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Physiological breeding§

Matthew Reynolds1 and Peter Langridge2

Physiological breeding crosses parents with different complex

but complementary traits to achieve cumulative gene action for

yield, while selecting progeny using remote sensing, possibly in

combination with genomic selection. Physiological approaches

have already demonstrated significant genetic gains in Australia

and several developing countries of the International Wheat

Improvement Network. The techniques involved (see Graphical

Abstract) also provide platforms for research and refinement of

breeding methodologies. Recent examples of these include

screening genetic resources for novel expression of Calvin cycle

enzymes, identification of common genetic bases for heat and

drought adaptation, and genetic dissection of trade-offs among

yield components. Such information, combined with results from

physiological crosses designed to test novel trait combinations,

lead to more precise breeding strategies, and feed models of

genotype-by-environment interaction to help build new plant

types and experimental environments for future climates.
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Introduction
Global cereal demand is predicted to outstrip genetic

gains by 2050 [2], while climate change threatens to

reduce their impact [3�]. To accelerate yield improve-

ment, physiological traits at all levels of integration

(Figure 1) need to be considered in breeding [4–6].

Annual genetic yield gains in cereals are currently in

the region of 0.5–1% [7], due almost entirely to conven-

tional approaches. These have come about as a result of

two main factors: unspecified recombination of genes of

minor effect among elite germplasm, and the introduction

of new genetic diversity often associated with disease

resistance and grain quality [1,8]. Physiological breeding

complements this approach by adding two main elements:

knowledge of well-characterized genetic resources to

design crossing strategies, and the ability to enrich for

favorable alleles through phenomic (and genomic) screen-

ing of progeny. This increases the probability of achieving

cumulative gene action for yield compared to crossing

physiologically uncharacterized lines. In practice it differs

from conventional breeding by considering a larger range

of traits — including genetically complex physiological

characteristics [9–12] — and differs from molecular

breeding by encompassing both phenomic and genomic

information. The key steps are presented below:

� Designing a plant with theoretically improved adapta-

tion;

� Identifying genetic resources likely to encompass new

and/or complementary allelic variation (for crossing);

� Developing and implementing phenotyping protocols

and experimental treatments to maximize resolution of

physiological trait expression (to select parents);

� Genetic dissection of traits, and development of gene-

based selection approaches;

� Strategic hybridization to achieve cumulative gene

action for yield, combined with application of high

throughput phenotyping and genotyping to select

progeny;

� Analysis of the trait/allele combinations that achieve

environmentally robust genetic gains based on multi-

location trial data (to design new crosses);

� Informatics services underpinning the iterative refine-

ment of breeding strategies across all steps.

Since a comprehensive genetic basis explaining cultivar

level differences in performance does not yet exist for any

crop, physiological breeding currently relies heavily on

phenomics. However, it can also make use of markers for

alleles associated with genes of major effect — such as

Ppd, Vrn, and Rht in wheat [8] — and will increasingly

make use of both genomic selection (GS) [13,14] and

marker assisted selection (MAS) associated with genes of

minor effect [15]. In that sense, phenomics and genomics

go hand in hand in the physiological breeding approach.
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Other examples include: selecting parents with comple-

mentary traits and alleles [8]; progeny selection using a
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Selection approaches for traits at different levels of integration and genetic complexity. The figure represents plant selection approaches that may

be used at different intervention points across the spectrum of traits, starting with simple metabolites and culminating in polygenic productivity

traits such as yield and biomass. Regulatory factors that may interact with the expression of traits at any level are indicated. Environmentally

mediated epigenetic factors may directly influence gene expression and therefore increase expression of genotype by environment interaction.
combination of remote sensing of integrative traits, MAS

[16�], and GS [14]; and genetic dissection to demonstrate

successful combinations of traits and the trade-offs among

them, for which QTL analysis adds considerable weight

[16�]. The main objective of this review is to present the

rationale for the main activities of the physiological

breeding pipeline, as outlined in the Graphical Abstract.

