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One of the first techniques used in the study of the logical properties of 
algebraic objects was that of elimination of quantifiers. It was, for example, 
used by Tarski [ 161 to prove the decidability of the theory of any given 
algebraically closed field and the decidability of the theory of real closed 
ordered fields. The theories of various other algebraic structures (e.g., the p- 
adic numbers, divisible ordered abelian groups) may also be shown to 
eliminate quantifiers in appropriate languages. The choice of the language is 
especially important in these dealings. It must be chosen to lie close to 
natural algebraic phenomena. Any structure may be made to admit 
elimination of quantifiers by the choice of a sufficiently complex language: 
the structure may be Skolemized or Morleyized [ 151. Clearly the resulting 
languages are too far from the natural relations on the objects to be of 
immediate algebraic interest. 

In this paper we will show that for many natural languages those 
structures which have been shown in the past to admit elimination of quan- 
tifiers are, in fact, the only structures of their type to admit elimination of 
quantifiers in that language. In particular we will show that apart from the 
finite fields and the algebraically closed fields there are no other fields which 
admit elimination of quantifiers in the language of rings with identity (i.e., 
the language with primitives +, ., -, 0, l).’ We will show that the only 
theory of ordered fields that admits elimination of quantifiers in the natural 
language of ordered domains is the theory of real closed ordered fields. We 
show that if K is a nontrivially valued field admitting elimination of quan- 
tifiers in the language of valued fields then K is algebraically closed. Now 
the theory of the p-adic numbers does not admit elimination of quantifiers in 
the pure language of valued fields (cf. [ 121). However, if we include certain 
auxilary predicates {P,(x)} such that P,(x) holds if and only if x has an nth 
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’ This had been demonstrated previously by Macintyre [ 111 but by much more complicated 

arguments than we give here. 

74 
0001.8708/83/010074-14$07.50/O 
Copyright 8 1983 by Academic Press, Inc. 
All rkhts of renroduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82314941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ELIMINATION OF QUANTIFIERS 75 

root then C!!D does admit elimination of quantifiers [ 121. We will prove a 
converse of this theorem, probably not best possible. (See discussion below.) 

The notion of a model complete theory is related to elimination of quan- 
tifiers. A theory T is model complete if for every formula ~(2) with free 
variables 2, there is a quantifier free formula I#, 7) so that T k Vf[q~(f) CI 
3jjp(~,y)]. In his thesis McKenna shows that, although theories admitting 
elimination of quantifiers are rare, model complete theories are 
comparatively common in the following sense: 

Let G be the Galois group of the algebraic closure 0 over Q Then G is a 
compact group and hence possesses a unique translation invariant (Haar) 
measure, p. It is a simple consequence of work of Jarden [8] that 
p {o E G] Th(Fix(u)) is model complete in the language of rings} = 1. Let 
K E G be an involution, so K* = ido. Then Fix(n) is a real closure of Q and 
so Th(Fix(a)), which is, of course, the theory of real closed fields, is model 
complete as an ordered tield. Moreover, ,U {o E G]Th(Fix(rr) n Fix(u)) is 
model complete as an ordered field} = 1. This is proved by introducing a 
notion of pseudo-real-closed fields (prc fields), which is the real analogue of 
the notion of pseudo-algebraically closed field discussed by Ax, Jarden and 
others [ 1,8]. Similarly he defines a notion of pseudo-p-adically closed field 
and uses it to prove that, if KP is the relative algebraic closure of Q in C!P, 
then ,~{a E G]Th(Fix(o) n KJ is model complete} = 1. It follows that there 
are 2u” model complete theories of nseudo-real-closed fields (resp. pseudo-p- 
adically closed). 

1. PRELIMINARIES 

Consider a theory T in a first order language L. T is said to admit QO 
(= quantifier elimination) if for every L-formula I,@), R being a sequence of 
free variables, there is a quantifier free L-formula $(9) such that 
T t- Vf[#(f) CI I#)]. Notice that we always work relative to the language L 
and as we vary L the nature of the formula ~(2) varies accordingly. 

