On Characterizing Finite Chevalley Groups of Type E_{6} and Their Twisted Analogs

Kok-Wee Phan*
University of Notre Dame, Notre Dame, Indiana 46556
Communicated by Walter Feit

Received January 9, 1973

Let $E_{6}(q)$ be the adjoint Chevalley group of type E_{6} over the finite field of order $q=p^{n}, p$ odd. We shall denote the simple twisted analogue of $E_{6}\left(q^{2}\right)$ by ${ }^{2} E_{6}(q)$. Let $\epsilon= \pm 1, G_{\epsilon}{ }^{*}=E_{6}(q)$ when $\varepsilon=1$ and $G_{\epsilon}{ }^{*}={ }^{2} E_{6}(q)$ when $\epsilon=-1$. Suppose z^{*} is an involution in the center of a Sylow 2-subgroup of $G_{\epsilon}{ }^{*}$. The purpose of this paper is to prove the following.

Theorem. Let G be a finite group with an involution \approx such that the centralizer $H_{\epsilon}=C_{G}(z)$ of z in G is isomorphic to $C_{G_{\epsilon}}\left(z^{*}\right)$. Then either $G=O(G)$ H_{ε} or G is isomorphic to $G_{\epsilon}{ }^{*}$.

We begin the proof with a study of the structure of $C_{G_{e}}\left(\mathcal{F}^{*}\right)$. For this, we use the method of Iwahori-Ree [6], with which we assume the reader is familiar. To give a decription of the structure, it is necessary to introduce a large number of notations for elements and subsets of $G_{\varepsilon}{ }^{*}$. Our notation gencrally follows that of [9]. We also refer the reader to [9] for the construction of and standard facts on Chevalley groups. We then analyze the fusion of classes of involutions in H_{ϵ}. The information is used to construct a subgroup G_{6} isomorphic to $G_{\epsilon}{ }^{*}$ in the interesting case. We show finaly that $G_{0}=G$.

Our group-theoretic notation is standard except that A^{*} will denote $x A x^{-1}$ for some subset A and element x of a group X. The reason for this deviation will be obvious.

1. Notation and Structure of H_{ε}

Let Φ be the set of roots of the complex semi-simple Lie algebra G of type F_{6} relative to a Cartan subalgebra of \mathbf{G}. For some fixed ordering of Φ, iet

* Support in part by the National Science Foundation under Grant No. GP 29496 Xi at the university of Notre Dame.
Φ^{+}be the set of positive roots. Φ^{+}contains a simple system $\left\{\alpha_{i} \mid 1 \leqslant i \leqslant 6\right\}$ with the following Dynkin diagram.

Let F_{ϵ} be the finite field of order q when $\epsilon=1$ and of order q^{2} when $\epsilon=-1$. The universal Chevalley group E_{ϵ} of \mathbf{G} over F_{ϵ} contains the oneparameter unipotent subgroups $X_{\alpha}{ }^{*}=\left\langle x_{\alpha}^{*}(t) \mid t \in F_{\varepsilon}\right\rangle, \alpha \in \Phi$. The following elements play important roles in the study of Chevalley groups.

$$
\begin{aligned}
w_{\alpha}^{*}(t) & =x_{\alpha}^{*}(t) x_{-\alpha}^{*}\left(-t^{-1}\right) x_{\alpha}^{*}(t) \\
h_{\alpha}^{*}(t) & =w_{\alpha}^{*}(t) w_{\alpha}^{*}(1)^{-1} \\
\omega_{\alpha}^{*} & =w_{\alpha}^{*}(1)
\end{aligned}
$$

For convenience, we record below some relations that are especially important to us.

$$
\begin{align*}
\omega_{\alpha}^{*} h_{\alpha^{\prime}}^{*}(t) \omega_{\alpha}^{*-1} & =h_{w_{\alpha}\left(\alpha^{\prime}\right)}^{*}(t), \\
\omega_{\alpha}^{*} x_{\alpha^{\prime}}^{*}(t) \omega_{\alpha}^{*-1} & =x_{w_{\alpha_{\alpha}\left(\alpha^{\prime}\right)}^{*}(c t), \quad c= \pm 1,} \tag{*}\\
h_{\alpha}^{*}(t) x_{\alpha^{\prime}}^{*}\left(t^{\prime}\right) h_{\alpha}^{*}(t)^{-1} & =x_{\alpha^{\prime}}^{*}\left(t^{\left\langle\alpha^{\prime}, \alpha\right\rangle} t^{\prime}\right) .
\end{align*}
$$

Let σ be the identity automorphism of E_{ϵ} when $\epsilon=1$ and the product of the graph automorphism of E_{ϵ} and the field automorphism of E_{ϵ} induced by: $t \rightarrow \bar{t}=t^{q}, t \in F_{\epsilon}$ when $\epsilon=-1$. Recall that in the later case, if ρ denotes the permutation of the roots induced by the graph automorphism, wc have

$$
\sigma\left(x_{\alpha}^{*}(t)\right)=x_{\rho(\alpha)}^{*}\left(\epsilon_{a} \bar{t}\right)
$$

where $\epsilon_{\alpha}= \pm 1$ and $\epsilon_{\alpha}=1$ if $\pm \alpha$ is a simple root. For any subset $A \subseteq E_{\sigma}$, let A_{σ} denote the set of fixed points of σ in A. Let $X_{\alpha}, x_{\alpha}(t), v_{\alpha}(t)$, and ω_{α}, be the images of $X_{\alpha}{ }^{*}, x_{\alpha}^{*}(t), w_{\alpha}^{*}(t)$, and ω_{α}^{*}, respectively, in $\bar{E}_{e}=F_{e} \mid 7\left(F_{e, \sigma}\right)$. We shall use the so-called 'bar' convention for homomorphic images of subsets of E_{ϵ} in \bar{E}_{ϵ}. Recall that $\left|Z\left(E_{\epsilon, \sigma}\right)\right|=d=(3, q-\epsilon)$. (See [9].) If X is σ-invariant, σ acts canonically on \bar{X}. Because σ is involutory and $\left|Z\left(E_{\epsilon, \sigma}\right)\right|$ is odd, it follows that $\left.(\bar{X}) \sigma=\overline{\left(X_{\sigma}\right.}\right)$. This fact will be used later without comment. We note that $\overline{E_{\epsilon, \sigma}}=G_{\epsilon}{ }^{*}$. The resulting relations in \bar{E}_{ϵ} arising from (*) will be denoted by (${ }^{*}$).