Crop design
Designing improved plant types is a unique aspect of

physiological breeding, in the sense that through imple-

menting new strategic crosses, novel trait combinations

can be rigorously tested across a range of target environ-

ments in terms of their impact on yield. With the excep-

tion of yield per se, selection for genetically simple traits

has traditionally dominated plant breeding. However,

developments in phenomics and genomics are increasing

access to more complex traits [17��,18,19,20�], resulting in

renewed interest in designing improved plant types

[9,12,18,21–23,24�,25��,26�], including under climate

change [4,10,27]. Designing new plant types is not trivial

since genotype–environment–crop management interac-

tions (G � E � M) are unpredictable, being determined

largely by future weather (E), farmer choices (M), and

specific location (E � M). Another barrier to effective crop

design is significant gaps in knowledge of the physiological
www.sciencedirect.com 
and genetic bases of adaptation (G), further exacerbated by

interactions with E [28].

These hurdles led to a belief that stochastic approaches,

supported by modern tools, would achieve breakthroughs

more readily; for example ‘-omics’ tools combined with

bioinformatics to cut through the biological complexity

and deliver empirical solutions [29]. On the other hand,

detailed studies in controlled conditions with rapid life-

cycle model species (of relatively small genome size)

were expected to extrapolate to crop species and envir-

onments [30]. Unfortunately, neither of these approaches

has yet revolutionized practical plant breeding [15]. This

is partly because they are still confounded by the

G � E � M paradigm (e.g. [31��]), in addition to being

retrospective, in the sense that they focus on extant

germplasm rather than extrapolating to the requirements

of improved genotypes. For example, genomic selection

models are predictive within a pre-determined genepool,

but they breakdown when new genetic diversity is intro-

duced into the breeding genepool [32].

However, physiological and genetic dissection of com-

plex traits [11–13,15,16�,19,20�,33��,34,35,36�,37–43],

and the development of high throughput phenotyping

approaches translated to the field environment

[17��,44�,45�], have provided valuable insights for the
Current Opinion in Plant Biology 2016, 31:162–171
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Figure 2
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Yield and total above ground biomass (AGB) of a panel of 250 primary

synthetic hexaploid wheat lines (green dots) compared to the best

elite check (Tacupeto blue dot) under yield potential conditions (as

described in [82]), Obregon, 2014; LSD for yield and AGB = 135 and

390 g m�2, respectively.
design of new plant types; for example by establishing the

genetic bases for trait synergies and tradeoffs (e.g.

[16�,35,36�]), and thereby improved crossing strategies

[11–13,16�]. Analysis of the performance of new lines

developed by physiological breeding helps inform crop

design by demonstrating which combinations of traits/

alleles improve yield and in which environments

[16�,40]. Using such outputs, and with the help of simula-

tion models, hypotheses regarding the value of new levels

of trait expression and trait combinations can also be tested

theoretically across a range of environments [24�,28,33��].

The design and testing of improved plant types can be

founded on two main hybridization tactics: either by

synergistic re-combination of traits/alleles already present

in extant genepools, or via the introduction of new levels

of trait expression/alleles from exotic sources [46,47]. One

of the functions of crop design is to estimate likely cost–
benefits of using different classes of genetic resources.

Genetic resources
Physiological profiling among genetic resources can

broaden the crop genepool in a highly targeted way.

However, most breeders show a pragmatic skepticism

towards crossing with exotic germplasm and precedents

generally relate to imperatives such as avoiding disease

epidemics (e.g. [47]). Three main classes of genetic

resources can be utilized: crop wild relatives, isolated

genepools of the same genome (e.g. landraces), and

modern breeding lines.

