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Let I&(q) be the adjoint Chevalley group of type E, over the finite field 
of order q = p”, p odd. We shall denot e the simple twisted analcgue of 
E&g”) by ‘?E,(q). Let E = *l, 6,” = I&(q) when E = 1 and 6,” = “E,(q) 
when E = - 1. Suppose x* is an involution in the center of a Sylow i-s-ubgroup 
of GcE*, The purpose of this paper is to prove the following. 

%EOREM. Let G be a finite group with an inaohtion z such that the central- 
izer H, = C,(Z) of z in G is isomorphic to C, -(z*). Therm edher G = O(G) 

E 
ET5 or G is isomorphic to G,*. 

We begin the proof with a study of the structure of C, *(a*). For this, we 
use the method of Iwahori-Ree [6], with which we as&me the reader is 
familiar. To give a decription of the structure, it is necessary to introduce a 
large number of notations for elements and subsers of G;*. Our notation 
generally follows that of [9]. \r ‘e also refer the reader to [9] for the construction 
of and standard facts on Chevalley groups. We then analyze the fusion of 
classes of involutions in H, . The information is used to construct a subgro:tp 
6, isomorphic to G,* in the interesting case. We show finaiv that GO = G. 

Our group-theoretic notation is standard except that 3” will denote 
IAX-r for some subset d and element x of a group X .The reason for this 
deviation will be obvious. 

1. NOTATIOX AND STRUCTURE OF N, 

Let Qi be the set of roots of the complex semi-simple Lie algebra G of type 
Ea relative to a Cartan subalgebra of G. For some fixed ordering of @, iet 
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@+ be the set of positive roots. @+ contains a simple system {xi / 1 < i < 6) 
with the following Dynkin diagram. 

Let F, be the finite field of order q when E = 1 and of order q’ when 
E = - 1. The universal Chevalley group E, of G over F, contains the one- 
parameter unipotent subgroups X,* = (.x=*(t)1 t EF,), 01 E @. The following 
elements play important roles in the study of Chevalley groups. 

war*(t) = x,*(t) &(-t-l) x,*(t), 

k,*(t) = w,“(t) zuE*(l)-l, 

wo1 * = q”(1). 

For convenience, we record below some relations that are especially 
important to us. 

Wa*“$(t) w**-l = X~,(&), c = *1, (“) 

h,*(t) x”(f) h,“(t)-l = X*pa>tr). 

Let o be the identity automorphism of E, when E = 1 and the product 
of the graph automorphism of E, and the field automorphism of E, induced 
by: t - t = tg, t E F, when E = - 1. Recall that in the later case, if p denotes 
the permutation of the roots induced by the graph automorphism, we have 

c&“(t)) = X*,*((,)(E,i), 

where E, = -&I and E, = 1 if &Y is a simple root. For any subset A C E, , 
let A, denote the set of fixed points of u in A. Let X, , x&t), q(t), and w, , be 
the images of X**, x,*(t), w,*(t), and w,*, respectively, in & = E,/Z(E, .). 
We shall use the so-called ‘bar’ convention for homomorphic images ’ of 
subsets of E, in & . Recall that 1 Z(E,,,)I = d = (3, q - 6). (See [9].) If X is 
o-invariant, s acts canonically on X. Because o is involutory and j Z(E,,,)I is - 
odd, it follows that (X)0 = (X,,). This fact will be used later without com- 
ment. We note that E,,, = G,*. The resulting relations in & arising from (*) 
will be denoted by (*). 
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Next ive introduce notations for elements ant! subsets of EC . 

IkdI that since Sp has only one root iength, if 3: = C ci~? , then t, z 
I-ii fii . Therefore t, = 17 tei over a!1 j such that cj is odd. For b-rev$;, we 
~ISO denote t, b:; tj,j:.~. where cja is odd. h 

m. = al + 2a, + 2,x, + 301, T 3x, + a6 I highest root of 0, 

‘2 = “1 +- as + CiJ + a5 - a6 ) 

y = LY3 + a4 + B:3 f 

L, = L,,., 7 Z(L,) = (f,,,) = /13:‘, 

F Lb - - L,,, > Z(L,) = it,,&> = i&j, 

L, = L.,.,, ) Z(L,) = (&) = (k,,,)~ 

Let p bz the identity permutation on @ whep G = I and rhe permutation 
on @ defined earlier when E = - 1. 

For aii a’ E {l? 2,..., 61, Iet 

Li = L,@ E SL(3, q), when i -L ,-(i’: ~ /! 

