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Polyandry is common in many species and it has been suggested that females engage in multiple mating
to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity oc-
curs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters
are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice
produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We
assessed the rates of multiple paternity when females could choose to mate with two males that were
genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females
could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared
MHC alleles). Multiple mating may depend upon a female’s own condition, and, therefore, we also tested
whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny
than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence
that females were more likely to produce multiple-sired litters when they had the opportunity to mate
with genetically dissimilar males compared with controls, regardless of whether females were inbred or
outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when
they have the opportunity to increase the genetic diversity of their offspring, as expected from the ge-
netic diversity hypothesis.

© 2014 The Authors. Published on behalf of The Association for the Study of Animal Behaviour by Elsevier
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/3.0/).

Polyandry or multiple mating is common in many species and
females can increase the number or quality of offspring produced
when mating with multiple males (Firman and Simmons, 2008b;
Fisher, Double, Blomberg, Jennions, & Cockburn, 2006; Garcia-
Gonzédlez & Simmons, 2005; Hoogland, 1998; Madsen, Shine,
Loman, & Hdkansson, 1992; Tregenza & Wedell, 1998). Many hy-
potheses have been proposed to explain how females gain benefits
from multiple mating, which include both direct and indirect, ge-
netic benefits (Hosken & Stockley, 2003; Jennions & Petrie, 2000;
Simmons, 2005). For example, polyandry could provide females
with genetic benefits by increasing offspring genetic diversity, as
this can have positive effects on offspring performance and survival
(Yasui, 1998). Therefore, multiple mating may depend upon the
genetic similarity of potential mates and whether polyandry will
increase the diversity of their litters. Increasing evidence also in-
dicates that females’ mate choice can be dependent on their own
quality or condition, but almost nothing is known about whether
polyandry is a facultative behaviour that depends on these factors.

* Correspondence: K. E. Thonhauser, Konrad Lorenz Institute of Ethology,
Street: Savoyenstraf3e 1a, 1160 Vienna, Austria.
E-mail address: kerstin.thonhauser@gmx.at (K. E. Thonhauser).
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Our goals were to investigate these hypotheses in an experiment
with wild-derived house mice, Mus musculus musculus, in which we
allowed females to select their mates and we measured the rates of
multiple paternity.

In house mice, Mus musculus domesticus, genetic paternity an-
alyses reveal that multiple paternity is common in enclosure
populations (Lindholm, Musolf, Weidt, & Konig, 2013; Montero,
Teschke, & Tautz, 2013; Potts, Manning, & Wakeland, 1991;
Stockley et al., 2013). In feral populations, the rate of multiple-
sired litters is 25% on average but it is unclear why there is so
much variation among populations (6—43%, Dean, Ardlie, &
Nachman, 2006; Firman and Simmons, 2008a). One study found
that the rate of multiple-sired litters increases with population
density (Dean et al., 2006; but see Firman and Simmons, 2008a),
which suggests that polyandry is a facultative behaviour depend-
ing upon the number of available males or the risk of infanticide.
Females actively engage in multiple mating (Rolland, MacDonald,
de Fraipont, & Berdoy, 2003) and when females can choose to
mate with either one or two males, 46% of their litters have mul-
tiple sires (Thonhauser, Raveh, Hettyey, Beissmann, & Penn, 2013a).
Females are not consistent in producing multiple-sired litters
when the same female is tested twice with different males,
suggesting that females change their behaviour depending upon
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their own age, condition or perhaps differences in the available
mates.