Interspecific hybridization is the most difficult to achieve

as it normally results in sterility. However, it has resulted

in some impressive yield gains [47] and — as a century old

technology accelerated by marker technology — is rela-

tively uncontroversial in terms of moving genes between

related species [48]. Nonetheless, less than 10% of the wild

relatives collected have been used in inter-specific cross-

ing, and fewer still have been surveyed for genetic diversity

of traits with potential to boost yield or adaptation. One

recent exception was a study of diversity in Calvin cycle

enzymes and Rubisco in the Triticeae. Rubisco from

species related to wheat showed promising catalytic prop-

erties and modeling of photosynthesis at 25 8C and 35 8C
demonstrated the potential benefit of replacing Rubisco of

T. aestivum with Rubisco from Ae. cylindrica or H. vulgare, in

terms of higher assimilation rates [49].

Polyploid crops like wheat can withstand the introgres-

sion of alien chromatin due to the buffering presence of

homoeologous genomes. The D genome of hexaploid

wheat (ABD) exists in abundance as a wild grass (Triticum
tauschii) and will cross with durum wheat (AB) to generate

a synthetic hexaploid with relatively little linkage drag of

detrimental alleles [50]. While typically difficult to

thresh, such primary synthetics can express yields equal

to modern cultivars and with substantially higher biomass
Current Opinion in Plant Biology 2016, 31:162–171 
(Figure 2). One or more backcrosses to cultivated wheat

can result in lines with significantly higher yield, includ-

ing under heat and drought stress [37], although precise

genetic bases still need elaboration. Screening of both AB

and D genomes for stress adaptive traits presents the

opportunity to combine both sources into a single syn-

thetic hexaploid genome with unique alleles not repre-

sented in the conventional genepool.

Compared to crop wild relatives, landraces are much

easier to cross with while still representing novel pools

of allelic diversity; most countries have extensive and

overlapping collections (e.g. [51]). Techniques such as

the Focused Germplasm Identification Strategy (FIGS)

help identify accessions originating in conditions of rele-

vance to breeding targets (http://www.figs.icarda.net/). A

good illustration of their value came from recent field

phenotyping of FIGS wheat panels selected under heat

and drought stress, revealing dozens of lines with final

biomass significantly larger than adapted checks [52]

(final biomass being an indicator of agronomic potential,

especially under stress).

However, the most accessible source of genetic variation —

in terms of its use in strategic crossing — is that within

current breeding material. Interestingly, detailed physiolog-

ical [53�] and genetic dissection [20�,38,39] is not yet a

routine procedure for selecting parents among advanced

breeding lines, but developments in field phenotyping —

in combination with high throughput genotyping — will

identify more candidate lines for use in trait-based crossing.

Phenotyping
Recent advances in high throughput field phenotyping

have boosted the power of physiological breeding
www.sciencedirect.com
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[17��,45�]. Almost by definition, high throughput implies

use of non-invasive approaches like proximal/remote

sensing of spectral reflectance from plant tissue. The

traits measured relate either to thermal/hydration prop-

erties of plant tissue assessed in the infrared region of the

electromagnetic spectrum, or pigment profiles estimated

in visible bands [45�]. These spectral indices cover an

important range of traits including plant temperature,

water relations, photosynthesis, nutrient status, and agro-

nomic traits. Water index in particular has been shown to

be predictive of cultivar level differences in leaf and soil

water potential, as well as yield and biomass in both

stressed and favorable environments [54].

Remotely sensed traits express good resolution for large

scale screening, and in some cases remote sensing is

sufficient for detailed genetic or physiological dissection,

as required for mapping quantitative trait loci (QTL), for

example. Canopy temperature (CT) has been used to

identify QTL for drought and heat stress tolerance

[35,40], and QTL common to both stresses were linked

to adaptive root response [36�]. Dedicated spectral sen-

sors, such as the GreenSeeker that measures the normal-

ized difference vegetation index (NDVI), are also used

for simple growth analysis [17��,45�].