Li,,i) = (sJt) xo(~i,(t) I t EF,\, 

gg SL(2, qy, when - Y p(i), 

K is a generator of the multiplicative group of Fl 1 h is a generator of the 
mu!tipiicative group of FPI such that k-1 = K. 

where 

and 

.-c-I = xc(t) zuJt) X6(@), 

p = xv(t) w,(t) x,(g), 
* - 11’E(y+l) ‘-,I\) . 



144 KOK-WEE PHAN 

Using relations (T), we compute that h, h’ E E,,, and obviously j h j = 
1 h’ 1 = q - E. We refer the reader to [l, p. 2601 for pertinent facts necessary 
to above computations. 

Finally if X is a Chevalley group, we shall call the automorphism u’ of X 
such that the twisted analogue of X is the set of fixed points of G’, the twisting 
automorphism of X. Also to shorten some of the later proofs we introduce 
the following notations 

Gf&, q) = jGLtrn’ q)7 when l =l, 

IWm, 4, when E = -1, 

PSI&, q) = SL(m, q)!Z(SL,(m, 41, 

and Spin,(2q q) = Spin(2ln, q), the universal Chevalley group of type D, 
over the field of q elements when E = 1 and Spin,(2q q) is the set of fixed 
points in Spin(2m, q”) of its twisting automorphism when E = -1. 

We are now ready to determine the conjugacy classes of involutions in 
E,,, and their centralizers. 

LEMMA 1.1. (i) There are precisely two conjugacy classes of involutions 

in Es., with representatives ts5 and t,, ; 

(ii) CET-JQ = /h)L h w eye L =(L,,L,,L,,L,,L,) when E= 1; 
L = (L, , L, , L, , L,,) zuhen E = - 1; L E Spin,( 10, q) and L is a normal 
subgroup of index (q - c)/d; 

ciii) CqJ(to) = (h&)>hfLo where hb = (L, , L, , L, , L, , L,) when 
E= 1; M=(L,,L,,,L,,j zlrhen E = -1; hfr SL,(6, q)/Z where Z is the 
subgroup of order d in Z(SL,(6, q)); [htl, L,] = 1 and M n L, = (to); 

(iv) t,, is contaitled in the center of a Sylcw 2-subgroup of E,,, , whereas 
to is not. 

Proof. The case E = 1 has already been worked out in details by Iwahori 
[6] ; whence we shall assume that E = - 1. 

E, may be viewed in a natural manner as a subgroup of a connected linear 
algebraic group X over the algebraic closure of F, [6, p. FI]. Both CX(t& 
and Cx(tlas) are connected [6, p. F21]; whence by [IO, p. Ell] (i) follows as 
1 Z(E,,,J is odd. 

Since I Wc,,)I is odd, CE~c(t35) = G, ,K3(- 1) hz(- 1)) Z(E,JlWL,,); 
whence we may assume without loss of generality that Z(E,,,) = 1. Then, 
applying the case E = I to our situation we get CE,(t3J = (&JX))E where 
z = (La0 , LDia , Lu3 , La4 , Las) and L E Spin(l0, q2). Now 01~ is in the orbit of 
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a simple root of di by the action of f<wa, 1 1 :g 1 <:z 6;. [9? p. 268:. Since 
0 leaves ’ w,, , 1 1 < i < 6) pointwise fixed, ‘it foilosvs ~(s*,~(t)) = .v,,Jlj as 
.vkt,,(tj = ~.z.+,~(tjw-l for some i and w E .~ W, i ; :< i .< 6)~ Therefore o 
restricted to L acts as its twisting automorihism and so L. = [I),, z 
Spin,(lQ, q). 

Because of the uniqueness of Bruhat factorization of elements of E, i and 
in view of the action of G on &it follows easilythar Cq,jt& = .,h,.(h)l~,,(X!,E,. 
Lf?e note that (~z~~(X)~~~(X))Q~~ EX~ and 12 E CE~~(~ajj ~ L, rvhe& CC~(S,,) = 
;:lz,,\L. The last assertion follows easily as in [9, p. I78-184. 

Part (iii) may be proved as in (ii) and (iv) follows by a direct comparision ol ._ 
: G, I I CLqJf3.d and I CEq-$tO)I. 

1Ve turn next to a study of CE-,(tnsj, which wil! henceforth be identiEed 
with HE+ = C,:(z*) in view of (1.1) (iv). 