Most studies on multiple mating have focused on the good genes
and compatible genes hypotheses, whereas the genetic diversity
hypothesis has received relatively little attention (but see Cohas,
Yoccoz, & Allainé, 2007; McLeod & Marshall, 2009; Schmoll,
Schurr, Winkel, Epplen, & Lubjuhn, 2007). Increased offspring ge-
netic diversity (among offspring within litters) may increase litter
survival if it reduces the risk of infectious diseases spreading be-
tween siblings. Studies on other species (social insects and birds)
provide observational evidence that females gain fitness benefits by
producing genetically diverse litters (Dunn, Lifjeld, & Whittingham,
2009; Liersch & Schmid-Hempel, 1998; Seeley & Tarpy, 2007). A
study in bumblebees, Bombus terrestris, for example, showed that
high-diversity colonies had fewer parasites and increased repro-
ductive success compared with low-diversity colonies (Baer &
Schmid-Hempel, 1999). In tree swallows, Tachycineta bicolor, the
immune responses of nestlings from multiple-sired clutches were
stronger compared with single-sired clutches (Dunn et al., 2009).
Comparative studies on birds revealed that the degree of extrapair
paternity increases with the species’ genetic diversity (Gohli et al.,
2013; Petrie, Doums, & Mpgller, 1998). We recently found higher
levels of genetic diversity within multiple- versus single-sired lit-
ters in wild house mice, M. m. musculus (Thonhauser, Thol3, Musolf,
Klaus, & Penn, 2013); however, to our knowledge, it has never been
experimentally tested whether females engage in multiple mating
and increase the rate of multiple-sired litters when they have the
opportunity to increase the genetic diversity of their offspring. In
fact, no study on polyandry to our knowledge has ever manipulated
the genetic differences of potential mates.

Similarly, multiple mating has been suggested to function as a
mechanism to increase offspring diversity at the genes of the major
histocompatibility complex (MHC; Bollmer, Dunn, Freeman-
Gallant, & Whittingham, 2012; Evans, Dionne, Miller, & Ber-
natchez, 2012). For example, in the Seychelles warbler, Acroce-
phalus sechellensis, females were more likely to seek extrapair
copulations when their social mate had low individual MHC di-
versity (Richardson, Komdeur, Burke, & von Schantz, 2005). Simi-
larly, a study with house mice suggested that females seek
extrapair matings with males that are more disparate at the MHC
than their social mate (Potts et al., 1991). Therefore, we additionally
tested whether the frequency of multiple paternity is higher when
females have the opportunity to increase the MHC diversity of their
offspring. MHC genes are good candidates to assess the genetic
benefits of mate choice, as they are highly polymorphic, they con-
trol immune resistance to infectious diseases and they influence
disassortative mating preferences in mice (Penn & Potts, 1999;
Penn, 2002). As MHC genes control resistance to pathogens and
parasites (Apanius, Penn, Slev, Ruff, & Potts, 1997), increasing
offspring MHC diversity is potentially advantageous for the survival
of litters, as it might allow a broader range of pathogens to be
detected and combated. It has also been suggested that promiscuity
drives increased MHC diversity (MacManes & Lacey, 2012). How-
ever, it has never been experimentally tested whether increased
MHC diversity of potential mates elevates rates of multiple
paternity.

Multiple mating may also depend upon the females’ own con-
dition, such as their age, body mass or genetic quality (e.g.
inbreeding status). Increasing evidence indicates that female mate
sampling and mate preferences are dependent on the females’
condition (Burley & Foster, 2006; Cotton, Small, & Pomiankowski,
2006; Hunt, Brooks, & Jennions, 2005), including their infection
(Buchholz, 2004) and inbreeding status (Mazzi, Kiinzler, Largiader,
& Bakker, 2004; Michalczyk et al., 2011). For example, house mice
females prefer the odour of outbred versus inbred males and this

preference is more pronounced in inbred versus outbred females
(Ilmonen, Stundner, Thof3, & Penn, 2009). Moreover, a study in the
red flour beetle, Tribolium castaneum, showed that females with an
inbreeding history had higher rates of polyandry than outbred
controls and that polyandry effectively doubled previously inbred
females’ reproductive success (Michalczyk et al., 2011). Therefore,
our goal was to test whether females’ inbreeding status affects the
rate of multiple paternity, as this hypothesis has never been tested
in a vertebrate species to our knowledge.

