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Let E (g) be the adjoint Chevalley group of type E; over the finite field
of order ¢ = p”, p odd. We shall denote the simple twisted analogue of
Eq®) by ¥ q). Let e = +1, G.* = Eq) when « =1 and G.* = 2E{q)
when e = — 1. Suppose 3* is an involution in the center of a Sylow Z-subgroup
of G.*. The purpose of this paper is to prove the following.

TureoreM. Let G be a finile group with an involution z such that the central-
izer H, = Cy(2) of =z in G is isomorphic to Cg {2*). Then either G = O(G)
. . . €
H, or G is isomorphic to G_*.

We begin the proof with a study of the structure of C G, {z%*). For this, we
use the method of Iwahori-Ree [6], with which we assume the reader is
familiar. To give a decription of the structure, it is necessary to introduce a
large number of notations for elements and subsets of G *. Our notation
generally follows that of [9]. We also refer the reader to [9] for the construction
of and standard facts on Chevalley groups. We then analyze the fusion of
classes of involutions in H, . The information is used to construct a subgroup
G, isomorphic to G.* in the interesting case. We show finaly that G, = &.

Our group-theoretic notation is standard except that 4% will dencte
xdx? for some subset 4 and element x of a group X .The reason for this
deviation will be obvious.

1. NorarioN AND STRUCTURE CF H,

Let @ be the set of roots of the complex semi-simple Lie algebra G of type
F, relative to a Cartan subalgebra of G. For some fixed ordering of @, let
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@ be the set of positive roots. @+ contains a simple system {x; | | <7 < 6}
with the following Dynkin diagram.
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Let F, be the finite field of order ¢ when ¢ = | and of order ¢ when
€ == —1. The universal Chevalley group E, of G over F. contains the one-
parameter unipotent subgroups X, * = (x,%(t)| 1 €F,>, « € @. The following
elements play important roles in the study of Chevalley groups.

wy (8 = %, (2) a2 (—17) 2, ¥(2),

b, (1) = w,*(f) w, (1)

w* = w*(1).

For convenience, we record below some relations that are especially
important to us.

wm*h;k:(t) w;‘“l = hﬁm(a')(t),
w xH () 0l T = & ct), ¢ =+, (*)

B X5 BT = a3 ).

Let o be the identity automorphism of E, when ¢ = 1 and the product
of the graph automorphism of E, and the field automorphism of E, induced
by: t—f =4, t € F, when ¢ = —1. Recall that in the later case, if p denotes
the permutation of the roots induced by the graph automorphism, we have

G(xa*(t)) = x;k(u)(eat_)’

where €, = 41 and ¢, = 1 if +« is a simple root. For any subset A CE,_,
let .4, denote the set of fixed points of ¢ in 4. Let X, , x,(¢), w.(t), and o, , be
the images of X_*, x,*(z), w,*(¢), and w,*, respectively, in E, = E_[Z(E. ).
We shall use the so-called ‘bar’ convention for homomorphic images of
subsets of E, in E, . Recall that | Z(E, )| = d = (3, ¢ — ¢). (See [9].) If X is
c-invariant, ¢ acts canonically on X. Because o is involutory and | Z(E, )| is
odd, it follows that (X)o = (X,). This fact will be used later without com-
ment. We note that E,_ = G.*. The resulting relations in E, arising from (*)
will be denoted by (¥).
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Next we introduce notations for elements and subsets of £ .

L,—<X,, X0, «c®,
(> = Z(L).

Recall that since @ has only one root length, if @ =3 c,u;, then £, =
115 . Therefore 1, =T] ¢, over all j such that ¢; is odd. For brevity, we
litg ; 3
also denote 7, by £;,j,- Where ¢; is odd.
%y = ay + 2o + 2o -+ 3oy — 205 + o, highest root of O,
B = oy + oy 4 oy a5 — oy,

y =y b oy o,

3

Ly =L, .o, Z(Lg) = {tyey = {to,
Ly = Ly oy Z(Ly) = {tizgser = Lo,
L, = L:',a ’ Z(Lc) = (ty5, = {I,)-

Let p be the identity permutation on @ wher ¢ = | and the permutation
on @ defined earlier when ¢ = —1.
For all 1e{1, 2,..., 6}, let

s

L, =1L,,,=> SL(2,q), when { == p(i},

Lip(i) - <xai(t> "‘;D(ai}(f)

=~ SL(2, ¢%), when ¢ = p{/},

teF,.,

x is a generator of the multiplicative group of F, , A is a generator of the
multiplicative group of F_; such that A1 = &,

B o= ;]Zul(:{), when e = 1’
,'yxkal(/\aa} A yfl’ when e = —1,
where
= wp(E) walt) x5(30),
v = x () w,(2) x,(18),
I = /\\1/’2(q+1).
and
! {hrag(r), when e = I,

Ty (0 55,

where y is as above and (y') = «, ()0, (£)x, (§); 7 = A3,

]

48zj32/1-10
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Using relations (*), we compute that k, A’ Ea and obviously | 4| =
| &' | = g — e. We refer the reader to [1, p. 260] for pertinent facts necessary
to above computations.