Next we introduce notations for elements and subsets of \bar{E}_{ϵ}.

$$
\begin{aligned}
L_{\alpha} & =\left\langle X_{x}, X_{-x}\right\rangle, \quad \alpha \in \Phi \\
\left\langle t_{\alpha}\right\rangle & =Z\left(L_{\alpha}\right)
\end{aligned}
$$

Recall that since Φ has only one root length, if $\alpha=\sum c_{i} \alpha_{i}$, then $t_{x}=$ $\prod_{i} t_{a_{i}}^{a_{i}}$. Therefore $t_{x}=\Pi t_{\alpha_{j}}$ over all j such that c_{j} is odd. For brevity, we also denote t_{a} by $t_{j_{1} j_{2}} \ldots$ where $c_{j_{k}}$ is odd.

$$
\begin{aligned}
\alpha_{0} & =\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{1}-2 \alpha_{5}+\alpha_{6}, \text { highest root of } \Phi, \\
\beta & =\alpha_{1}+a_{3}+\alpha_{t}+\alpha_{5}+\alpha_{6} \\
\gamma & =\alpha_{3}+\alpha_{1}+\alpha_{5} \\
L_{0} & =L_{\alpha_{0}, \sigma}, Z\left(L_{0}\right)=\left\langle t_{146}\right\rangle=\left\langle t_{0}\right\rangle \\
L_{6} & =L_{0, c}, Z\left(L_{b}\right)=\left\langle t_{13456}\right\rangle=\left\langle t_{e,}\right\rangle \\
L_{\theta} & =L_{\gamma, \sigma}, Z\left(L_{c}\right)=\left\langle t_{345}\right\rangle=\left\langle t_{\gamma}\right\rangle
\end{aligned}
$$

Let ρ be the identity permutation on Φ when $\epsilon=1$ and the permutation on Φ defined earlier when $\epsilon=-1$.

For all $i \in\{1,2, \ldots, 6\}$, let

$$
\begin{aligned}
& L_{i}=L_{a_{i}, \sigma} \cong S L(2, q), \quad \text { when } \quad i=p(i), \\
& L_{i o(i)}=\left\langle x_{x_{i}}(t){x_{p}\left(a_{,},(t)\left|t \in F_{e}\right\rangle ;\right.}^{\cong S L\left(2, q^{2}\right), \quad \text { when } \quad i=\rho(i),}\right.
\end{aligned}
$$

κ is a generator of the multiplicative group of $\overline{F_{1}}, \lambda$ is a generator of the multiplicative group of F_{-1} such that $\lambda^{q-1}=\kappa$.

$$
h=\left\{\begin{array}{l}
h_{\alpha_{1}}(\kappa), \quad \text { when } \epsilon=1 \\
y x h_{x_{1}}\left(\lambda^{o-1}\right) x^{-1} y^{-1}, \quad \text { when } \quad \epsilon=-1
\end{array}\right.
$$

where

$$
\begin{aligned}
x^{-1} & =x_{\beta}(t) w_{\beta}(t) x_{\beta}\left(\frac{1}{2} t\right), \\
y^{-1} & =x_{v}(t) w_{\gamma}(t) x_{\nu}\left(\frac{1}{2} t\right), \\
t & =\lambda^{1 / 2(q+1)} .
\end{aligned}
$$

and

$$
h^{\prime}=\left\{\begin{array}{l}
h_{\alpha_{3}}(\kappa), \quad \text { when } \epsilon=1, \\
y^{\prime} y h_{x_{3}}\left(\lambda^{q-1}\right) y^{-1}\left(y^{\prime}\right)^{-1},
\end{array}\right.
$$

where y is as above and $\left(y^{\prime}\right)^{-1}=x_{\alpha_{4}}(t) w_{\alpha_{4}}(t) x_{\alpha_{4}}\left(\frac{1}{2}\right) ; t=\lambda^{\frac{1}{2}(4-1)}$.

Using relations $\left(^{*}\right)$, we compute that $h, h^{\prime} \in \overline{E_{\epsilon, \sigma}}$ and obviously $|h|=$ $\left|h^{\prime}\right|=q-\epsilon$. We refer the reader to [1, p. 260] for pertinent facts necessary to above computations.

Finally if X is a Chevalley group, we shall call the automorphism σ^{\prime} of X such that the twisted analogue of X is the set of fixed points of σ^{\prime}, the twisting automorphism of X. Also to shorten some of the later proofs we introduce the following notations

$$
\begin{aligned}
G L_{\epsilon}(m, q) & = \begin{cases}G L(m, q), & \text { when } \epsilon=1, \\
G U(m, q), & \text { when } \epsilon=-1,\end{cases} \\
S L_{\epsilon}(m, q) & =\begin{array}{ll}
S L(m, q), & \text { when } \epsilon=1, \\
S U(m, q), & \text { when } \epsilon=-1,
\end{array} \\
P S L_{\epsilon}(m, q) & =S L_{\epsilon}(m, q) / Z\left(S L_{\epsilon}(m, q),\right.
\end{aligned}
$$

and $\operatorname{Spin}_{\epsilon}(2 m, q)=\operatorname{Spin}(2 m, q)$, the universal Chevalley group of type D_{m} over the field of q elements when $\epsilon=1$ and $\operatorname{Spin}_{\epsilon}(2 m, q)$ is the set of fixed points in $\operatorname{Spin}\left(2 m, q^{2}\right)$ of its twisting automorphism when $\epsilon=-1$.

We are now ready to determine the conjugacy classes of involutions in $\overline{E_{\varepsilon, \sigma}}$ and their centralizers.

Lemma 1.1. (i) There are precisely two conjugacy classes of involutions in $\overline{E_{\epsilon, \sigma}}$ with representatives t_{35} and t_{0};
(ii) $C_{\overline{E_{\epsilon, \sigma}}}\left(t_{35}\right)=\langle h\rangle L$ where $L=\left\langle L_{0}, L_{2}, L_{3}, L_{\mathbf{4}}, L_{5}\right\rangle$ when $\epsilon=1$; $L=\left\langle L_{0}, L_{2}, L_{4}, L_{35}\right\rangle$ when $\epsilon=-1 ; L \cong \operatorname{Spin}_{\epsilon}(10, q)$ and L is a normal subgroup of index $(q-\epsilon) / d$;
(iii) $C \overline{E_{\epsilon, 0}}\left(t_{0}\right)=\left\langle h_{\alpha_{2}}(\kappa)\right\rangle M L_{0}$ where $M=\left\langle L_{1}, L_{3}, L_{1}, L_{5}, L_{6}\right\rangle$ when $\epsilon=1 ; \lambda I=\left\langle L_{4}, L_{35}, L_{16}\right\rangle$ when $\epsilon=-1 ; M \cong S L_{6}(6, q) / Z$ where Z is the subgroup of order d in $Z\left(S L_{\epsilon}(6, q)\right) ;\left[M, L_{0}\right]=1$ and $M \cap L_{0}=\left\langle t_{0}\right\rangle ;$
(iv) t_{35} is contained in the center of a Sylow 2-subgroup of $\overline{E_{\epsilon, \sigma}}$, whereas t_{0} is not.