2. ALGEBRAICALLY CLOSED FIELDS 

THEOREM (Tarski). Let L be the language of rings with identity. Let 
ACF be the theory of algebraically closedfields as formulated naturally in L. 
Then ACF admits elimination of quantifiers with respect to L. 

We will now prove the following converse of Tarski’s Theorem: 

THEOREM 1. Let K be an infinite field whose L-theory admits QE. Then 
K is algebraically closed. 

Toward this end we prove the following. 
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LEMMA 1. Let a(X), X= (x, ,..., x,), be a quantifier free formula in L. 
Then Q(Z) is equivalent with respect to fteld theory to a disjunction of 
formulas of type pl(2) =p&) = --- = p,,,(f) = 0 A q(X) # 0, where the pi and 
q are in Z [n]. We will say that this is a disjunct of type (A). 

Proof: Trivial manipulations. 

Proof of Theorem 1. We argue by contradiction. Let K have an algebraic 
extension K(a) of degree n > 1. Let f (y, 2) = y” + x,- , y”- ’ + . +a x0. Then 
there is a quantifier free formula Q(x), which we may take as.a disjunction 
of formulas of type (A) which is equivalent in K to the formula 
Vyf (y, 2) # 0. Assume first that a is separable over K. 

Let a=a r ,..., a, be the distinct conjugates of a over K. Let z, ,..., z, be n 
new variables. Finally put F(z; y) equal to n( y - (zr + zzaj + . . . + z,ay - ‘)). 
It is clear F(&y) E K[z; y]. Let F(& y) =F&) + ... + F,-,(zY)y”-’ + y”. 
We claim {Fi(F)},,<iG,-, is algebraically independent over K. It is plainly 
enough to show that zi is algebraic over L = K(F&),..., F,- r(Y)). Clearly the 
roots of F(.& y) are algebraic over L. These roots are r, = z, + zzaj + -.- + 
z a’!-‘. Let M be the matrix n J 

1 a1 -.. n-1 a, 

1 a2 ... n-1 a2 L 1 . . 

1 a, ..a n an-l 

Then M-Y=P=(r r ,..., r,). Since the a’s are distinct M is invertible in 
M,(K@, ,..., a,)). Thus M-’ . r= ,5 This proves zI is algebraic over L. 

Now if k, ,..., k,EK and k,#O for some i> 1 then k,+k,a,+...+ 
k,a;-’ is not in K. Hence under this condition F(k, y) has no root in K. 
Thus, _under the assumption k, # 0 for some i > 1 we have K I= @(F,,(k) . . - 
F,,-,(k))- Now {F,tz31 is algebraically independent over K and K is infinite. 
Thus there is no K-Zariski closed proper subset X of K” such that 
Xx ((F,(k),..., F,-,(k))]k~ K”, ki # 0 for some i > 1). Thus if @(.V) = 
D,(.qV -1’ V O,(2), where D,(%?) is a disjunct of type (A) there is some 
D,(2), defining a nonempty set, which is just q(2) # 0. Thus if GE K” and 
q(k) # 0 then f (y, E) has no root in K. But this is absurd since if we let 
G(y, .Q = n”(y - ZJ then G(y, 5) = u,(f) + ... + o”(i) y”-’ + y”, where 
ai is the ith elementary symmetric polynomial. Since the a,(z) are well 
known to be algebraically independent, q(o,(Q..., o,(z)) # 0. So, since K is 
infinite, there are k ,,..., k, E K with q(u,(k) ,..., u,(k)) + 0. But clearly 
G(y, r;> has all roots in K. This contradiction proves K is separably closed. 