Finally if X is a Chevalley group, we shall call the automorphism ¢’ of X
such that the twisted analogue of X is the set of fixed points of ¢’, the twisting
automorphism of X. Also to shorten some of the later proofs we introduce
the following notations

__ {GL(m, q), when ¢ =1,
GLE(7’1, ‘1) - 'GU(m, q), when c — —1,

— sSL(m, f]), when € = 1’
SLe(ﬂ’l; 9) - (SU(m, q), vvhen . — _1,

PSL(m, q) = SLdAm, 9)|Z(SL(m, q),

and Spin/(2m, g) = Spin(2m, ¢), the universal Chevalley group of type D,
over the field of ¢ elements when ¢ = 1 and Spin(2m, ¢) is the set of fixed
points in Spin(2m, ¢%) of its twisting automorphism when ¢ = —1.

We are now ready to determine the conjugacy classes of involutions in
E., and their centralizers.

Lemsia 1.1, (1) There are precisely two conjugacy classes of involutions
in E, , with representatives t,5 and i, ;

() Cg—(tss) =<h>L where L =<Ly,Ly,Ly,Ly,L;> when e =1;
L=<L,,L, ,L4 » Lgs> when € = —1; L ~ Spin(10, q) and L is a normal
subgroup of index (g — €)/d;

(iil) Cp(fo) = <l («)>ML, where M =<L,,Ly,L;,Ls,Lsy when
e=1; M =(,, Lys, Lig> when ¢ = —1; M =~ SL(6, q)|Z where Z is the
subgroup of ovder d in Z(SL(6, q)); [M, Ly] = 1 and M N Ly = {ty;

(iv) ts5 is contained in the center of a Sylow 2-subgroup of E, , , whereas
t, is not.

Proof. The case e = 1 has already been worked out in details by Iwahori
[6]; whence we shall assume that e = —1.

E_ may be viewed in a natural manner as a subgroup of a connected linear
algebraic group X over the algebraic closure of F, [6, p. FI]. Both Cj(;)
and Cy(t,4) are connected [6, p. F21]; whence by [10, p. E11] (i) follows as
| Z(E, )| is odd.

Since | Z(E, ,)| is odd, Ci—(ty) = Cy, (hE(—1) B(—1)) Z(E )/ Z(Ey);
whence we may assume without loss of generahty that Z(E, ,) = 1. Then,
applying the case € = 1 to our situation we get Cg (t3;) = <A, (A))L where
L= {L,, ,Lu s Lo, s Ly, Ly and L ~ Spin(10, ¢2). Now aq 1s in the orbit of
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a simple root of @ by the action of {w, |1 =7 <6} 19, p. 268]. Sirce
)

o leaves “w, |1 <7 < 6) pointwise fixed, it follows o{ws, (£)) = ¥ (1) Bs
gy (f) = WXy, (t)w_l for some ¢ and we w, | I <7< 6. Theretore ¢

restricted to L acts as its twisting automorphfsm and so L = (L), =~
Spin (10, ¢).

Because of the unigueness of Bruhat factorization of elements of £, | and
in view of the action of o on E, it follows easﬂvthah(} \135) = ,”\ (MM, (/\‘) S
We note that (&, ()\)h ()\))‘1 cel andhe Cs ({Qa, — L, whence L—(i%) =

kL. The last assertion follows easily as in {, p. 178-182].

Part L“ 1} may be proved as in (ii) and (iv) follows by a direct comparision of
Bl (t%ﬂ and | Cg— (to)I

We turn ne‘(t to a study of Cr(55), which will henceforth be identified
with H.* = Cgr(2*) in view of (l 1) (1v).

LEMI‘H 1.2 (1) There ave precisely two noncentral conjugacy classes of
jugacs
nvolutions in L —= (H_*)' with representatives t,q and t, .