Aerial imaging (either by manned or unmanned low-

flying vehicles) is revolutionizing field phenotyping

[44�] by offering two main advantages that increase

throughput and precision compared to ground-based sys-

tems. Firstly, the ability to include hundreds of field plots

in a single image avoids confounding effects of environ-

mental drift associated with lengthy plot-to-plot measure-

ment. Secondly, image analysis permits data curation by

removing outlying pixels in each plot. Both of these

factors improve associations between remote-sensed

traits and yield in comparison to ground based readings

[55]. As sensor and image analysis technologies develop,

the scope and precision of remote sensing is expected to

increase. Work is underway (at the International Maize

and Wheat Improvement Center, CIMMYT, for exam-

ple) to develop algorithms associated with spike charac-

teristics — including size, density, and phenological

stages — based on a combination of visible and infrared

bands. Elsewhere, indices have been reported that may

eventually substitute for gas exchange measurements

(e.g. [56]), perhaps in combination with chlorophyll fluo-

rescence [57]. However, there are still many important

phenotypic traits that do not lend themselves to remote

sensing, such as detailed growth analysis where the re-

quired level of precision necessitates destructive harvests,

or measurements of traits that are partially or fully ob-

scured from view such as stem or root characteristics.

At the other end of the phenotyping spectrum (Figure 1),

some metabolites have been associated with performance

traits; for example, fructans with stress tolerance and
www.sciencedirect.com 
quality, and major loci controlling fructan biosynthesis,

have been mapped [58]. It is now practical to investigate

interactions between metabolome and phenotype at a

large scale [59�], and new loci controlling metabolites

have been associated with agronomic traits [60]. A study

in drought-stressed wheat detected QTL for 238 metab-

olites with significant genetic associations ranging from

one QTL for 125 metabolites to nine QTL just for malate

[60]. Consequently, the translation of metabolite infor-

mation to practical breeding remains elusive. An alterna-

tive application has been the direct modification of

metabolite levels through genetic engineering, focusing

mainly on compounds associated with osmotic adjust-

ment and amino acid metabolism including trehalose,

proline, mannitol, and ornithine (reviewed in [61]).

While phenotyping protocols exist for simple through to

highly integrative traits (Figure 1), the genetic improve-

ment of more integrative traits (canopy temperature,

biomass, fruiting efficiency, harvest index, etc.) are

among the ‘lowest hanging fruits’ in terms of increasing

genetic gains, since they show considerable genetic vari-

ation within modern cultivars and have not been system-

atically considered in conventional breeding. However, as

these more integrative traits are optimized and fixed in

elite lines (accelerated by high throughput phenotyping),

subsequent genetic gains will come from understanding

their component traits, physiological mechanisms, meta-

bolic pathways, etc. (Figure 1), in combination with

genetic analysis.

Genetic analysis
Genetics and physiology are inextricable in the context of

crop improvement. Genetic dissection of complex traits,

boosted by the tools of modern biotechnology, permit

models of improved plant functions to be rigorously

tested [16�,20�,24�]. Genome-wide association studies

readily identify parents with contrasting inheritance of

key traits [39] for genetic dissection using bi-parental

crosses/nested association mapping (as well as for design-

ing new crosses). When phenotyping genetically complex

traits in experimental populations, it is crucial to control

genes of major effect to avoid masking detection of novel

QTL [11,39,40]. The ideal genetic marker is a diagnostic

one that allows direct identification of specific alleles, as

seen in the selection for phenology and plant height genes

in wheat [8]. Details on how DNA sequence information

can be used to develop molecular markers for screening a

range of agronomic traits is provided elsewhere (http://

maswheat.ucdavis.edu/).

Nonetheless, even in crops where the complete genome

sequence is available (reviewed in [62]), trait-based mar-

kers are still not in mainstream use for complex trait

selection in major breeding programs [15]. This goes back

to the G � E � M paradigm (or QTL � E � M), since

most QTL are not robust across environments [41]. The
Current Opinion in Plant Biology 2016, 31:162–171
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Table 1

Summary of genetic progress achieved through physiological trait (PT) based breeding/crossing at CIMMYT for different target

environments as indicated by multi-location yield trials (in Asia, North Africa, and Mexico), conducted within the International Wheat

Improvement Network (IWIN)

Breeding target

environment

Trial name and # PT

lines included

# International

sites

Year of

harvest

Indication of genetic progress

Water deficit 17th SAWYT

PT advanceda lines

64 2010 Best PT line higher yielding (avg 16%) than local checkc at

50/64 sites; best PT lines expressed cooler canopies and

larger biomass than checks (http://apps.cimmyt.org/

wpgd/index.htm; [68]).