We now show K is perfect. If K has characteristic 0 we are done. Let K 
have characteristic p. Let X = {k E K Jxp - k = 0 has no root in K. ) Then by 
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Lemma 1 X= (k] e(k)}, where e(x) is a disjunction of formulas of type (A), 
and in this case all polynomials are one-variable polynomials. Clearly this 
implies X is finite or coiinite. But K is a vector space over its infinite subfield 
Kp so qKp = X cannot be finite or cotinite, unless X = 0. So K = Kp. 1 

In a sense this proof will be a prototype for all our results in this direction. 
As pointed out above, Theorem 1 was first proved by Macintyre using 
techniques associated with &-categoricity. 

Recently, considerable progress has been made on the classification of 
rings whose theory has QE. The work was begun by Rose for semiprime 
rings. Later Berline [3] extended Theorem 1 to all rings (with 1) of charac- 
teristic 0. Then joint work by Boffa, Macintyre and Point resolved the case 
of semisimple rings [4]. (There are some additional examples beyond fields). 
Together with Berline, they reduced the case of algebras over IF, to that of 
rings nilpotent of exponent 3. But there Cherlin (unpublished) has found 
quite a variety of interesting examples with QE. 

3. REAL CLOSED FIELDS 

THEOREM (Tarski). Let L, be the language of ordered domains. Let RCF 
be the theory of real closed Jelds as naturally formulated in L,. Then RCF 
admits elimination of quantifiers relative to L,. 

We will prove the following converse to Tarski’s Theorem: 

THEOREM 2. Let K be an OrderedfIeld whose Lo-theory admits QE. Then 
K is real closed. 

We need the following: 

LEMMA 2. Let 4(X) be a quantifier free L,-formula. Then over the theory 
of ordered ftelds 4(f) is equivalent to D, (2) V - +. V D,(f), where each D,(X) 
is of the form q,(Z) > 0 A .a. A q,,,(Z) > 0, or of the form, p(Z) = 0 A q,(Z) > 
OA es- A q,,,(Z) > 0, where p, q1 ,..., q, E h[f], p # 0. We shall say each 
D,(Z) is a disjunct of type (R). 

Proof See [ 161. Standard manipulations. 1 

The following general modeltheoretic fact will be very useful to us. 

LEMMA 3. Let T and T’ be model complete theories in the same 
language and suppose A’ is a model of T’ which is a substructure of a model 
of T and also has a model of T as substructure. 

Then A’l= T. 
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ProoJ Suppose A, c A’ c A,, where Ai k T. Consider a sentence 
(Vf)(W) @(% 7) in T, with @ quantifier free. Suppose A’ k--@X) 
(37) @(Z, 7). Select an existential I&) so that T’ t- (V2)[+jj) @(Z,y) ++ 
v(,.?)]. This is possible since T’ is model complete. A’ != (32) -(3$j) @(f, y), 
so A’ k (3~) V/(.X?). Since v/ is existential, A, k (3X) v(X). So A, I= (3X) v(3), 
since T is model complete. So there is d from A, such that A, I= ~(5). So 
A’ + w(a). So A’ + +jj) @(&, 7). So A, I= -(W) @(&, jj). Contradiction, 
since A, I= T. So A’ satisfies every V3 sentence from T. Since T is model 
complete, A’ + T. m 

LEMMA 4. Suppose K is an ordered field whose L,-theory admits QE, 
and let A be its subj?eld of algebraic numbers. If A is real closed, then also 
K. 

Proof Apply Lemma 3 to T = RCF and T’ = Th(K). 1 

We may now proceed directly to the 

Proof of Theorem 2. We again argue by contradiction. 
Suppose K is not real closed. 
Let A be the field of algebraic numbers of K. Then A is not real closed, by 