Proof. The case $\epsilon=1$ has already been worked out in details by Iwahori [6]; whence we shall assume that $\epsilon=-1$.
E_{ϵ} may be viewed in a natural manner as a subgroup of a connected linear algebraic group X over the algebraic closure of $F_{c}[6, \mathrm{p} . \mathrm{F} 1]$. Both $C_{X}\left(t_{35}\right)$ and $C_{X}\left(t_{146}\right)$ are connected [6, p. F21]; whence by [10, p. E11] (i) follows as $\left|Z\left(E_{\varepsilon, \sigma}\right)\right|$ is odd.

Since $\left|Z\left(E_{\mathrm{e}, v}\right)\right|$ is odd, $C_{\overline{E_{\epsilon, \sigma}}}\left(t_{35}\right)=C_{E_{\epsilon, \sigma}}\left(h_{\alpha_{3}}^{*}(-1) h_{\alpha_{5}}^{*}(-1)\right) Z\left(E_{\epsilon, \sigma}\right) / Z\left(E_{\varepsilon, \sigma}\right)$; whence we may assume without loss of generality that $Z\left(E_{\varepsilon, \sigma}\right)=1$. Then, applying the case $\epsilon=1$ to our situation we get $C_{E_{\varepsilon}}\left(t_{35}\right)=\left\langle h_{\alpha_{1}}(\lambda)\right\rangle \tilde{L}$ where $\tilde{L}-\left\langle L_{\alpha_{0}}, L_{\alpha_{2}}, L_{\alpha_{3}}, L_{\alpha_{4}}, L_{\alpha_{5}}\right\rangle$ and $\tilde{L} \cong \operatorname{Spin}\left(10, q^{2}\right)$. Now α_{0} is in the orbit of
a simple root of Φ by the action of $\left\langle\omega_{\alpha_{i}}\right| 1 \leqslant i \leqslant 6 ; 9$, p. 268]. Since σ leaves $\leqslant \omega_{x_{2}} \mid 1 \leqslant i \leqslant 6$ pointwise fixed, it follows $\sigma\left(x_{ \pm x_{0}}(t)\right)=x_{ \pm s_{0}}(\bar{t})$ as $x_{x_{0}}(t)=\omega x_{x_{i}}(t) \omega^{-1}$ for some i and $\omega \in \vee \omega_{x_{i}} i \leqslant i \leqslant 6 ;$. Therefore σ restricted to \check{L} acts as its twisting automorphism and so $L=(\widetilde{L})_{\sigma} \cong$ $\operatorname{Spin}_{\epsilon}(10, q)$.

Because of the uniqueness of Bruhat factorization of elements of E_{ε}, and in riew of the action of σ on E_{ϵ} it follows easily thai $C_{\overline{E_{\epsilon, \sigma}}}\left(l_{35}\right)=\left\langle h_{\lambda_{1}}(\lambda) h_{\alpha_{9}}(\tilde{\lambda})\right\rangle \tilde{L}_{\sigma}$. We notc that $\left(h_{x_{1}}(\lambda) h_{a_{6}}(\bar{\lambda})\right)^{\alpha-\epsilon} \in \tilde{L}_{\sigma}$ and $h \in C_{\overline{E_{E, \sigma}}}\left(t_{35}\right)-L$, whence $C_{\bar{E}_{\epsilon, \sigma}}\left(t_{35}\right)=$ (h) L. The last assertion follows easily as in [9, p. 178-182].

Part (iii) may be proved as in (ii) and (iv) follows by a direct comparision of $\overline{E_{\epsilon, \sigma}}\left|,\left|C_{\overline{E_{\epsilon, \sigma}}}\left(t_{35}\right)\right|\right.$ and $| C_{\overline{E_{\epsilon, \sigma}}}\left(t_{0}\right) \mid$.
We turn next to a study of $C_{\overline{E_{\epsilon, \sigma}}}\left(t_{35}\right)$, which will henceforth be identifed with $H_{\epsilon}^{*}=C_{G_{\epsilon}^{*}}\left(z^{*}\right)$ in view of (1.1) (iv).

Lemma 1.2. (i) There are precisely two noncentral conjugacy classes of involutions in $L=\left(H_{c}{ }^{*}\right)^{\prime}$ with representatives t_{16} and t_{0}.
(ii) $C_{H_{\epsilon}} \epsilon_{16}\left(t_{16}\right)=\left\langle h, h^{\prime}\right\rangle K$ where $K=\left\langle L_{\alpha_{4}}, L_{\alpha_{2}}, L_{a_{0}}, L_{3_{3}}\right\rangle_{\sigma}$ is normal in $C_{H_{\epsilon}^{*}}\left(t_{16}\right)$ and is isomorphic to $\operatorname{Spin}(8, q)$. Also $\left(C_{H_{\epsilon}^{*}}\left(t_{16}\right)\right)^{\prime}=K$.
(iii) $C_{H_{\epsilon}^{*}}\left(t_{146}\right)=\left\langle h_{x_{2}}(\kappa)\right\rangle\left\langle J L_{0} L_{b}, h\right\rangle$ where $J=\left\langle L_{a_{3}}, L_{a_{4}}, L_{n_{5} \cdot \sigma}\right.$ and is isomorphic to $S L_{\epsilon}(4, q)$. Moreover $\left[J, L_{0}\right]=\left[J, L_{b}\right]=\left[L_{0}, L_{b}\right]=1$ and $\because J L_{0} L_{b}, h$ is a subgroup of index 2 in $C_{H_{\epsilon}^{*}}\left(t_{0}\right)$.

Proof. When $\epsilon=1$, Iwahori-Ree's method [6, p. 280] shows that L contains two conjugacy classes of involutions with representatives t_{16}, t_{0}. Since $C_{L}\left(t_{19}\right)$ and $C_{L}\left(t_{0}\right)$ are not isomorphic, therefore t_{18} and t_{0} do not fuse in $H_{\epsilon}{ }^{*}$. The other assertions in this case follow immediately by direct computation es in [6, p. 280]

Assume that $\varepsilon=-1$. Applying (1.1), we have $H_{\epsilon}^{*}=i h\left(L_{j}\right)$ where $\tilde{L}=L_{x_{0}}, L_{a_{2}}, L_{2_{3}}, L_{x_{4}}, L_{x_{x_{5}}} \backslash$ By [6, p. 275] and [10, p. 177], it follows that T. $=\tilde{L}_{6}$ satisfies (i).