Yield potential 2nd WYCYT

35 rapid-cycleb PT lines

26 2014 Best PT line higher yielding (avg 10%) than best checkd at

23/26 sites; best PT lines expressed larger biomass than

checks at all sites where measured [67].

Heat stress 4th SATYN

25 rapid-cycle PT lines

24 2015 Best three PT lines higher yielding (avg 8%) than best

check at 23/24 sites; best PT lines expressed larger

biomass than checks at all sites where measured [69].

Yield potential Bacanora/Weebil experimental

population with 105 double

haploid PT lines

9 2007–2010 Best PT lines expressed higher yield than best parent in all

9 environments, most spectacularly in S. Chile where 34%

of PT lines were higher yielding, and the best PT line

showed 22% higher yield than the best parent (avg

2 seasons) [16�,42].

Heat/drought Seri/Babax experimental

population with

167 recombinant-inbred

PT lines

12 & 9 2002–2013 Considering yield averaged across all 12 international

sites, 15 PT lines were higher yielding than the best parent

by as much as 13%; Considering 9 environments in

Mexico, the best 3 PT lines were higher yielding (avg 24%)

than the best parent at all 9 sites [40].

Abbreviations: SAWYT, semi-arid wheat yield trial; WYCYT, wheat yield collaboration yield trial; SATYN, stress adaptive trait yield nursery; DH,

doubled haploid (lines); RIL, recombinant inbred line.
a Advanced lines having <1% of gene loci heterozygous.
b Rapid cycle lines having <10% of gene loci heterozygous (i.e. products of pre-breeding).
c Local check = best adapted local cultivar.
d Best check = best performing conventional CIMMYT elite line (where superior to local check).
challenge will be to focus on markers closely linked to

functional genes (exome capture for example in barley

[63�]), and to define the environmental factors causing

GxE. In this context, research into epigenetics suggests

that it may be necessary to consider the epi-genome if

GxE is to become more predictable [64].

Marker technology is used stochastically in genomic

selection in animal breeding and is being evaluated for

crops [65]. Some results are promising, for example, in

wheat [34], and maize [66], while incorporating pheno-

typic data from training populations into models signifi-

cantly improves prediction [13,14].

Crossing and selection
With a modest investment in some phenotyping equip-

ment,3 any breeding program can implement physiological

trait (PT) based crossing strategies (see Graph Abst). Based

on traits identified in conceptual models (e.g. [9,10,12]) and

the use of simple quantitative models to estimate poten-

tially complementary traits [11,52], systematic screening of

genetic resources has been employed at CIMMYT to

identify complementary parental sources for adaptive
3 Infra-red thermometer for canopy temperature, Greenseeker for

NDVI, lab facility to estimate aboveground dry biomass and assimilate

partitioning at key growth stages [68].

Current Opinion in Plant Biology 2016, 31:162–171 
traits. For example, parents with cool canopies associated

with more extensive root systems are crossed with lines

expressing ability to store and remobilize stem water

soluble carbohydrates under heat and drought stress (see

[52] and references therein). To improve yield potential,

parents with good spike fertility characteristics, for exam-

ple, [26�] are crossed with sources of high radiation use

efficiency [67]. Progeny selection is facilitated by remote

sensing.

Such approaches have achieved impacts over conventional

breeding in water stressed Australian environments [12].

CIMMYT and collaborators have achieved consistent ge-

netic gains in heat and drought stressed environments, as

well as raising yield potential [11,41,42,52,68,69] (Table 1),

resulting in uptake of new lines and phenotyping methods

by national programs [68]. The best new PT lines

expressed the highest average yield across all sites, indi-

cating yield stability (Table 1).