Lemma 3. Let f (y, X) = y” + y”-lx,- 1 + e.. + x, and suppose there are 
u1 ,..., U, E A so that f (y, ~7) has odd degree and no root in A. We may 
assume f (y, U) irreducible over A. Let Q(y) be a quantifier free formula 
equivalent in K to Vyf (y, 3) # 0. Let F(y, y) be nj( y - (z I + . . . + Z, a; - ‘)), 
where a, ,..., a,, are the distinct roots of f (y, u). As in the proof of 
Theorem 1, if F(,?, y) = F,(y) + . . . + F,-,(Y) y”-’ + y” then the Fj(F) are 
algebraicaily independent over A. This clearly implies, as in the proof of 
Theorem 1, that if #) = D,(f) V . + - V D,@), where Di(f) is of type (B), 
that there is some D@) which is of the form q,(Z) > 0 A ... A q&j?) > 0 and 
which is such that K k XD,(.2). Fix such an i. Let X = {6E A” (A k D,(6)}. 
We see K (= real closure of K) satisfies 3fDi(f), so R k=3fD,(zi), so 
Q I= 3.YDi(2), since X is given by inequalities with rational coefftcients. So 
now select a , ,..., a,, from Q with (a, ,..., a,) E X. Let f (y, h) have a real root 
p and write f (y, 6) = (y - p)(b, _ 1 y”- ’ + . . . + b,). Choose rational 
numbers fl and bA_, ,..., b; close to p and b,-, ,..., b,, respectively, and let 
g(y)=(y--)(b:,_,y”-‘+...+b~). Then g(y)EQ[y]. Let g(y)= 
s,+s,y+ ... + s,,-, y”-’ + y”. Then sj is very close to aj, thus eventually 
6 * ,*-*, s,) E X. This contradiction proves that every odd degree polynomial 
of A has a root in A. We now show every positive element of A has a square 
root. Let Y be the set of all positive elements lacking square roots. By 
inspection of the form (I3) the set Y is either finite or contains an open 
interval (a,, a,). The latter cannot happen since {a’ ) a E A} is dense in the 
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positive part of A. But if y E Y, then also yn* E Y for all n E D\l. Thus Y = QI 
and A is real closed. fl 

Theorem 2 has recently been extended to: 
Each linearly ordered ring (associative with 1 # 0) whose theory admits QE 
is a real closed field. See [7]. 

4. p-ADIC FIELDS AND FIELDS OF LAURENT SERIES 

We will work in a language L,,, for valued fields. This contains the usual 
language for fields, with a I-ary predicate symbol Y for the valuation ring, 
and I-ary predicates P, (n = 2,...,) (ultimately to be interpreted by the 
nonzero n th powers). 

A p-adically closed field is a valued field such that 

(i) the value group r is a Z-group with least positive element 1; 

(ii) u(p) = 1; 

(iii) the residue class field is IF, ; 

(iv) Hensel’s Lemma holds. 

We will construe p-adically closed fields as L,,, structures by interpreting 
V as the valuation ring, and P, as the group of nonzero n th powers. 
Obviously, the class of p-adically closed fields is an EC, class in this for- 
mulation. 

The relevance of the P,‘s comes from the result that p-adically closed 
fields admit QE, but do not if the P, are not used. See [2, 10, 121. Of course, 
p-adically closed fields are model complete in the language not using the P,. 

Now we define a p-field to be an L,., structure K which has a field as its 
underlying domain and is a substructure of a p-adically closed field L; in 
particular P, defines in K the set: 

{xE K :x is an nth power in L}. 

Obviously, a p-field is a valued field with discrete group, v(p) = 1, and 
residue class field F,. The following lemma is crucial. 

LEMMA 5. (a) Suppose K is a pseld, and n > 2. Then there is an integer 
rn such that for all x in K: ~(1 - x) > r, =z- P,(x). 

(b) If K is a pfield, {x : K F P,(x)) is a clopen subgroup of K*. 

Proof (a) Embed K in a p-adically closed K, . Since P, in K, is inter- 
preted by the nonzero n th powers, the conclusion holds for K, by 
Hensel-Rychlik [ 121. Since P, is interpreted in K by {x E K, : P,(x)] n K, 
the result follows. 

607/47/l-6 
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(b) Immediate from (a), since {x E K : P,(x)) is a group under 
multiplication. I 

Now we can easily obtain a converse to Macintyre’s quantifier elimination 
for QP, 

THEOREM 4. Suppose K is a p-field which admits QE in L,,, . Then K is 
p-adically closed. 