To prove (ii), we note that $C_{\bar{E}_{6}}\left(t_{35}, t_{16}\right) \cap \tilde{L}=h_{1_{3}}(\lambda), \tilde{K}$ where $\tilde{K}=$ $\left.L_{\hat{a}_{1}}, L_{x_{2}}, L_{x_{6}}, L_{8}\right\rangle$. As in (1.1) (ii), we show that $\sigma\left(x_{ \pm 3}(t)\right)=x_{ \pm 3}(\bar{i})$. Thus σ acts as the field automorphism of order 2 on \vec{K}. It follows from the umiqueness of Brubat factorization of element in \vec{K}, that $K=\vec{K}_{g}=L_{\dot{t}}, L_{2}, L_{0}, L_{j}: \cong$ $\operatorname{Spin}(8, q)$. Again as in (1.1) (ii), we conclude that $C_{H_{\epsilon}^{*}}\left(t_{16}\right)=\left\langle h, h^{\prime}, \mathcal{K}\right.$. The other assertions of (ii) are obvious (iii) is proved in a simitar manner as in (ii),

Lemma 1.3. Let u be the unique involution in $h\rangle$. Then $C_{H_{\epsilon}}(u)=\langle h ; \times N$ where $N \cong G L_{\varepsilon}(5, q)$ and $\left\langle t_{35}, t_{15}^{\prime}\right\rangle=\Omega_{\mathrm{I}}(Z(S))$ for some S_{y}^{ϵ} loz 2 -subgroup of N .

Proof. First let $\epsilon=1$. In view of the uniqueness of Bruhat factorization
of elements of $L=\left\langle L_{\alpha_{0}}, L_{\alpha_{2}}, L_{\alpha_{3}}, L_{\alpha_{4}}, L_{\alpha_{5}}\right\rangle$ and the fact $u=h_{\alpha_{1}}(-1)$ normalizes x_{α}, α a root of Φ with $X_{\alpha} \subseteq \widetilde{L}$, it follows $C_{H_{c}}^{*}(u)=\langle h\rangle \times N$ where $N=\left\langle h_{\alpha_{3}}(\kappa), L_{\alpha_{0}}, L_{\alpha_{2}}, L_{\alpha_{4}}, L_{\alpha_{5}}\right\rangle$ and $N \cong G L(5, q)$. The remaining assertion follows from the structure of $G L(5, q)$.

Next assume $\epsilon=-1$. Apply the previous paragraph to $C_{E_{\epsilon}}\left(h_{\alpha_{1}}(-1)\right) \cap$ $C_{\bar{E}_{\epsilon}}\left(t_{35}\right)=C$, we see that $C=\left\langle h_{\alpha_{1}}(y)\right\rangle \times\left\langle h_{\alpha_{3}}(\lambda), \tilde{N}\right\rangle$ where $\tilde{N}=$ $\left\langle L_{\alpha_{0}}^{\epsilon}, L_{\alpha_{2}}, L_{\alpha_{4}}, L_{\alpha_{5}}\right\rangle$. Therefore $y x C x^{-1} y^{-1}=C_{E_{\epsilon}}(u) \cap C_{E_{\epsilon}}\left(t_{35}\right)$ where x, y are the elements used to define h earlier; whence $C_{H_{\epsilon}^{*}}(u)=\langle h\rangle \times$ $\left\langle h^{\prime},\left(y x \tilde{N} x^{-1} y^{-1}\right) \sigma\right\rangle$.

We claim that $\left(y x \tilde{N} x^{-1} y^{-1}\right) \sigma \cong$ the set of fixed points of $x^{-1} y^{-1} \sigma y x$ in \tilde{N}. Set $\theta_{1}=\left(-\alpha_{2}\right) ; \theta_{2}=\left(-\alpha_{4}-\alpha_{5}\right) ; \theta_{3}=\alpha_{5}$ and

$$
\theta_{4}=-\left(\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}\right)
$$

We note that the θ_{i} 's form a simple system of $\left\{\alpha \in \Phi \mid L_{\alpha} \subset N\right\}$. As $\sigma^{\prime}=$ $x^{-1} y^{-1} \sigma y x=\sigma w_{\beta}(t) w_{\gamma}(t)$ where $t=\lambda^{\frac{1}{2}(Q+1)}$, it follows from $\left(^{*}\right)$,

$$
\begin{aligned}
\sigma^{\prime} x_{\theta_{1}}\left(t^{\prime}\right) \sigma^{\prime} & =x_{\theta_{1}}\left(c t^{2} t^{\prime}\right) \\
\sigma^{\prime} x_{\theta_{2}}\left(t^{\prime}\right) \sigma^{\prime} & =x_{\theta_{2}}\left(c^{\prime} t^{-1} t^{\prime}\right)
\end{aligned}
$$

where $c, c^{\prime}= \pm 1$.
Let $h_{4} \in\left\langle h_{\theta_{4}}(\lambda)\right\rangle$ such that $h_{4}^{-1} x_{\theta_{4}}\left(c t^{2} t^{\prime}\right) h_{4}=x_{\theta_{4}}\left(t^{\prime}\right)$. (Such element exists because $c t^{2}$ is a square in $\langle\lambda\rangle$). Since $\left\langle h_{\alpha_{3}}(\lambda), L_{\alpha_{4}+\alpha_{5}}\right\rangle \cong \mathrm{GL}\left(2, q^{2}\right)$, there is $h_{3} \in\left\langle h_{\alpha_{3}}(\lambda)\right\rangle$ such that $h_{3} x_{\theta_{2}}\left(t^{\prime}\right) h_{3}^{-1}=x_{\theta_{2}}\left(c^{\prime} t t^{\prime}\right)$. Set $\sigma^{*}=h_{3}^{-1} h_{4}^{-1} \sigma h_{4} h_{3}$. We see that σ^{*} acts as the twisting automorphism on \hat{N}. Thus the set of fixed point of σ^{*} in \tilde{N} is isomorphic to $S U(5 q)$; whence $\left(y x \tilde{N} x^{-1} y^{-1}\right) \sigma \cong$ $S U(5, q)$. Now $\left\langle h^{\prime},\left(y x \tilde{N} x^{-1} y^{-1}\right) \sigma\right\rangle \cong G U(5, q)$ follows from direct computations.

2. Fusion of Involutions

We shall identify $H_{\epsilon}=C_{G}(z)$ with $H_{\varepsilon} *$ and hence z with t_{35} and use only those relations of $\left(^{(}\right)$which invlove only element of H_{ϵ}.