Experimental PT crosses between judiciously selected

parents have also demonstrated substantial genetic gains.

Double haploid progeny of the wheat cross Bacanora/

Weebil — where both parents express high yield via

contrasting expression of yield components — generated

progeny with exceptional yield potential [42] (Table 1).

Similarly, random inbred lines of the Seri/Babax wheat
www.sciencedirect.com
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Figure 3
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New PT line SOKOLL/3/PASTOR//HXL7573/2*BAU/4/WBLL4//OAX93.24.35/WBLL1 under two distinct drought environments: (a) yield and

biomass under gravity and drip irrigation simulating post-monsoon stored soil moisture, and Mediterranean drought environments, respectively. (b)

Improved water relations in new PT line showing canopy temperature in season, and residual soil moisture at harvest. Traits are compared with

the drought adapted check Vorobey (from [52]). LSD values (P < 0.05) of genotypic differences for yield, biomass, CT, and residual soil moisture

�45 g m2, 100 g m2, 0.9 8C and 4 mm, respectively.
cross — chosen to combine a widely adapted parent (Seri)

with a source of drought adaptive traits (Babax) — expressed

superior yield to either parent across multiple sites [40]

(Table 1). Results such as these lend themselves to dissec-

tion of genetic gains to refine PT-based crossing strategies.

Evaluation of genetic gains
Strategic crossing for PTs, in addition to incorporating

genetic diversity for complex traits into the genepool,
www.sciencedirect.com 
provides an ‘acid test’ for validating hypotheses about

trait interactions, genetic background effects, and the

value of plant ideotypes across environments. For exam-

ple, among the material developed for drought adapta-

tion, expression of the key physiological traits identified

in parents — such as deep water extraction, cooler cano-

pies, and storage of water soluble carbohydrates — were

also expressed in the best progeny [36�,52]. Figure 3

shows an example of progeny from parents crossed for
Current Opinion in Plant Biology 2016, 31:162–171
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Figure 4
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Genetic dissection of yield by physiological traits. The Venn diagram

shows how QTL for yield are shared by a number of different

physiological traits contributing to its expression, including canopy

temperature (CT); NDVI, and chlorophyll (CHL); weaker QTL effects for

water soluble carbohydrates were common to all four [40]. Bold fonts

denote QTL for yield that are stable across environments, while non-

bold fonts denote environment dependant QTL for yield (adapted from

[40]).
good expression (under drought) of deep water extraction

in one case (purple bar), and cooler canopies (blue bar) in

the other. The progeny (green bar) shows superior yield

and biomass to either parent under two different drought

environments, suggesting that combining both traits

resulted in cumulative gene action. Another PT line,

resulting from a cross between a genetic resource with

good expression of stem water soluble carbohydrate

(WSC), and a line adapted in terms of yield to the

Mediterranean type of drought (where WSC is expected

to be of most value), showed superior expression of both

traits compared to either parent in the target environment

[52]. It is important to keep in mind that the expression

and value of any PT will be a function of the growing

environment [33��] as well as its genetic background.

Determining the genetic bases of successful trait com-

binations helps validate cumulative gene action. Genetic

dissection of the wheat cross Bacanora/Weebil described

above revealed two loci influencing grain yield on
Current Opinion in Plant Biology 2016, 31:162–171 
chromosomes 1B and 7B, increasing grain number and

grain weight, respectively [16�]. These two yield com-

ponents typically show a negative correlation, however,

the lack of a trade-off between them in some progeny of

this cross led to extremely high yields in these lines [42],

making these loci good targets for MAS [16�]. Genetic

dissection of the Seri/Babax wheat population [40]

showed that yield QTL under heat and drought stress

were collocated with QTL for the following physiological

traits: CT (three QTL), NDVI (three QTL), and chloro-

phyll (one QTL), demonstrating the genetic contribu-

tion of each trait to yield (Figure 4). In summary, while

phenotyping can indicate the potential for cumulative

gene action in contrasting genotypes, genetic dissection

of physiological traits can indicate potentially favorable

allelic combinations between genotypes expressing sim-

ilar phenotypes. Furthermore, genetic dissection is the

only definitive way to show, for example, that two appar-

ently different traits may share a common genetic basis,

and vice versa, or that two apparently valuable traits may

be mutually exclusive when combined in a common

background.