The proof follows closely that for real closed fields, so we feel justified in 
giving fewer details. 

Step 1. First we describe a normal form for quantifier-free formulas, 
along the lines of Lemma 2. Because V(x) c) P,(l +p3x2) holds in all p- 
fields, we have only to consider disjunctions of formulas which are 
conjunctions of the form (C): 

p,(f)=OA *** Ap&Y)=O 

A 4(f) + 0 

A qsm A . -* A f’,,(s,(~>) 

A ~,,+,W)) A t,(f) f  0 A --* A -J’,,+,(t,(~>> A t&f) f  0. 

Note that all conjuncts except the equations define open sets in the 
(products of the) valuation topology. 

Step 2. Let A be the field of algebraic numbers of K. A is ap-field. Most 
importantly, A is dense in its Henselization A, which is a p-adically closed 
field. By Lemma 3, K is p-adically closed if and only if A is p-adically 
closed. 

Suppose A is not p-adically closed. Then A is not Henselian. We select 
a E z of minimal degree n > 1 over A, with minimal polynomial f(y). By 
standard transformations we can assume that f is a counterexample to the 
following version of Hensel’s Lemma [ 61: 

IffE V[ y], and /3 E V with utf@)/df’(/3))‘) > 0, then f has a root in V. 
We now proceed as in the proof of Theorem 1 to form F(F, y) whose coef- 

ficients are algebraically independent over K. Let Y,, = (0, l,O, O,...). Then 
F@,,, y) =f( y). There is a neighborhood U of r0 in the product topology on 
A”, so that if i, E U then 

(by continuity). 
The neighborhood U is not contained in any proper Zariski closed subset 

of A”. 
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Now consider the condition: 

x0,..., X.-l E V, and there is a B E V so that 

uhm/(g’GB))*) > 0 

and g has no zero in V, where g(y) =f(y, n) 

=y” fX,-lyn-’ + **a +x0 

(i.e., f(y, X) is a counterexample to Hensel’s Lemma of degree n). 
Let Q(Z) be a quantifier-free formula equivalent over K to the above. @ 

can be taken as disjunction of formulas of type (C). By the argument about 
U, one of the disjuncts lacks equational conditions, and so defines a nonvoid 
open set in An. 

Step 3. One can now proceed exactly as in the real case, factoringfover 
x and approximating. This concludes the proof. I 

Notes (i) The above result may not be best possible. Our definition of p- 
field forces the interpretation of each P, to be a clopen subgroup. It should 
be obvious that this fact was crucial to our proof. It is an interesting, and 
apparently difficult problem to extend our result to the class of valued fields 
where P, is simply interpreted as the group of invertible n th powers. The 
field 0 under the p-adic valuation is not a p-field, under the latter inter- 
pretation. 

(ii) It is routine to establish an analogous result for the class of valued 
fields of characteristic zero with algebraically closed residue class field, value 
group a h-group, and a distinguished element t with u(t) = 1. Now we would 
consider quantifier elimination in terms of V, P,, and t. We regard this result 
as essentially weaker than the p-adic case, since we know many examples 
where the use of a constant like t changes a non-model-complete field into a 
model-complete field. For example, this happens with C((t)). 

4. GENERAL VALUED FIELDS 

4.1. EXAMPLE. Let D = Q[x, y], and let V= D: Let F be the quotient 
field of D. Consider the two natural embeddings 
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These induce valuations v1 , v2 on F, with valuation-rings V, , V,, so that 
Vc V,, Vc VZ. But 

VI(Y) > VI(X), 

v2(x) > V2(Y)* 

So the relation 

is not quantifier-free definable in terms of Vi. 

4.2. The following seems to be the best way of formalizing 

v(x) 2 V(Y)* 

DEFINITION., Let D be a domain. Then a linear divisibility relation (1.d. 
relation) on D is a binary relation div on D such that for all a, b, c E D: 

(i) (a div b and b div c) Z- a div c, 

(ii) a div b or b div a, 

(iii) (a div b and a div c) s a div (b + c), 

(iv) if c # 0, then (a div b o UC div bc), 

(v) not 0 div 1. 