(i) Cpxltyg) = B WK where K = <L, L, , L, , Lg, s normal in
Cy={t1e) and is isomorphic to Spin(8, q). Also (CH*UM; Y =K.

(i) Cpuxllysg) = <y (<)) {JLoLy, 1> where | = (L, . LL Lo, o omdis
]
'
b

wsomorphic  to SL(4, q). Moreover [J,Lg] =[], L] =1Ly =1 and
{JLoLy , 02 is a subgroup of index 2 in Cy={1y).

Proof. When ¢ =1, Iwahori-Ree’s method [6, o. 280] shows that L
contains two conjugacy classes of involutions with representatives #;, 74 .
Since C,{t,) and C(t,) are not isomorphic, therefore £, and #; do not fuse
in H *. The other assertions in this case follow immediately by direct com-
putation 2s in [6, p. 280]

Assume that ¢ = —1[. Axpplving (1.1), we have H* = (L} where
=L.,L,,L, L, , L. By [6,p. 275] and [10, p. 177}, it follows that
L, satisfies (1)

o prove (ii), we note that Cg (75, t15) NL =k (/\‘**K where & =

JLy oL, Lgy. Asin (1.1) (it), we show that 3(113(1‘\) = x.5(f). Thus ¢
acts as the field automorphism of order 2 on K. It totlowb from “h unigueness
of Bruhat factorization of element in K, that K = X, = L. L, , L, , Ly =~
Spin(8, ¢}. Again as in (1.1) (if), we conclude that CH*(L‘IG) = \i'Z, VK. The
other assertions of (ii) are obvious (iii) is proved in a similar manner as in (ii),

R

-H H

Leninia 1.3, Let u be the unique involution in - Jy. Then C, y*(u) =y 7 N
where N =~ GLJ(3, q) and {ty, b5 = 2,(Z(S)) for scme SylmL Z-subgyoup

£ AT
of iv.

Proof. First let ¢ = 1. In view of the uniqueness of Bruhat factorization
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of elements of L = (L, ,Ld s Ly, v Loy s Loy and the fact u =4, ( 1)
normalizes x, , « a root of & with Xcc CL,it follows CE(w) =< x N where
N ={h,[(«), Ly , Ly , Ly, , L, and N >~ GL(S, ). The remaining assertion
follows from the strtfcture of GL(S q).

Next assume ¢ = —1. Apply the previous paragraph to Cg (h, (=1))n
Cr (L) = C we see that C = (A, (¥)> X <h,(Y), Ny where N =
<LE s Ly . Therefore yxCi qC‘ly—l = Cy (u) N Cg (s5) where x,
y are the elements used to define % earlier; whence CH*(u) = <{hy X
W, (v xNxy Yo,

We claim that (y xNx1y1)o o the set of fixed points of ¥~ly—loyx in N.
Set 0, = (—o,); 0, = (—oy — 5); 03 = a5 and

Oy = —(og + oy + 2055 + 205 + 205 + ag).

We note that the 6;’s form a simple system of {a€® [L,CN}. As o' =
a7ty toyx = owy(t) w,(t) where 1 = A¥eD) it follows from (*),

o'x (10" = xg(ct?t'),

o ()0 = x5, (),

where ¢, ¢’ = +1.

Let hye (hg(A)> such that Fylx, (€21 )hy = x4 (t’) (Such element exists
because ct? is a square in {(A)). Since (oo (A), L% 12,0 =2 GL(2, ¢%), there is
hy €k, (A)> such that hyx, ()3 = x5 (c ). Set o* = h'hyto hyhy .
We see that o* acts as the thstlng automorphlsm on N. Thus the set of
fixed point of o* in N is isomorphic to SU(5q); whence (yxNx—ly—1)o o~
SU(5,q). Now (I, (yaNxy o) =~ GU(5, q) follows from direct

computations.

2. FusioN ofF INvoLuTIONS

We shall identify H, = C¢(2) with H.* and hence z with £;; and use only
those relations of (*) which invlove only element of H, .

Lemma 2.1. A Sylow 2-subgroup of H, is a Sylow 2-subgroup of G.

Proof. Let S be a Sylow 2-subgroup of H, . Note that s S’ and S’ CL
since H /L is cyclic. (See (1.2) for notation.) By way of contradiction, suppose
there exists ¥ € G — H, which normalizes S; whence 2% € S’ CL. By (1.2)
z is the only involution in the center of a Sylow 2-subgroup of L. It follows
2* = z contradicting x ¢ H, ; whence the result follows.