We conducted an experiment with wild-derived house mice (F2
from wild-caught M. m. musculus), in which we allowed females to
choose to mate between two males. All males were unrelated to the
females, but the males were experimentally selected to be either
genetically similar (brothers with identical MHC haplotype) or dis-
similar (unrelated with different MHC haplotype) to each other. We
chose to manipulate MHC sharing as MHC is the only locus to our
knowledge that is highly polymorphic, influences individual odour
and mate choice and simultaneously can confer potential fitness
benefits to offspring (i.e. MHC controls immune resistance to path-
ogens and parasites). We expected that the rate of multiple paternity
(using genetic paternity analyses) would be higher when potential
mates are genetically dissimilar as females would have the oppor-
tunity to increase the genetic diversity among offspring as expected
from the genetic diversity hypothesis. To test whether female
inbreeding status affects the likelihood of producing multiple-sired
litters, the females were experimentally inbred (parents were full
siblings) or outbred (parents from different families). We had no
prediction for how inbreeding might affect multiple paternity
because poor condition may increase (Michalczyk et al., 2011) or
decrease (Huchard et al., 2012) multiple mating.

METHODS
Experimental Animals

All experimental animals were second-generation descendants
of wild-trapped house mice, M. m. musculus, in Vienna
(48°12'38"N; 16°16’54”E). Progenitor mice were trapped at 14
different locations within a 500 m radius and crossed between
trapping sites. Before we assigned the breeding pairs, we geno-
typed mice to exclude individuals carrying t alleles, since these
alleles cause meiotic drive and may influence females’ mating
preferences (Lenington, 1991). F1 mice were arranged in two
breeding lines to generate both inbred and outbred mice. Inbred
mice resulted from one generation of brother—sister matings and
outbred mice resulted from matings of nonsiblings. One generation
of full-sib mating has been shown to cause significant inbreeding
depression (Meagher, Penn, & Potts, 2000) and it also influences
female odour preferences for males (Ilmonen et al., 2009). Exper-
imental mice were weaned at the age of 21 +£1 days and then
housed individually in standard mouse cages (type II cages,
26.5 x 20.5cm and 14 cm high) containing woodchip bedding
(ABEDD), wood shavings and a nestbox. Food (Altromin rodent diet
1324) and water were provided ad libitum. At weaning all animals
received an ear punch which was necessary for individual identi-
fication and tissues were stored at —20 °C for genetic analyses. A
standard 12:12 h light cycle was maintained and the temperature
was 22 =+ 2 °C. All animals were sexually naive and between 10 and
22 weeks of age when the experiment started.

Mate Choice Assay
Each female could choose to mate with one or two males and

these males were either siblings (genetically similar) or unrelated
(genetically dissimilar) to each other. Males were located in two
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Figure 1. Experimental set-up of neighbouring males’ enclosures. Females could move between male enclosures through a connection tube (1) and could escape male harassment
in a separate shelter cage (2). Males could not pass through the tubes as they wore collars. Each enclosure contained a shelter box (3), a nestbox (4) and a water dispenser (5).

Table 1
Example of MHC genotypes (class II Aa. and EB locus) in genetically similar versus dissimilar males in relation to the tested females
Treatment 3 Relatedness 3 MHC genotype OB ? MHC genotype IB ¢ MHC genotype No. of shared No. of new
alleles alleles
Genetically similar Brothers ab cd ag ch aa cc 2 2
ab cd
Genetically dissimilar Unrelated ab cd ag/be ch/df aa cc 2 2—-4
ae cf

Regardless of female inbreeding status, females always shared the same number of alleles with potential mating partners, both when males were genetically similar and when
they were dissimilar to each other. However, in the genetically dissimilar treatment, the number of potential new alleles females could gain for their litters from multiple
mating was at maximum doubled. OB = outbred; IB = inbred.

