematic of regions on the left face. Schematics for the regions on the right face
are symmetric to these.
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FiG. 29. Pullbacks of vertical strips in regions of the left face. See also Figs. 21 and 22.

In region 4', a strip from EL to M pulls back to a strip from LP, to EL
in region 6 and to a strip from EL to M in region 8.

In region 6, a strip from LP, to EL pulls back to a region from RP, to
LRP, in region 9.

In region 8§, a strip from EL to M maps to a strip from LP, to EL in
region 6 and from EL to M in region 8.

Given any itinerary allowed by the directed graph given in the Theorem,
there exists at least one corresponding sequence of regions in the directed
graph in Fig. 25. Taking a vertical strip in the initial region, we pull back
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according to the given sequence. At the nth pullback, there is a non-empty
closed set within the initial vertical strip which pulls back to the nth region.
Taking the limit, we have a nested intersection of closed sets which is
non-empty. So there is at least one point which attains the given itinerary
in backward time. We now apply reversibility to such an initial condition
and achieve a point which attains the given itinerary in forward time. []

It is important to keep in mind that we only have a semi-conjugacy to
a sub-shift of finite type in Theorem 13.4. In fact, numerically there is an
elliptic periodic point along u=0 whose itinerary is LRLR.... If this
periodic point is elliptic (which we do not attempt to prove), all the points
in a small region about this periodic point also have the itinerary LRLR...
even though they are not necessarily periodic under .

14. CONCLUDING REMARKS

One interpretation of Theorem 13.4 is that if a mass bounces two or
more times in a row then for the next bounce to be on the other side of
the bumper means that the solution has come close enough to triple colli-
sion that it follows the flow on the collision manifold for at least a short
time. The flow on the collision manifold dictates that the next three
bounces must alternate. This, then, is the global effect of the presence of the
triple-collision manifold on the dynamics of the model. That is, the triple-
collision manifold excludes certain sequences by virtue of continuity. One
expects that a similar mechanism in the collinear three-body problem
restricts the global dynamics.

We also expect that a finite representation of allowed orbits in the
collinear three-body problem is possible. To see why, let us look more
closely at our model. In Theorem 13.4 we chose sixteen regions on the
Poincaré slice bounded by pieces of stable and unstable manifold for triple
collision. There are many more regions we could have chosen (see Fig. 19).
Any other region we generate will be a subset of one of the sixteen and will
split under pullbacks at the same time as the larger region. Therefore any
smaller region has redundant information about what sequences are allowed.

To generate the sixteen regions we actually asked the question how
many pullbacks of the top half of LC (or RC) are required for it to inter-
sect EL or ER. 1t is exactly these pullbacks and EL and ER which form the
boundaries of the sixteen regions. Any bifurcations which occur by
changing masses happen exactly when the required number of pullbacks of
LC to intersect EL or ER changes. Such a strategy for studying the allowed
dynamics and bifurcations of the collinear three-body problem might be
fruitful.
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