LeMMa 2.2, 2614,
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Proof. Assume the contrary, i.e., & ~g 1. Then thereisanxe G — K,
such that {£,)* = z. Since z € C¢(t,), (2)° € Cu(2). By (1.2), we may suppos
that 2% = 1, , whence x normalizes Cg(2, ty) = JLyL, . It follows that J* =
I'71; whence Z{J)® = Z(]), i.e., 8* = 2, a contradiction.

n

ey (D

Levinia 2.3, Either G = O(G)H, or 3 ~¢

Proof. If z is conjugate to ancther involution of L, then we are done by
{1.2) and (2.2). Suppose then 2z is not conjugate to another involution in L.
Let § be a Sylow 2-subgroup of H, containing that of <%>. Suppose the
unique mvolution of (%> is not conjugate to an involution of L then by the
repeated use of Harada—Gorenstein-Thompson's fusion lemma [4], G
contains a subgroup G, of index O(h),, not containing A> N S; whence
S5 N L s a Sylow 2-subgroup of G, and # is not conjugate 1o another involutior
of SN L. Now Glauberman’s theorem states that Gy = O(G)H, N G,);
whence G = O(G)H, since O(G,) = O(G).

Finally suppose u is conjugate to an involution of L. A comparison ¢f the
orders of Cy (u), Cy (2), Cy (tys) and Cy (to) shows that if T is a Sylow
2-subgroup oI Cy () there exists g€ Cg(u) — Cy () normalizing 7. By
(1.3}, we may choose T such that Q,(Z(T)) =<u, 2, t;5; and 12,8, =
{Z(T N N)). Since {f1q0 = 2((Z(THNT’, g ceniralizes £, ; whence
either 2% = uz or 2% = ufjz. Now # ~y_ut;s (conjugation by wgw, when
e = 1; by yxw,x"ly7! when € = —1 where x, v have the same meaning as
before.} If 27 = uz, then (§142)? = ut;gz ~p_uz. It follows that & ~¢ #362 ~u,
1,4 contradicting our assumption that z is not conjugate to another involution
of L. The other case ()¢ = uf,gz leads to the same contradiction in a simiiar
way. This complete the proof.

3. ConNsTRUCTION OF G,

In view of (2.3), we shall assume from now on 2 ~ 7,5 . This will enable
us to show that Gy, = (C¢(z), Culty)> == G~

Leniva 3.1 There exists an element g € N{Lg) N C(t,) such that g inter-
changes i3, t, and z, 1,4 by conjugation.

Proof. By (2.3), there exists g € G such that #J, = 2 and we can further
assume that 27 = ;¢ as in (2.3); whence g normalizes C' = Cy {#,) which is
isomorphic to Spin(8, g). Replacing g with gg’ for some suitable g" in C, we
conclude by [9, p. 156-160] that

(‘Xic(_l)g = XﬁB 3 (X:\:az)g - X:Ecxz 3 (""{ia’a\;g = ‘Yiad
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as we already know that #§y ==z and 27 = ;3 and Z(C) = (¢, 2>. In
particular, we get £,7 =1, ; ¢ =1,.

Next we compute that (Ce(t,) N C) = LyL,L,L, . It follows that g e N(L,)
[71-

Lemma 3.2, We have N(Ly) = <hy(<)>Ly C(Lo), [N(Lo): LyC(Lg)] = 2,
Ly C(Ly) =<ty and C(Ly) = SL(6, 9)/Z where Z to the unique subgroup
of order d = (3, g — €) in Z(SL[(6, q)).

Proof. We claim first N(L,) contains a subgroup N, of index 2 not
containing £, (). Clearly Cy (%) C N(Lo) and a Sylow 2-subgroup I of
Cy (t,) is a Sylow 2-subgroup of N(L,); otherwise we would get 7, ~¢ z as
| C(2): C(ty)l; = 2, in contradiction to (2.2). Now %, («) induces on outer
automorphism on L, ; whereas all elements of order ¢ — € in {h, JL,L,> act
as inner automorphisms. The claim follows immediately from Gorenstein—
Harada-Thompson’s fusion lemma.