Lemma 2.1. A Sylow 2-subgroup of H_{ε} is a Sylow 2-subgroup of G.
Proof. Let S be a Sylow 2-subgroup of H_{ϵ}. Note that $z \in S^{\prime}$ and $S^{\prime} \subseteq L$ since H_{ϵ} / L is cyclic. (See (1.2) for notation.) By way of contradiction, suppose there exists $x \in G-H_{\epsilon}$ which normalizes S; whence $z^{x} \in S^{\prime} \subseteq L$. By (1.2) z is the only involution in the center of a Sylow 2 -subgroup of L. It follows $z^{x}=z$ contradicting $x \notin H_{\epsilon}$; whence the result follows.

Proof. Assume the contrary, i.e., $z \sim_{G} t_{0}$. Then there is an $x \in G-H_{\varepsilon}$ such that $\left(t_{0}\right)^{x}=z$. Since $z \in C_{G}\left(t_{0}\right)^{\prime},(z)^{x} \in C_{G}(z)^{\prime}$. By (1.2), we may suppose that $z^{x}=t_{0}$, whence x normalizes $C_{G}\left(z, t_{0}\right)^{\prime}=J L_{0} L_{b}$. It follows that $J x=j$ [7]; whence $Z(J)^{x}=Z(J)$, i.e., $z^{x}=z$, a contradiction.

Lemme 2.3. Either $G=O(G) H_{\varepsilon}$ or $\approx \sim_{G} t_{16}$.
Proof. If z is conjugate to another involution of L, then we are done by (1.2) and (2.2). Suppose then z is not conjugate to another involution in L. Let S be a Sylow 2-subgroup of H_{ξ} containing that of λ_{2}. Suppose the unique involution of $\langle h\rangle$ is not conjugate to an involution of L then by the repeated use of Harada-Gorenstein-Thompson's fusion lemma [4], G contains a subgroup G_{0} of index $O(h)_{2}$, not containing $\rangle \cap S$; whence $S \cap L$ is a Sylow 2-subgroup of G_{0} and z is not conjugate to another involution. of $S \cap L$. Now Glauberman's theorem states that $G_{0}=O\left(G_{0}\right)\left(H_{6} \cap G_{0}\right)$; whence $G=O(G) H_{\epsilon}$ since $O\left(G_{0}\right)=O(G)$.

Finally suppose u is conjugate to an involution of L. A comparison of the orders of $C_{H_{\epsilon}}(u), C_{H_{\epsilon}}(z), C_{H_{\epsilon}}\left(t_{16}\right)$ and $C_{H_{\epsilon}}\left(t_{0}\right)$ shows that if T is a Sylow 2-subgroup of $C_{H_{\epsilon}}(u)$ there exists $g \in C_{G}(u)-C_{H_{\epsilon}}(u)$ normalizing T. By (1.3), we may choose T such that $\Omega_{1}(Z(T))=\left\langle u, z, t_{16}\right\rangle$ and $\left.: z, t_{16}\right\rangle=$ $\Omega_{1}(Z(T \cap N))$. Since $\left\langle t_{16}\right\rangle=\Omega_{1}(Z(T)) \cap T^{\prime}, g$ centralizes $t_{16} ;$ whence either $z^{s}=u z$ or $z^{g}=u t_{16} z$. Now $u \sim_{H_{\epsilon}} u t_{16}$ (conjugation by $\omega_{\beta} \omega_{\gamma}$ when $\epsilon=1$; by $y x \omega_{,} x^{-1} y^{-1}$ when $\epsilon=-1$ where x, y have the same meaning as before.) If $z^{g}=u z$, then $\left(i_{16} z\right)^{g}=u t_{16} z \sim_{H_{\varepsilon}} u z$. It follows that $\approx \sim_{G} \ddagger_{16} \approx \sim_{H_{\varepsilon}}$ t_{16} contradicting our assumption that z is not conjugate to another involution of L. The other case $(z)^{g}=u t_{16} z$ leads to the same contradiction in a simitar way. This complete the proof.

3. Construction of G_{0}

In view of (2.3), we shall assume from now on $z \sim_{G} t_{16}$. This will enable us to show that $G_{0}=\left\langle C_{G}(z), C_{G}\left(t_{0}\right)\right\rangle \cong G_{\epsilon}{ }^{*}$.

Lemma 3.1. There exists an element $g \in N\left(L_{0}\right) \cap C\left(t_{2}\right)$ such that g interchanges t_{3}, t_{4} and z, t_{16} by conjugation.

Proof, By (2.3), there exists $g \in G$ such that $t_{16}^{3}=z$ and we can further assume that $z^{g}=t_{16}$ as in (2.3); whence g normalizes $C=C_{H_{\epsilon}}\left(t_{16}\right)^{\prime}$ which is isomorphic to $\operatorname{Spin}(8, q)$. Replacing g with $g g^{\prime}$ for some suitable g^{\prime} in C, we conclude by [9, p. 156-160] that

$$
\left(X_{ \pm \alpha_{4}}\right)^{g}=X_{ \pm \beta}, \quad\left(X_{ \pm \alpha_{2}}\right)^{g}=X_{ \pm \alpha_{2}}, \quad\left(X_{ \pm \alpha_{0}}\right)^{g}=X_{ \pm x_{3}}
$$

as we already know that $t_{16}^{g}=z$ and $z^{g}=t_{16}$ and $Z(C)=\left\langle t_{16}, z\right\rangle$. In particular, we get $t_{2}{ }^{g}=t_{2} ; t_{0}{ }^{g}=t_{0}$.

Next we compute that $\left(C_{G}\left(t_{0}\right) \cap C\right)^{\prime}=L_{0} L_{b} L_{4} L_{0}$. It follows that $g \in N\left(L_{0}\right)$ [7].

Lemma 3.2. We have $N\left(L_{0}\right)=\left\langle h_{\alpha_{2}}(\kappa)\right\rangle L_{0} C\left(L_{0}\right), \quad\left[N\left(L_{0}\right): L_{0} C\left(L_{0}\right)\right]=2$, $L_{0} \cap C\left(L_{0}\right)=\left\langle t_{0}\right\rangle$ and $C\left(L_{0}\right)=S L_{\epsilon}(6, q) / Z$ where Z to the unique subgroup of order $d=(3, q-\epsilon)$ in $Z\left(S L_{\epsilon}(6, q)\right)$.