neighbouring enclosures (each measuring 1 x 1.7 m and 0.8 m genetically dissimilar males is at maximum twice what they gain
high) separated by an opaque plastic divider (Fig. 1). Each enclosure from mating with two genetically similar males (see Table 1). In-
contained one nestbox and one shelter both equipped with dividual MHC genotypes of females and their potential mates in the
bedding and nesting material, one water dispenser and randomly different treatment groups are listed in Tables 2—5.

distributed food (Altromin rodent diet 1324). Males were intro-

duced into their enclosures 1 day before females to enable them to Experimental Procedure

establish a territory. Simultaneously to male introduction, 20 pl of

female urine (pool of seven females collected on 5 consecutive Females were sexually naive and always unrelated and unfa-
days) were deposited between the nestbox and the shelter to miliar with the males with which they were tested. Males were also
sexually stimulate males. Females could move freely between the

males’ enclosures through a small passage tube at the base of the

divider (3 cm diameter). Males were prevented from entering the Table 2

passage by small collars to ensure that both established their own Individual MHC genotypes of outbred females that could choose between geneti-
territory and to avoid injuries from fighting. At the base of the cally dissimilar males
divider, four mesh-sealed holes (4 cm diameter) allowed visual and 2 Genotypes 3 Genotypes Reproductive
olfactory contact between males. To prevent male harassment, we outcome

. s ) . . Ao locus EB locus Ao locus EB locus
provided a cage within each male’s enclosure (including separate
water and food), which was accessible only to females through 430 453 328 340 445 453 319 328  Noreproduction

430 445 319 340

430 453 328 340 445 453 319 328 No reproduction
430 445 319 340

Genetic Similarity 430 445 319 340 434 445 319 338  Single sire
445 453 319 328

430 445 319 340 445 453 319 328  Single sire
430 453 328 340

another passage tube.

Experimental males were selected in matched pairs according to

their degree of re?atedne.ss .and MHC genotypes . (gee MHC 430 445 319 340 430 453 328 340  Single sire
Genotyping). ‘Genetically similar’ males were full siblings that 445 453 319 328

shared identical MHC genotypes, whereas genetically dissimilar 430 445 319 340 445 453 319 328  Single sire
pairs were unrelated males that only shared one allele at each MHC w0 453 398 340 2‘31‘5’ 323 ;fg 3‘2‘2 Sinle <
locus (see Table 1). In total we had 24 pairs of males, 12 genetically 430 445 319 340 ingle sire
similar and 12 genetically dissimilar. We tested a total of 48 females 440 445 319 332 430 445 319 340 Single sire
(thus male pairs were used twice) 24 of which were inbred; all 445 453 319 328

other experimental animals were outbred. The genetic background 445 453 319 328 430 445 319 340  Singlesire
of male pairs (similar or dissimilar) was balanced for female 430 453 328 340 . .

. . . 445 453 319 328 430 445 319 340  Single sire
inbreeding status (inbred or outbred). Inbred and outbred females 430 453 328 340

always shared the same number of alleles with both males they 430 445 319 340 430 453 328 340  Multiple sires
were tested with independent of whether the males were geneti- 445 453 319 328

cally similar or dissimilar. However, the number of new alleles fe- 430 453 328 340 445 453 319 328  Multiple sires

males could potentially obtain for their litter by mating with two 430 445 319 340
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Table 3
Individual MHC genotypes of inbred females that could choose between genetically
dissimilar males

Table 5
Individual MHC genotypes of inbred females that could choose between genetically
similar males

? Genotypes 3 Genotypes Reproductive

outcome

Aa. locus EB locus Aa. locus EB locus

? Genotypes 3 Genotypes Reproductive

outcome

Aa. locus EB locus Aa. locus EB locus

430 430 340 340 430 445 319 340
430 453 328 340
445 445 319 319 430 445 319 340
445 453 319 328