An 1.d. relation div on the domain D induces a valuation ring Vdi, of the 
quotient field Q(D) of D : YdiV = {q’blu, b E D, b # 0, b div a \, and for the 
corresponding valuation vdiv on Q(D) we have (with a, b E 0): 

vdiv(u) < v&b)* a div b. 

div I-+ VdiV is easily seen to be a bijection of the set of 1.d. relations on D 
onto the set of valuation rings of Q(D), whose inverse is given by: 

Y I-+ div, dz’ {(a, b) E D2 I v(a) < v(b)}, 

where v is the valuation on Q(D) associated with V. Clearly an 1.d. relation 
div on D can be extended uniquely to an 1.d. relation Q(div) on Q(D) such 
that 

CD, div) = (Q(D), Q(div)). 

So let us redefine a valued field as a field with an 1.d. relation on it, and 
define a valued domain as a substructure of a valued field, i.e., as a domain 
with an 1.d. relation. 
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Clearly the notion of extension for valued fields does not change by this 
convention. 

Let Lva, be the language of valued domains with a predicate div. Let 
ACF,,, be the theory of non-trivially valued algebraically closed fields, 
formulated in this language. 

THEOREM (Robinson [13)). ACF,,, admits QE. It is the model 
completion of the theory of valued domains. 

Actually Robinson shows only that ACF,,, is model complete, because 
this is what he needs to derive the decidability of ACF,,, . But one easily sees 
that a valued field (K, div,) has an up to isomorphism unique prime 
extension (K, divz) to a model of ACF,,,. If div, is nontrivial, then this 
prime extension is (K, divd), where K is the algebraic closure of K and divE 
is any extension of div, to K. If div, is trivial, first extend div, to a 
nontrivial divKtx) on a pure transcendental extension of K, and then use the 
first case. Model completeness of ACF,,, together with the existence of 
prime extensions for substructures implies that ACF,,, admits QE, by [ 151. 

We prove a converse to this theorem: 

THEOREM% Let K = (K, div,) be a non-trivially valued field such that 
Th(K) admits QE. Then K is algebraically closed. 

4.3. We assume (K, div,) is a nontrivially valued field such that Th(K) 
admits QE. 

We first pass to a subfield A of K which will play the role of the field of 
algebraic numbers of K. If div, is nontrivial on the prime field IF of K, let A 
be the field of algebraic numbers of K, and div, the 1.d. relation on A 
induced by div,. If div, is trivial on F, select t with v(t) # 0, and let A be 
the relative algebraic closure of IF(t) in K, and div, the 1.d. relation on A 
induced by div,. 

The esential facts about A are: 

LEMMA 6. (a) The valuation on A is a rank 1 valuation, and so A is dense 
in its Henselization. 

(b) If A is algebraically closed, then so is K. 

Proof(a) Standard. 

(b) Lemma 3 and Robinson’s Theorem. 1 

4.4. Let us establish notation. Given (K, div,), we put: 

(a) r, = value group; 
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(b) Res(K) = residue class field; 

(c) (K, div,-) = henselization of (K, div,); 

We are going to exploit the following lemma. 

LEMMA 7. Let K = (K, div) be a perfect, henselian field such that 

(a) Res (K) is algebraically closed; 

(b) P, is divisible; 

(c) if char (K) = 0 and char (Res(K)) =p > 0, then K* is p-divisible; 

(d) if char (K) =p > 0, then K is closed under Artin-Schreier 
extensions. 

Then K is algebraically closed. 