Let Ny = Ny/L, and we shall use the ‘bar’ convention for homomorphic
images of subsets of NN, . Since #;L, contains precisely three involution, i.e.,
tg, ty, ety = 2. As 13 +¢ 2 by (2.2), it follows that

Cy,(fs) = Cyts)

and so Cy (%) = <k, JLy)-

In view of (3.1), we conclude from [7; 8] that N, = PSL(6, ¢). By the
uniqueness of composition factors of N, and the structure of Aut(L,), it
follows that C(L,)/Z(Ly) = PSL{6, gq). From H., we see that the
central extension of C(L,)/Z(L,) is nontrivial. As the universal covering group
of PSL(6,q) is SL(6,q), we conclude that C(L,) ~ SL.(6, q)/Z where
ZCZ(SL(6,9)) and | Z | = (3, ¢ — ¢).

Lemma 3.3, C(t,) = N(L,).

Proof. 1t is obvious that N(Ly) C C(¢y) = C. From the structure of
C(Ly), we conclude that there are precisely two conjugacy classes of involutions
in C(Ly) with representatives z, t; and Cg(g) N Cu(ty) C N(Ly) for all in-
volution g of C(L,).

As in (3.2), we know that C(z, f,) contains a Sylow 2-subgroup of C.
Let v be an involution in N(L;) — Cy where C, = L,C(L,) and suppose
o ~¢ 3. We note that C() contains an element, say 7, in the conjugacy class of
z in N(L,). This follows from the fact that C(2) N N(L,) contains a Sylow
2-subgroup of N(L,) and therefore the order of the class is odd; whence ©
fixes at least one element of this class. Similarly there is an j in the conjugacy
class of #;, which centralizes v. Let g e C such that v = 2. Since
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Czy M C{ty) C N(Ly), i and 49 lie in N(Ly). As i+ §, {4 contains a unigue
involution &. Thus one of 19, j9, &9, say I? e L,C(L,).

Now every involution w in LyC(L,) — C(L,) has the form wyee, , wy €L,
wy € C(Ly) and w,? = (w3")? = t145 . As Clwy) N C{Ly)/<t, involves one of
the following groups [7; 8]:

PSL(3, ) x PSLJ3, q); PSL(5, q); PSL{3, ¢%) we see that 4, j, £ cannot
be conjugate in C to an involution of L C{Ly) — C(L,). It follows that
{7e C(Ly); whence there exists g’ € C(L,) such that /9¢° = [, as two involutions
of C(L,) conjugate in G are already conjugate in C(Lo) On the other hand,
CUy N Cltey C N({Ly) and so ge N(L;). But 7z~ “n(,) % a contradiction,
Similarly © . & ; whence no involution of N(LO).- — L,C(L,) is conjugate
in C to one in C{Ly).

The above paragraph also proves that no involution in LClL} — C(Ly) is
conjugate to one in C(Lg).

Let ce C. Since z and ()¢ are not conjugate in G, {(x(#;)*» contains an
involution I such that 2, (£;)¢e C(f) and either 2t ~ g or 2f ~ ;. From
above, 7 must lie in C(Lg); whence C(2) N C(#y4,) € N(Ly). But #; and (#5)¢ are
alreadv conjugate in C(L;). Hence there is an ¢ e N{L, such thst
ce’ € C(tyy N C(ty) € N(Ly), proving our resuit.

Levnis 3.4, Let Gy = {Cq (2), Celty)y. Then Gy~ G.*

Proof. We prove the result in 2 number of steps.

(1) uz~zandu~7i.

Let X = C(Ly)/Z(L,). Then Cg(f;) = <h, L,, N, and we have ¢ ~g ;.
Hence {u, 5> is conjugate to (¢, £;>. In the later group oniy one involution
can be conjugate to z namely 7, = 2 (by (2.2). Relabelling z by uz, if
necessary, (i) follows since ufy ~y uz (conjugation by (wﬁswes)w‘ﬂw%%2‘”“4%0(”‘"2)
(i) Let v be an involution conjugate to #, . Denote the unique normal
subgroup of Cg(z) isomorphic to SL(2, q) by L{z). (See (3.2)). If ¢, 9",
" are pairwise commuting involutions in C(L{z"}) conjugate to #,, then
L(-v" L{v"yC C(L(z")) and either [L(v"), L{z")] = 1 or L{v"}, L{z"}; ==

SL.(3, q) according as v"¢" ~ iz or v " ~ 1.