No reproduction

No reproduction

430 430 340 340 430 445 319 340  Single sire
430 453 328 340

430 430 340 340 430 445 319 340  Single sire
430 453 328 340

430 430 340 340 430 445 319 340  Single sire
430 453 328 340

430 430 340 340 430 445 319 340  Single sire
430 453 328 340

445 445 319 319 445 453 319 328  Single sire
430 445 319 340

445 445 319 319 434 445 319 338  Single sire

445 453 319 328
430 430 340 340 430 445 319 340
430 453 328 340
445 445 319 319 430 445 319 340
445 453 319 328
445 445 319 319 445 453 319 328
430 445 319 340
445 445 319 319 445 453 319 328
430 445 319 340

Multiple sires
Multiple sires
Multiple sires

Multiple sires

430 430 340 340 430 445 319 340
430 445 319 340
445 445 319 319 440 445 319 332
440 445 319 332

No reproduction

No reproduction

430 430 340 340 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 445 453 319 328  Single sire
445 453 319 328

445 445 319 319 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 430 445 319 340  Single sire
430 445 319 340

445 445 319 319 430 445 319 340  Single sire

430 445 319 340
445 445 319 319 434 445 319 338
434 445 319 338
445 445 319 319 434 445 319 338
434 445 319 338

Multiple sires

Multiple sires

sexually inexperienced in their first trial. We measured individual
body mass (g) the day we introduced the animals into the enclo-
sures to assess whether female mate choice is related to their own
or the male’s body mass. The mice were allowed to interact in the
experiment for 14 days before all animals were returned to the
colony. Male collars were removed immediately and females were
placed individually in type IIL mouse cages (36.5 x 20.5 cm and
14 cm high) to give birth under controlled conditions.

Table 4
Individual MHC genotypes of outbred females that could choose between geneti-
cally similar males

? Genotypes 3 Genotypes Reproductive

outcome

Ao locus EB locus Ao locus EB locus

430 453 328 340 430 445 319 340
430 445 319 340
445 453 319 328 434 453 328 338
434 453 328 338
445 453 319 328 434 445 319 338
434 445 319 338
445 453 319 328 430 445 319 340
430 445 319 340

No reproduction
No reproduction
No reproduction

No reproduction

430 453 328 340 430 445 319 340  Single sire
430 445 319 340

440 445 319 332 430 445 319 340  Single sire
430 445 319 340

440 445 319 332 430 445 319 340  Single sire
430 445 319 340

445 453 319 328 430 445 319 340  Single sire
430 445 319 340

445 453 319 328 434 453 328 338  Single sire

434 453 328 338
430 445 319 340 434 445 319 338
434 445 319 338
434 453 328 338 445 453 319 328
445 453 319 328
440 445 319 332 430 445 319 340
430 445 319 340

Multiple sires
Multiple sires

Multiple sires

MHC Genotyping

For MHC genotyping two class I MHC loci Ao and Ef} on mouse
chromosome 17 were screened with single strand conformation
polymorphism (SSCP). Therefore, genomic DNA was extracted from
frozen ear punch samples using a proteinase K/isopropanol proto-
col (Sambrook, Fritsch, & Maniatis, 1989). A two-step PCR (Bio-
metra-T1 thermocycler) was used to amplify the products. The first
denaturation step started at 94 °C for 2 min followed by 10 cycles of
denaturation at 94 °C for 30s, annealing at 59 °C for 30s and
extension at 72 °C for 1 min. The second step was followed by 25
cycles of denaturation at 94 °C for 30 s, annealing at 54 °C for 30 s,
extension at 72 °C for 1 min and a final extension at 72 °C for
10 min. The PCR for Ef differed in the two annealing temperatures
which were at 53 °C and 48 °C. The PCR reaction contained 1 pl
DNA (100 ng/ul), 1 ul 10x B-buffer, 1 ul dNTPs (2 mM), 1.5 pl MgCl,
(25 mM), 0.2 pl Taq polymerase (1 U/ul), 0.3 pl of both Ao forward
and reverse primer and 0.5 pl of both Ef forward and reverse
primer (modified after Schad, Sommer, & Ganzhorn, 2004).
Nucleotide sequences of primers for the two loci were: Ao-For-
ward: 5-ACCATTGGTAGCTGGGGTG-3'; Aa-Reverse: 5-CTAAATC-
CATCAGCCGACC-3'); EB-Forward: 5'-GAGTGTCATTTCTACAACGGGA
CG-3'; Ep-Reverse: 5-GATCTCATAGTTGTGTCTGCA-3'. Reaction
volume was 10 ul and ddH,0 was added to reach the desired
volume.