Proof: If char (Res (K)) = 0, then a proper algebraic extension of K has 
a unique valuation extending the valuation on K, and this valuation either 
enlarges the value group, or the residue field of K, which contradicts the 
assumptions. So suppose char (Res(K)) =p > 0 and that K is not 
algebraically closed. Then, because K is perfect, it has a proper finite Galois 
extension L. Let G = Gal (L ]K) and H be a p-Sylow subgroup of G. If 
H # G, then the fixed field of H is a separable extension A4 of K with 
[M: K] > 1, and p;( [M: K]. Extend the valuation v (uniquely) to a valuation 
v,,, on M. Then the formula [M: K] = [Res(M): Res(K)] . [r,,,,:r,] = 
1.1 = 1 holds [ 14, p. 2371, contradiction. So G = H and G is a p-group. As a 
nontrivial p-group G has a cyclic quotient of order p which implies that K 
has a cyclic extension of degree p; but this is impossible by the conditions 
(c) and (d), except that in the case of char K = 0, char Res(K) =p > 0 we 
still have to check that K has a primitive pth root of unity. So let char 
K = 0, char Res(K) =p > 0 and let [ be a primitive pth root of unity. Then 
K(C)/K is separable of degree <p - 1, and hence [K(C): K] = 
PWfW) : ReWl Lts, :r,]= 1.1 = 1 which shows that [EK. 1 

We now prove the theorem. To begin we note that any quantifier-free 
formula in the current language is a boolean combination of atoms p(2) = 0, 
r(x) div s(Z). 

If XC K, K any valued field, is defined by such an atom, then K\B c X 
or K\B c K\X for some bounded neighborhood B of 0. This property of sets 
XC K is clearly preserved under taking boolean combinations. 

From this we deduce the following. 

LEMMA 8. Let A be as in 4.3. Then the multiplicative group of A is 
divisible. Hence A is perfect and P, is divisible. A is closed under Artin- 
Schreier extensions if ch(A) # 0. Res(A) is not finite. 
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It remains to show: Res(A) is algebraically closed. 

Proof. We first claim that if n is an integer > 1 then there is a 
polynomial Q(xO ,..., x,-i) = Q(2) E F[ ‘1 x wi a coefficients of non-negative ‘th 11 
value and such that the image of Q(2) in Res(A)[Z], Q(Z), is not zero and 
furthermoreif~(~)#O,afromA,theny*+a,_,y”-’+~~~a,hasarootin 
A. We now construct Q. Let f(y,~)=y”+x,_,y”-‘+...+x, and 
!@) = w(xo ,..., x,-J be an open &,-formula under Th(K) equivalent to 
3yf(y, Z) = 0. We may assume that w(x3 is a finite disjunction of formulas of 
the following type: 

p,(f)= *** =pk(X) = 0 A ql(X) div r,(Z) A ... A q,(Z) div r,(Z) 

A 7(sI(.f) div t,(Z)) A .a. A 7(s,(Z) div t,#)), (*) 

where all appearing polynomials have their coefficients in V, such that for 
all i with 1 < iQ k:p,(Z) has image &(Z)E Res(A)[Z]\{O} and for each 
atom q,(Z) div r,(Z) at least one of q,(X), r,(X) has image #O in Res(A)[Z], 
and, finally, for each negated atom +&V) div t,,(f)) at least one of s,,(Z), 
f,,(Z) has image #0 in Res(A)[2]. All this can be reached by multiplication 
with suitable elements of F.’ 

Claim. There is at least one disjunct (*) in which no p@) appears and 
no conjunct q,(f) div r,(X) with g,(X) = 0 in Res(A) [z] and no conjunct 
(~~(2) div t,,(Z)) with S;;(X) # 0 in Res(A)[Z]. Let us first assume that the 
claim is true; so we have a disjunct (*) in which k = 0 and for all 1 <j < 1, 
1 Q h (m:ij;@)#O, S;;(Z)= 0 (hence S;(X)# 0). Then let Q(Z) be the 
product of all q, and t, ; so Q(2) E V&V] and Q(X) E ff [Z]\{O} and for all 
a=(~,, ,..., a,-,)EV” with Q(G2 ,..., cf,_,)#O:y”+u,_,y”-‘+...+u,has 
a root in A. This is because Q(a) # 0 implies easily that the disjunct (*) 
becomes true in A upon substituting a for 2. Suppose the claim does not 
hold. Then we form a product P(Z) E V,[Z] by taking from each disjunct (*) 
factors as follows: all p,(X) are factors; for eath atom q,(Z) div r&5) with 
g(X) = 0 r,(X) should be a factor; for each negated atom +,,(X) div t,,(X)) 
with G(Z) # 0 s,,(X) should be a factor. So because the claim is supposed to 
be not true P(2) has a factor from each disjunct; also F(Z) # 0 in Res(A)[Z). 
We now show: 