By assumption, we may assume o’ = %, whence L(v') =1L, . (See 3.2}.
it follows rhen we may suppose v” = fy. In view of (1.2} and because of
symmetry, it is clear that L(2") = L, . Now L, as subgroup of C(L{z"}) is the
unique normal subgroup of C(z;) N C(L(v"}) isomorphic to SL(2, g). From the
structure of C(L{?")), there is an x & C(L(2")) such that 7" = 2" and sc
xL{®")x* = L{z") by the uniqueness of L(z"} in C{z"). On the cther hand
L{z"} is also the unique normal subgroup of C(L{z"}) N C(v") isomorphic te
SL(2, g). The assertion now follows from the structure of C{Ly)
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(i) Let e = 1; L, = L(u); Ly = L(utgt,). Then [L, , Ly} = [L,,L,] =
[L1 ’Ls] = [Ll ,Le] = [Lz’Le] = [Ls:Ls] = [L47L6] =1 <L1 s Lgy o~
SL(3, q) = <Ly, Lgy and Gy = (L; | 1 <7< 6) = Eg(g)-

Since u ~y_ut, (See (i) and (utg)"o“*s™*s — utgt, . By (i), we see that both
L(u) and L(utgt,) are defined.

We now apply (ii) to £, , u, 5 [respectively, ty, u, £, tou, b5 ; Ly, U, utgt, ;
to, ulglh, , by 5 gulgt, , 1y 5 Ly, ufgt, ; ts] in the roles of ¢, ¢, ¢”. From the fact
uty = (u)™s [respectively, ut, = (uz)**“*™s; wup; — (u2)™; w- uit, =
fig ~ tog 3 Ulghty = (Ulst,2)°s ~ uz; utgt ty = (utgh 1) "™ ~uz; utstty —
(utst,)™s]. Tt follows <L, ,Ly> =~ SL(3,q) [respectively, [L,,L,] =1;
[Ly,Le] =1; [Lg,Ls] = 1; [Lg, L)) =1 {Lg, Lsy =~ SL(3, q)]. Note that
we have used the fact L(t;) =L, for i = 3, 4, 5 as L, is conjugate to L, = L(%,)
mH,.

We can now apply (ii) again to £, I, , # in the roles of ¢, ¥”, " and since
ut, ~y_uz (conjugation by (w%w%)w%w"‘sw%w"ﬁ), it follows [L,,L,] = L.
Similarly [L, , Lg] = 1.

An argument of Humphreys [5] shows that the conditions of Curtis’
Theorem [2] are satisfied and (L;| 1 <7 < 6) = G* is isomorphic to a
factor group of the universal Chevalley group of type E; over F,.
It follows immediately from the order of H_ that G* is isomorphic
to Eg(g). Also from (1.1) we conclude that Cg(#,) C G* and therefore we have
G, = G*.

(iv) Lete = —1. Then G contains a subgroup L,z such that [L,¢ , L,] =
1 =[Lys, Ly]; {Lyg  Lgsy 22 SL(3, ¢*) and Gy = <L, , Ly, Ly , Lyg> which is
isomorphic to 2E(q).

Let g be the element of (3.1). Replacing g with a suitable element in
&Ly, h, (x)>, we may suppose g € C(Ly) and still have &7 =1,; ' =1,,
t9 =tg. Since C(Ly) = SU(6, ¢)/Z where Z C Z(SU(6,q)) and |Z| =
(3, ¢ + 1) and from the structure of C(L,), it follows that, after replacing g
again with a suitable element gg’ where g’ € C(tg, £,) N C(Ly), {Lag , Lgs) =~
SL(3, ¢?) where L, = (L3;)?" (This is so because if we let SU(6, ¢) acts
naturally on a six-dimensional hermition vector space over F?, Ly, corresponds
to the image of a subgroup of SU(6, ¢) fixing a totally isotopic subspace of
dimension 2.)

Now since [Ly, Lys] = 1, [Ly, Lig] = 1 as L{* =L, , because £, = t,, it
follows from the uniqueness L, as the normal subgroup of C(z,) isomorphic
to SL(2,q) that L, =L,. Finally from the fact Cg(tz, ;) N C(Ly) =
<h B, LO s Ly s Ly, L), Lg, =L, [Lz > Lls] = [ng,v ng’] = [L2 > L35] = 1.

As in (ii1), we conclude from Curtis’ theorem [2] that <L, , L, , Lgs , L1g> =
G, and is isomorphic to 2Eg(q).
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Conclusion of proof: Gy = G.

Since Gy has exactly two classes of involutions with representatives z,
£y -
Let x € G. Since £, ~¢ 2%, it follows there is an involution in (%3*) such

It follows from (2.3) that G has precisely two classes of involutions.

that & , 2% € C(v). Since Cyty) C Gy, v e Gy ; whence C(z) C G, . Therefore
¥ e Gy . But 2, 2* are already conjugate in G, ; whence v Gyand G = & .

[ ]
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