For the CE-SSCP analyses 1 pl of the diluted (1:60) PCR product
was added to 9 pl of loading dye mix (8.5 pl Hi-DiTM formamide,
0.5 pl GeneScan ROX 350 standard, Applied Biosystems, Foster City,
CA, US.A.). The reaction was denatured at 95°C for 5 min and
immediately chilled on ice before being analysed by capillary
electrophoresis on an ABI PRISM 3130xI automated DNA Sequencer
(Applied Biosystems). The CE-SSCP polymer consisted of 5%
conformational analysis polymer (CAP) which is made of 9% CAP,
10x genetic analyze buffer, 100% glycerol and HPLC-water and a 1x
ABI running buffer was used. The separation of the allelic variants
was achieved by using the following running conditions: injection
voltage at 1.2 kV, injection time of 18 s, run voltage at 12 kV for
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40 min, run temperature at 22 °C. The retention times of the allelic
variants were identified relative to the ROX 350 standard. Gene-
Mapper software package 4.05 from Applied Biosystems was used
to analyse the SSCP data.

Genetic Paternity Analyses

For genetic paternity analyses DNA was extracted from frozen
ear punch samples using a proteinase K/isopropanol protocol
(Sambrook et al., 1989). Individuals were genotyped at a minimum
of six and a maximum of 24 microsatellite loci (D9Mit34, DOMit135,
D10Mit20, D11Mit150, D17Saha, D17Mit28, D17Mit21, D1Mit404,
D1Mit456, D2Mit252, D2Mit380, D5Mit25, D6Mit138, D7Mit227,
D15Mit16, D19Mit39, D4Mit 17, D4Mit 164, D4Mit 139, D4Mit 243,
D4Mit 288, D4Mit 217, D4Mit 241, D4ANds6, see Mouse Microsatel-
lite Data Base of Japan, http://www.shigen.nig.ac.jp/mouse/mmdbj/
top.jsp) which were arranged in multiplex PCRs using a Multiplex-
PCR MasterMix (Qiagen Multiplex PCR kit). Amplification mixes
were subjected to a denaturation step at 94 °C for 15 min followed
by 30 cycles at 94 °C for 30s, 55 °C for 90 s and 72 °C for 60s,
followed by an elongation step at 72 °C for 10 min. Amplification
products were analysed using an automated sequencer (Beckman
Coulter CEQ 8000). Allele scoring was done with Beckman Coulter
CEQ 8000 System software, and allele sizes were determined with
SLS+400 as size standard. Paternity assignment was made by
complete exclusion. Paternity results were confirmed using CER-
VUS 3.0.3 (Kalinowski, Taper, & Marschall, 2007; Marshall, Slate,
Kruuk, & Pemberton, 1998). The program assigned paternity with
a 95-99% confidence (given dam-—sire—offspring relationship)
based on male allele differences.