Proof. We claim first $N\left(L_{0}\right)$ contains a subgroup N_{0} of index 2 not containing $h_{\alpha_{2}}(\kappa)$. Clearly $C_{H_{\epsilon}}\left(t_{0}\right) \subseteq N\left(L_{0}\right)$ and a Sylow 2 -subgroup T of $C_{H_{\epsilon}}\left(t_{0}\right)$ is a Sylow 2-subgroup of $N\left(L_{0}\right)$; otherwise we would get $t_{0} \sim_{G} z$ as $\left|C(z): C\left(t_{0}\right)\right|_{2}=2$, in contradiction to (2.2). Now $h_{\alpha_{2}}(\kappa)$ induces on outer automorphism on L_{0}; whereas all elements of order $q-\epsilon$ in $\left\langle h, J L_{0} L_{b}\right\rangle$ act as inner automorphisms. The claim follows immediately from Gorenstein-Harada-Thompson's fusion lemma.

Let $\bar{N}_{0}=N_{0} / L_{0}$ and we shall use the 'bar' convention for homomorphic images of subsets of N_{0}. Since $t_{\beta} L_{0}$ contains precisely three involution, i.e., $t_{\beta}, t_{0}, t_{\beta} t_{0}=z$. As $t_{\beta} \chi_{G} z$ by (2.2), it follows that

$$
C_{\bar{N}_{0}}\left(\bar{t}_{\beta}\right)=\overline{C_{N_{0}}\left(t_{\beta}\right)}
$$

and so $C_{\bar{N}_{0}}\left(\bar{t}_{\beta}\right)=\left\langle\bar{h}, \overline{J L_{b}}\right\rangle$.
In view of (3.1), we conclude from [7; 8] that $\bar{N}_{0}=P S L_{\epsilon}(6, q)$. By the uniqueness of composition factors of N_{0} and the structure of $\operatorname{Aut}\left(L_{0}\right)$, it follows that $C\left(L_{0}\right) / Z\left(L_{0}\right)=\operatorname{PSL}_{\epsilon}(6, q)$. From H_{ϵ}, we see that the central extension of $C\left(L_{0}\right) / Z\left(L_{0}\right)$ is nontrivial. As the universal covering group of $P S L_{\epsilon}(6, q)$ is $S L_{\epsilon}(6, q)$, we conclude that $C\left(I_{0}\right) \cong S L_{e}(6, q) / Z$ where $Z \subseteq Z\left(S L_{\mathrm{c}}(6, q)\right)$ and $|Z|=(3, q-\epsilon)$.

Lemma 3.3. $C\left(t_{0}\right)=N\left(L_{0}\right)$.

Proof. It is obvious that $N\left(L_{0}\right) \subseteq C\left(t_{0}\right)=C$. From the structure of $C\left(L_{0}\right)$, we conclude that there are precisely two conjugacy classes of involutions in $C\left(L_{0}\right)$ with representatives z, t_{β} and $C_{G}(g) \cap C_{G}\left(t_{0}\right) \subseteq N\left(L_{0}\right)$ for all involution g of $C\left(L_{0}\right)$.

As in (3.2), we know that $C\left(z, t_{0}\right)$ contains a Sylow 2-subgroup of C. Let v be an involution in $N\left(L_{0}\right)-C_{0}$ where $C_{0}=L_{0} C\left(L_{0}\right)$ and suppose $v \sim_{C} z$. We note that $C(v)$ contains an element, say i, in the conjugacy class of z in $N\left(L_{0}\right)$. This follows from the fact that $C(z) \cap N\left(L_{0}\right)$ contains a Sylow 2-subgroup of $N\left(L_{0}\right)$ and therefore the order of the class is odd; whence v fixes at least one element of this class. Similarly there is an j in the conjugacy class of t_{β}, which centralizes v. Let $g \in C$ such that $v^{g}=z$. Since
$C(z) \cap C\left(t_{0}\right) \subseteq N\left(L_{0}\right), i^{g}$ and j^{g} lie in $N\left(L_{0}\right)$. As $i \not \chi_{G} j,\langle i j\rangle$ contains a unique involution k. Thus one of i^{g}, j^{g}, k^{g}, say $l^{g} \in L_{0} C\left(L_{0}\right)$.

Now every involution w in $L_{0} C\left(L_{0}\right)-C\left(L_{0}\right)$ has the form $w_{1} z_{2}, w_{1} \in L_{0}$, $w_{2} \in C\left(L_{0}\right)$ and $w_{1}^{2}=\left(w_{2}^{-1}\right)^{2}=t_{146}$. As $\left.C\left(w_{2}\right) \cap C\left(L_{0}\right)<t_{0}\right)$ involves one of the following groups [7; 8]:
$P S L_{\epsilon}(3, q) \times P S L_{\epsilon}(3, q) ; P S L_{\epsilon}(5, q) ; P S L_{\epsilon}\left(3, q^{2}\right)$ we see that i, j, k cannot be conjugate in C to an involution of $L_{0} C\left(L_{0}\right)-C\left(L_{0}\right)$. It follows that $j^{g} \in C\left(L_{0}\right)$; whence there cxists $g^{\prime} \in C\left(L_{0}\right)$ such that $l^{g y^{\prime}}=l$, as two involutions of $C\left(L_{0}\right)$ conjugate in G are already conjugate in $C\left(L_{0}\right)$. On the other hand, $C(l) \cap C\left(t_{0}\right) \subseteq N\left(L_{0}\right)$ and so $g \in N\left(L_{0}\right)$. But $\tau \mathcal{\tau}_{N\left(L_{0}\right)} z$, a contradiction. Similarly $\mathfrak{v} \chi_{C} t_{3}$; whence no involution of $N\left(L_{0}\right)-L_{0} C\left(L_{0}\right)$ is conjugate in C to one in $C\left(L_{0}\right)$.

The above paragraph also proves that no involution in $L_{0} C\left(L_{0}\right)-C\left(L_{0}\right)$ is conjugate to one in $C\left(L_{0}\right)$.

Let $c \in C$. Since z and $\left(t_{B}\right)^{c}$ are not conjugate in $G,\left\langle z\left(t_{\beta}\right)\right\rangle$ contains an involution t such that $z,\left(t_{\beta}\right)^{c} \in C(t)$ and either $z t \sim z$ or $z t \sim t_{B}$. From above, t must lie in $C\left(L_{0}\right)$; whence $C(t) \cap C\left(t_{146}\right) \subseteq N\left(L_{6}\right)$. But t_{β} and $\left(t_{\beta}\right)^{c}$ are already conjugate in $C\left(L_{0}\right)$. Hence there is an $c^{\prime} \in N^{\prime}\left(L_{0}\right)$ such that $c c^{\prime} \in C\left(t_{3}\right) \cap C\left(t_{0}\right) \subseteq N\left(L_{0}\right)$, proving our resuit.