Conclusions
An increasingly challenging crop environment and the

rapid advances in genetic technologies both call for better

understanding of the physiological processes involved in

achieving crop productivity, and their interaction with

environment. Three new factors can help achieve this,

while at the same time contributing directly to crop

improvement: first, new models of improved plant pro-

cesses and crop ideotypes capitalizing on more than half a

century of physiological research; second, high through-

put phenotyping technologies that permit evaluation of

complex trait expression on a breeding scale in realistic

field environments; third, renewed focus on preserving

and utilizing plant genetic resources and a growing aware-

ness that climate change will make it increasingly difficult

to achieve needed genetic gains unless new allelic diver-

sity is brought into existing genepools. Along with hy-

pothesis driven physiological breeding and multi-location

testing, these factors contribute to better genetic under-

standing, which itself drives the design and selection of

improved cultivars. Physiological breeding as described

herein is a central pillar of the newly formed International

Wheat Yield Partnership (http://iwyp.org/) that aims to

raise wheat yield potential closer to its biological limit,

and will be important in similar initiatives of the CGIAR

(e.g. the Heat and Drought Wheat Improvement Consor-

tium) that aim to adapt crops to climate change and

underpin the need for global food security.
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Miralles DJ, González FG: Fruiting efficiency: an alternative
trait to further rise wheat yield. Food Energy Secur 2015,
4:92-109.

First review of the trait ‘fruiting efficiency’ — the ratio of grains to spike
weight — an integrative ‘sink’ trait that shows significant genetic diversity
in elite material as well as good association with yield.

27. Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D,
Kimball BA, Ottman MJ, Wall GW, White JW et al.: Rising
temperatures reduce global wheat production. Nat Clim
Change 2014, 5:143-147.

28. Chenu K, Deihimfard R, Chapman SC: Large-scale
characterization of drought pattern: a continent-wide
modelling approach applied to the Australian wheatbelt –
spatial and temporal trends. New Phytol 2013, 198:801-820.

29. Langridge P, Fleury D: Making the most of ‘‘omics’’ for crop
breeding. Trends Biotechnol 2011, 29:33-40.

30. Gehan MA, Greenham K, Mockler TC, McClung CR:
Transcriptional networks – crops, clocks, and abiotic stress.
Curr Opin Plant Biol 2015, 24C:39-46.
Current Opinion in Plant Biology 2016, 31:162–171

http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0350
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0350
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0350
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0350
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0350
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0355
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0355
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0355
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0360
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0360
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0360
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0365
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0365
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0365
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0370
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0370
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0370
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0370
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0375
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0375
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0375
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0380
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0380
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0380
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0380
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0385
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0385
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0385
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0385
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0385
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0390
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0390
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0390
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0395
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0395
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0400
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0400
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0400
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0405
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0405
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0405
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0405
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0405
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0410
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0410
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0410
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0410
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0415
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0420
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0420
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0425
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0425
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0425
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0425
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0430
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0430
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0435
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0435
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0435
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0440
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0440
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0440
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0440
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0445
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0445
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0445
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0445
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0450
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0450
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0450
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0455
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0455
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0455
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0460
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0460
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0460
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0465
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0465
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0465
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0470
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0470
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0470
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0475
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0475
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0475
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0475
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0480
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0480
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0480
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0480
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0485
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0485
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0485
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0485
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0490
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0490
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0495
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0495
http://refhub.elsevier.com/S1369-5266(16)30062-0/sbref0495


170 Physiology and metabolism
31.
��
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