Statistical Analyses

We applied a ¢ test to test for differences in litter size between
inbred and outbred females and a chi-square test to assess any
difference in the likelihood of reproduction between inbred and
outbred females. To test for the effect of male genetic similarity and
female inbreeding status on multiple paternity, we applied a
generalized linear mixed-effects model (GLMM) with a binomial
distribution and a logit link function. Paternity (single or multiple)
was included as the dependent variable, male genetic similarity
(similar or dissimilar) and female inbreeding status (inbred or
outbred) as fixed factors and female body mass and the two males’
body mass difference as a covariate. As males were used twice in
the experiment, we included male pair nested in trial as a random

factor to control for nonindependence of male pairs and increased
experience over trials. We verified that model assumptions were
fulfilled. We applied a backward stepwise removal procedure
(Grafen & Hails, 2002) to avoid problems from including nonsig-
nificant terms (Engqvist, 2005) and the removed variables were re-
entered one by one to the final model to obtain relevant statistics.
Statistical analyses were performed using ‘R’ version 2.14.1 (R
Development Core Team, 2011). We implemented the generalized
mixed-effects model using the ‘Imer’ function in the ‘lme4’ package.

Ethical Note

This study was discussed and approved by the institutional
ethics committee of the University of Veterinary Medicine, Vienna,
in accordance with Good Scientific Practice guidelines and national
legislation. Trapping of the founder individuals was additionally
approved by the MA 22 (Municipality for Environment and Con-
servation of Vienna). For detailed information on animal trapping,
tissue sampling and male collaring see Thonhauser, Raveh, Hettyey,
Beissmann, and Penn (2013b). Collars were used to ensure that
males kept to their home range, thereby avoiding aggressive en-
counters between males and to protect females from male
harassment and coercion by blocking males’ entrance into females’
cages (see Mate Choice Assay). After the experiment, all individuals
were reintegrated and kept in the colony. Experimental offspring
were weaned at the age of 21 1 days before they were also in-
tegrated into the colony.

RESULTS

In total 78% (38/48) of all females successfully gave birth to an
average litter size of 6.5 & 2 SD. There was no difference in litter
size (t35 =0.319, P=0.751) or the likelihood of reproduction be-
tween inbred and outbred females (outbred=18 litters,
inbred = 20 litters; %= 0.105, P=0.746). Overall, the rate of
multiple-sired litters was 29% (11/38); however, multiple paternity
was not influenced by male genetic similarity (GLMM: z = —0.120,
B=-0.091, SE=0.762, N=38, P=0.899; Fig. 2a) or female
inbreeding status (GLMM: z = 0.099, § = 0.074, SE = 0.749, N = 38,
P=0.921; Fig. 2b). Also, none of the covariates in our model
explained multiple paternity (female body mass GLMM:
z=-0.958, B =-0.183, SE=0.191, N =38, P=0.338; body mass
differences between males GLMM: z = 0.925, = 0.164, SE = 0.177,
N =38, P=0.355).

15+ (a)
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Z 9t
o
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E 6f
3
Z
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Dissimilar Similar
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12+

Outbred Inbred
Female inbreeding status

Figure 2. (a) Multiple paternity in relation to male genetic diversity. Number of litters with single (white) and multiple (black) sires when potential mating partners were
genetically similar or dissimilar to each other. (b) Multiple paternity in relation to female inbreeding status. Number of litters with single (white) and multiple (black) sires in inbred

and outbred females.


http://www.shigen.nig.ac.jp/mouse/mmdbj/top.jsp
http://www.shigen.nig.ac.jp/mouse/mmdbj/top.jsp

140 K. E. Thonhauser et al. / Animal Behaviour 93 (2014) 135—141

DISCUSSION

We found no evidence that genetic similarity of females’ po-
tential mates (MHC-identical siblings versus MHC-dissimilar non-
siblings) influenced the rate of multiple paternity. We also found no
evidence that female inbreeding status affected the rate of multiple
paternity. We analysed 38 litters, which is not a large sample size,
but we detected no trends in our results to suggest that a larger
sample size might reveal differences (see Fig. 2a, b). Thus, we can
rule out the possibility that these factors have strong effects on
multiple paternity, and if there are small effects, then a much larger
sample size would be needed to detect a difference. We found that
29% of the litters had multiple sires, which is identical to wild
populations of M. m. musculus (Thonhauser et al., 2013) and similar
to feral M. m. domesticus populations in the U.S.A. and Australia
(Dean et al., 2006; Firman and Simmons, 2008a). This finding in-
dicates that our experiment did not artificially alter the rate of
multiple paternity, and, moreover, it confirms that females show
multiple mating when they can select their mates rather than
because of sexual coercion.