Lemmi 3.4. Let $G_{0}=\left\langle C_{G}(z), C_{G}\left(t_{0}\right)\right\rangle$. Then $G_{0} \cong G_{\epsilon}{ }^{*}$.
Proof. We prove the result in a number of steps.
(i) $u z \sim z$ and $u \sim t_{0}$.

Let $\bar{X}=C\left(L_{0}\right) / Z\left(L_{0}\right)$. Then $C_{\bar{X}}\left(\bar{t}_{\beta}\right)=\left\langle\bar{h}, \bar{L}_{3}, \bar{N}\right\rangle$ and we have $\bar{v} \sim_{\bar{X}} \bar{I}_{\beta}$. Hence $\left\langle u, t_{0}\right\rangle$ is conjugate to $\left\langle t_{0}, t_{\beta}\right\rangle$. In the later group only one involution can be conjugate to z namely $t_{0} t_{B}=z$ (by (2.2). Relabelling u by $u z$, if necessary, (i) follows since $u t_{0} \sim_{H_{\epsilon}} u \approx$ (conjugation by $\left(\omega_{\lambda_{3}} \omega_{\alpha_{5}}\right)^{\omega_{\alpha_{4}}} \omega_{\lambda_{3}} \omega_{\alpha_{\varepsilon_{4}}} \omega_{\alpha_{4}} \omega_{\alpha_{x_{9}}} \omega_{2_{3}}$).
(ii) Let v be an involution conjugate to t_{0}. Denote the unique normal subgroup of $C_{\mathrm{U}}(v)^{\prime}$ isomorphic to $S L(2, q)$ by $L(v)$. (See (3.2)). If $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$, $z^{\prime \prime \prime}$ are pairwise commuting involutions in $C\left(L\left(v^{\prime}\right)\right)$ conjugate to t_{0}, ther $L\left(v^{\prime \prime}\right), L\left(v^{\prime \prime \prime}\right) \subseteq C\left(L\left(v^{\prime}\right)\right)$ and either $\left[L\left(v^{\prime \prime}\right), L\left(v^{\prime \prime \prime}\right)\right]=1$ or $L\left(v^{\prime \prime}\right), L\left(v^{\prime \prime \prime}\right) \geqslant \cong$ $S L_{\epsilon}(3, q)$ according as $v^{\prime \prime} v^{\prime \prime \prime} \sim t_{35}$ or $v^{\prime} v^{\prime \prime \prime} \sim t_{0}$.

By assumption, we may assume $v^{\prime}=t_{0}$ whence $L\left(v^{\prime}\right)=L_{0}$. (See 3.2), It follows then we may suppose $\tau^{\prime \prime}=t_{\beta}$. In view of (1.2) and because of symmetry, it is clear that $L\left(v^{\prime \prime}\right)=L_{b}$. Now L_{b} as subgroup of $C\left(L\left(v^{\prime}\right)\right)$ is the unique normal subgroup of $C\left(\tilde{t}_{\beta}\right) \cap C\left(L\left(v^{\prime}\right)\right)$ isomorphic to $S L(2, q)$. From the structure of $C\left(L\left(v^{\prime}\right)\right)$, there is an $x \in C\left(L\left(v^{\prime}\right)\right)$ such that $t_{e^{\prime}}=v^{\prime \prime \prime}$ and so $\alpha L\left(v^{\prime \prime}\right) x^{-\frac{1}{1}}=L\left(v^{\prime \prime \prime}\right)$ by the uniqueness of $L\left(v^{\prime \prime \prime}\right)$ in $C\left(v^{\prime \prime \prime}\right)$. On the other hand $L\left(v^{\prime \prime}\right)$ is also the unique normal subgroup of $C\left(L\left(v^{\prime}\right)\right) \cap C\left(v^{\prime \prime}\right)$ isomorphic to $S L(2, q)$. The asscrition now follows from the structure of $C\left(L_{0}\right)$.
(iii) Let $\epsilon=1 ; L_{1}=L(u) ; L_{6}=L\left(u t_{\sigma} t_{\gamma}\right)$. Then $\left[L_{1}, L_{2}\right]=\left[L_{1}, L_{4}\right]=$ $\left[L_{1}, L_{5}\right]=\left[L_{1}, L_{6}\right]=\left[L_{2}, L_{6}\right]=\left[L_{3}, L_{6}\right]=\left[L_{4}, L_{6}\right]=1 ;\left\langle L_{1}, L_{3}\right\rangle \cong$ $S L(3, q) \cong\left\langle L_{5}, L_{6}\right\rangle$ and $G_{0}=\left\langle L_{i} \mid 1 \leqslant i \leqslant 6\right\rangle \cong E_{6}(q)$.

Since $u \sim_{H_{\epsilon}} u t_{\beta}$ (See (i)) and $\left(u t_{\beta}\right)^{\omega_{\alpha_{3}} \omega_{\alpha_{4}} \omega_{\alpha_{5}}}=u t_{\beta} t_{\gamma}$. By (i), we see that both $L(u)$ and $L\left(u t_{\beta} t_{\gamma}\right)$ are defined.

We now apply (ii) to t_{0}, u, t_{3} [respectively, $t_{0}, u, t_{4} ; t_{0} u, t_{5} ; t_{0}, u, u t_{\beta} t_{\nu}$; $\left.t_{0}, u t_{\beta} t_{\gamma}, t_{3} ; t_{0} u t_{\beta} t_{\gamma}, t_{4} ; t_{0}, u t_{\beta} t_{\gamma} ; t_{5}\right]$ in the roles of $v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$. From the fact $u t_{3}=(u)^{\omega_{\alpha_{3}}} \quad$ [respectively, $u t_{4}=(u z)^{\omega_{\alpha_{3}} \omega_{\alpha_{4}} \omega_{\alpha_{5}}} ; \quad u t_{5}=(u z)^{\omega_{\alpha_{3}}} ; u \cdot u t_{\beta} t_{v^{\prime}}=$ $t_{16} \sim t_{35} ; u t_{\beta} t_{\gamma} t_{3}=\left(u t_{\beta} t_{\gamma} z\right)^{\omega_{\alpha_{5}}} \sim u z ; u t_{\beta} t_{\gamma} t_{4}=\left(u t_{\beta} t_{\gamma} t_{3}\right)^{\omega_{\alpha_{4}} \omega_{\alpha_{3}}} \sim u z ; u t_{\beta} t_{\gamma} t_{5}=$ $\left.\left(u t_{\beta} t_{\gamma}\right)^{\omega_{\alpha_{5}}}\right]$. It follows $\left\langle L_{1}, L_{3}\right\rangle \simeq S L(3, q) \quad$ [respectively, $\left[I_{1}, L_{4}\right]=1$; $\left.\left[L_{1}, L_{6}\right]=1 ;\left[L_{6}, L_{3}\right]=1 ;\left[L_{6}, L_{4}\right]=1\left\langle L_{6}, L_{5}\right\rangle \cong S L(3, q)\right]$. Note that we have used the fact $L\left(t_{i}\right)=L_{i}$ for $i=3,4,5$ as L_{i} is conjugate to $L_{0}=L\left(t_{0}\right)$ in H_{ϵ}.