for all a = (a, ,..., a,- 1 )EV: suchthaty”+u,-&‘-‘+...+a, 

has a root in A, &a,, ,..., d,- i) = 0 holds. (**I 

For at least one of the disjuncts (*) must hold in K upon substituting a for 2; 
now if this particular disjunct has given us a factor pi(Z) of P(Z), then 
p&z) = 0, so certainly F(6) = 0; if the disjunct gives a factor r,(X), then this 
is because (r/(X) = 0, so u(q,(u)) > 0; but also q,(u) div r,(u) holds, so 
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u(rj(a)) > 0, i.e., q(d) = 0, hence p(8) = 0; similarly one shows that if the 
disjunct gives a factor s&F), then also F(a) = 0. So the statement (**) above 
is proved. This statement implies that F(?,-,(K),.,,..., un- i(b)) = 0 for all b E V”, 
so as Res(A) is infinite by Lemma 7, P(a,,(F),..., on- i(F) = 0 in Res(A)[T] 
which however contradicts the algebraic independence of the elementary 
symmetric functions u,,(F),..., u,, _ ,(F) over Res(A). 

Employing arguments similar to those used in previous cases we now can 
show easily that Res(A) is algebraically closed. 

Since A is dense in its Henselization (Lemma 6), arguments simi.lar to 
those used in the p-adic case show that A is in fact Henselian. Thus the 
theorem is proved. 

5. POSTSCRIPT 

Consider the field L = lJ,> l K((t”“)) of formal Puiseux series (fractional 
power series) over an algebraically closed field K of characteristic p # 0. L is 
not algebraically closed ([5, p. 641. (The algebraic closure of L is obtained 
by iterated Artin-Schreier extensions.) It follows from Section 4 that Th(L) 
does not admit elimination of quantifiers as a valued field. This is not 
altogether too pathological in as much as C((t)) does’not admit elimination 
of quantifiers as a valued field either. However, in the language of Section 3 
(with t distinguished) C((t)) d oes admit elimination of quantifiers. 

However, L is much more perverse than C((t)). Anyone familiar with the 
Kaplansky Hypothesis-A [9] may well wonder why, since L clearly satisfies 
Hypothesis-A, the Ax-Kochen analysis does not apply to K. The answer to 
this is that L admits algebraic immediate extensions (namely z). Another 
point of view on this might be that L does not satisfy the very strong form of 
Hensel’s lemma Kaplansky uses, a version which takes into consideration all 
$th formal derivatives of a polynomial instead of just the first derivative. 
We might say that L is not suflciently Henselian. 

A famous theorem of Ax and Kochen states that if K, and K, are 
Henselian valued fields with ch(Res(Ki)) = 0, rKi =rKZ, and Res(K,) = 
Res(K,), then K, G K,. If L is as in the preceding paragraph we see L 
furnishes a counterexample to this theorem for characteristic p # 0. If M is 
an algebraically closed field, ch(M) =p # 0 and M((tQ)) is the field of 
formal power series with well-founded support in the rational group Q (i.e., 
Lf:Q-t~l~q~QISG?)ZO~ is well founded}) then M((to)) is algebraically 
closed (so Henselian), Res(M((to))) = M 3 Res(L) and T,,,,((,o, = Q = r, but 
M(p)) f L. 

It might be possible to gain control over the Artin-Schreier extensions of 
L (and so prove decidability) by introducing new predicates for this purpose. 
However, we do not see how this might be accomplished at this time. 
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