Our negative results could be caused by an inability of females to
discriminate male genetic similarity; however, this explanation is
unlikely since there is considerable evidence that relatedness and
genetic similarity influence variation in individual odour in mice
(see the appendix in Thom & Hurst, 2004). Moreover, in our study
we manipulated males’ MHC similarity, and several studies have
shown that MHC influences odour in mice and rats (Penn & Potts,
1998; Yamazaki et al., 1979) and other species. It has been sug-
gested that MHC effects on odour may not be as salient in wild,
heterozygous mice as found in congenic strains of laboratory mice
(in which background genes are controlled; Penn & Potts, 1998).
Some studies have suggested that major urinary proteins (MUPs),
which have been shown to control kin recognition and inbreeding
avoidance in house mice (Cheetham et al., 2007), have an even
stronger influence on odour variation than MHC genes. If so, we
would have more reason to expect that females are able to detect
differences in male genetic similarity and assuming that brothers
are more likely to share MUPs than nonsiblings, variation in MUPs
cannot explain our negative results. The level of genetic differences
in MHC, as well as in MUPs, in our experiment may not have been
pronounced enough to affect females’ mating behaviour; however,
males’ genetic diversity in our study was comparable to that in
natural conditions (where polyandry increases the genetic diversity
of litters; Thonhauser et al., 2013). Thus, our findings suggest that
although female mice can assess the genetic similarity of males by
their scent, they do not increase offspring diversity when provided
with the opportunity to mate multiply, at least under our experi-
mental conditions. Therefore, our results raise the question of
whether increasing genetic diversity of offspring increases litter
survival or provides other fitness benefits, as predicted by the ge-
netic diversity hypothesis (Yasui, 1998).

Multiple mating may depend upon females’ condition, but we
found no evidence that female inbreeding status influenced that
rate of multiple paternity, regardless of the males’ genetic simi-
larity. A previous study with flour beetles found that inbred females
(generated from experimentally bottlenecked populations) were
more likely to engage in multiple mating than outbred controls,
which enabled them to reduce the negative fitness consequences of
inbreeding (Michalczyk et al., 2011). Since the inbred females in the
study with flour beetles were generated by eight generations of
full-sib matings, it is possible that one generation of inbreeding is
not sufficient to increase female promiscuity. However, if eight
generations of close inbreeding are necessary to increase female
promiscuity, then the relevance of this study is rather limited.
Another study on grey mouse lemurs, Microcebus murinus, found

that heavier females were more likely to mate with multiple males
than lighter females, suggesting that females in poor condition
cannot afford the costs associated with multiple mating (Huchard
et al., 2012). However, the rate of multiple-sired litters was not
related to female body mass in our study.

Finally, female multiple mating may not be a facultative
behaviour, as we assumed, and the variation in multiple mating
might be due to genetic polymorphism. However, it is unlikely that
multiple mating is due to a genetic difference since we previously
found no consistency in the rate of multiple paternity within in-
dividual females when repeatedly tested (Thonhauser et al., 2013a).

In summary, we did not find support for the hypothesis that
females are more likely to mate with multiple males when they
have the opportunity to increase the genetic diversity of their
progeny. Although previous work shows higher levels of genetic
diversity within multiple- than in single-sired litters (Thonhauser
et al., 2013), female mice did not have more multiple-sired litters
when they had the opportunity to increase the genetic diversity of
their progeny. Moreover, we found no evidence that inbred females
were more likely to give birth to multiple-sired litters than outbred
females, contrary to experimental findings with beetles
(Michalczyk et al., 2011), regardless of the genetic diversity of the
available males.
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