We can now apply (ii) again to t_{5}, t_{2}, u in the roles of $\tau^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$ and since $u i_{2} \sim_{H_{\epsilon}} u z$ (conjugation by $\left(\omega_{\alpha_{3}} \omega_{\alpha_{5}}\right)^{\omega_{\alpha_{4}}} \omega_{\alpha_{3}} \omega_{\alpha_{2}} \omega_{\alpha_{4}}$), it follows $\left[L_{1}, L_{2}\right]=1$. Similarly $\left[L_{2}, L_{6}\right]=1$.

An argument of Humphreys [5] shows that the conditions of Curtis' Theorem [2] are satisfied and $\left\langle L_{i} \mid 1 \leqslant i \leqslant 6\right\rangle=G^{*}$ is isomorphic to a factor group of the universal Chevalley group of type E_{6} over F_{q}. It follows immediately from the order of H_{ϵ} that G^{*} is isomorphic to $E_{6}(q)$. Also from (1.1) we conclude that $C_{G}\left(t_{0}\right) \subseteq G^{*}$ and therefore we have $G_{0}=G^{*}$.
(iv) Let $\epsilon=-1$. Then G contains a subgroup L_{16} such that $\left[L_{16}, L_{2}\right]=$ $1=\left[L_{16}, L_{4}\right] ;\left\langle L_{16}, L_{35}\right\rangle \cong S L\left(3, q^{2}\right)$ and $G_{0}=\left\langle L_{2}, L_{4}, L_{35}, L_{16}\right\rangle$ which is isomorphic to ${ }^{2} E_{6}(q)$.

Let g be the element of (3.1). Replacing g with a suitable element in $\left.g<L_{0}, h_{\alpha_{2}}(\kappa)\right\rangle$, we may suppose $g \in C\left(L_{0}\right)$ and still have $t_{2}{ }^{g}=t_{2} ; t_{\beta}^{g}=t_{4}$, $t_{4}{ }^{g}=t_{\beta}$. Since $C\left(L_{0}\right) \cong S U(6, q) / Z$ where $Z \subseteq Z(S U(6, q))$ and $|Z|=$ $(3, q+1)$ and from the structure of $C\left(L_{0}\right)$, it follows that, after replacing g again with a suitable element $g g^{\prime}$ where $g^{\prime} \in C\left(t_{3}, t_{4}\right) \cap C\left(L_{0}\right),\left\langle L_{16}, L_{35}\right\rangle \cong$ $S L\left(3, q^{2}\right)$ where $L_{16}=\left(L_{35}\right)^{g g^{\prime}}$ (This is so because if we let $S U(6, q)$ acts naturally on a six-dimensional hermition vector space over $F_{q}{ }^{2}, L_{35}$ corresponds to the image of a subgroup of $S U(6, q)$ fixing a totally isotopic subspace of dimension 2.)

Now since $\left[L_{b}, L_{35}\right]=1,\left[L_{1}, L_{16}\right]=1$ as $L_{b}^{g g^{\prime}}=L_{4}$, because $t_{2}{ }^{g}=t_{2}$, it follows from the uniqueness L_{2} as the normal subgroup of $C\left(t_{2}\right)$ isomorphic to $S L(2, q)$ that $L_{\alpha_{2}}{ }^{g}=L_{L_{2}}$. Finally from the fact $C_{G}\left(t_{\beta}, t_{4}\right) \cap C\left(L_{0}\right)=$ $\left\langle h, h^{\prime}, L_{0}, L_{b}, L_{4}, L_{C}\right\rangle, L_{2}^{g^{\prime}}=L_{2},\left[L_{2}, L_{16}\right]=\left[L_{2}^{g g^{\prime}}, L_{35}^{g g^{\prime}}\right]=\left[L_{2}, L_{35}\right]=1$.

As in (iii), we conclude from Curtis' theorem [2] that $\left\langle L_{2}, L_{4}, L_{35}, L_{16}\right\rangle=$ G_{0} and is isomorphic to ${ }^{2} E_{6}(q)$.

Conclusion of proof: $G_{0}=G$.
Since G_{0} has cxactly two classes of involutions with representatives z, t_{0}. It follows from (2.3) that G has precisely two classes of involutions.

Let $x \in G$. Since $t_{0} \sim_{G} z^{x}$, it follows there is an involution in $\left\langle t_{0} z^{x}\right\rangle$ such that $t_{0}, z^{x} \in C(v)$. Since $C_{G}\left(t_{0}\right) \subseteq G_{0}, v \in G_{0} ;$ whence $C(v) \subseteq G_{0}$. Therefore $z^{x} \in G_{i 0}$. But z, z^{x} are already conjugate in G_{0}; whence $x \in G_{0}$ and $G=G_{0}$.

References

1. N. Bourbaki, "Groupes et algèbre de Lie," Hermann, Paris, 1969.
2. C. W. Curtis, Central extensions of groups of Lie type, J. Reine Angerv. Math. 220 (1965), 174-185.
3. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
4. D. Gorenstein and K. Harada, A characterization of Janko's two new simpie groups, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1970), 331-406.
5. J. Humphreys, Remarks on a theorem on special linear groups, J. Algebra 22 (1972), 316-320.
6. N. Iwahori, Centralizers of involutions in finite Chevalley groups, in "Seminar on Algebraic Groups and Related Finite Groups," Lecture notes in Math. 131, Springer-Verlag, Berlin, 1970.
7. K.-W. Phan, A characterization of the finite grcups PSL(n, q), Math. Z. 124 (1972), 169185.
8. K.-W. Phan, A characterization of the finite groups $\operatorname{PSU}(n, q)$, to appeaz.
9. R. Steinberg, Lectures on Chevalley groups, Yale Linivesity lecture notes (mimeo), 1967/1968.
10. R. Steinberg and T. A. Springer, Conjugacy classes, in "Seminar on Aigebraic Groups and Related Finite Groups," Lecture notes in Math. 131, Springer-Verlag, Berlin, 1970.