LEMP.IA 1.2. (i) There are precise41 t~zbo nonce~zti.al cotzjkguc~ dmses 0j 
irzaoiuiims irz L = (HE*)’ .with representatives f,, and t,, . 

(iij C,$t,,j = ;,lr, 8’:;;k’ wkere K = ,:‘tL4 , L,,, , L,” I L,;:D is no~~!ai L?z 
C,;(t,,) nizd is isomorphic to Spin@, q). ;Ilso (C,$tJj = -K. 

(iii) CHz(tl,,) = ;:hJK)j SI JL,L, , h>, where i = (Ll,3 . L,: , Ln5 ~ ad is 
isom5rphic to S&(4, q). Moreoce, [j, L,J = [J, Lb! = [L,, 1 Lb] = 1 md 
.(JL,L, r h‘., is a subgroup oj~indes 2 in CH;(t,,). 

PNX$ When E = 1, Iwahori-Ree’s method [b, p. 284 shows that E 
contains two conjugacy classes of involutions with representatives i,, , i, . 
Since CL(jlG) and C,(t,) are not isomorphic, therefore f,, and ? 0 do n-t fake 4 
in Hi”. The other assertions in this case follow immediatelr Sv direct com- . _ 
putation as in [5, p. 28@] 

Assume that c = - 1. .%pplying (1. I), we have H,” = .fi \’ 7i ” 2 1-h where 
i T <L, D, L ,,,, , L13, L12, L& By [6, p. 2751 and [!O, p. 177], it follov~s tjlat 
L = 15, satisfies (ij. 

To prove (ii), we note that CE,(rLaS ? t,,) n e = ~JzJAj~,R x\ here R = 
,<L, , LyB , LAO ? L,;,. As in (1.1) (ii), we show that ~(.+(t)) = x+,;(t). Thus G 
acts as the field automorphism of order 2 on R. It follows from the uniqueness 
of Bruhat factorization of element in R, that K = Xi = L, ) 5, I L, , L,: s 
Spin@, 4). Again as in (1.1) (ii), we conclude that &;ti:(tlfij = :A, ir’)K. The 
other assertions of (ii) are obvious (iii) is proved in a sin&r manner as in (i;f~ 
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of elements of L = /L , oLo , L, , La3 , Cal , Lag) and the fact u = kl(--l) 
normalizes x, , 01 a root of @ with X, _C L, it follows C;,(U) = (h) x N where 
N = <hoi,(~), LEO , Lap , Le4 , L$ and NE GL(5, q). The remaining assertion 
follows from the structure of GL(5, q). 

Next assume E = - 1. Apply the previous paragraph to CEE(RLY1(- 1)) r\ 
CEE(&s) = C, we see that C = (/Z&J)) x (h$), m) where fl = 
(LmO , La2 , La4 , Lmsj. Therefore y~C&y-~ = CE,(u) n CEE(ts5) where x, 
y are the elements used to define 12 earlier; whence CH$u) = (hj x 
(h’, (y xivx-‘y-‘)c+. 

We claim that (y ~N~~-ly-l)cr g the set of fixed points of ~-l~~-l~ys in N. 
Set 8, = (-c+); 0, = (-CQ - 01~); 0, = olj and 

e, = -(a1 + lx2 + 201, + 2cz4 + 2oIj + 01J. 

We note that the 19~‘s form a simple system of (01 E @ j L, C N}. As (T’ = 
&y-luy.~ = ~zu~(t) w,(t) where t = X+(*+l), it follows from (F), 

u’x&‘)U = x&t~t’), 

U’X&‘)U = x8s(C’t-lt’), 

where c, c’ = *I. 
Let h, E (IzOl(h)) such that h;?~,~(&t’)h~ = *vs,(f’). (Such element exists 

because ct” is a square in (h)). Since (hag(X), Laa+Jisj E GL(2, q’), there is 
Jzs E (Iz,#)) such that 1za+Jt’)h;’ = xOe(c’tt’). Set O* = /~;%;~a h&a . 
We see that u* acts as the twisting automorphism on a. Thus the set of 
fixed point of o* in m is isomorphic to SU(5q); whence (y&++)o g 
SU(5, q). Now (h’, (y.&~~y-~)o) g GlJ(5, q) follows from direct 
computations. 

2. FUSION OF INVOLUTIONS 

We shall identify H, = C,(Z) with H,* and hence .Z with t3s and use only 
those relations of (F) which invlove only element of H, . 

LEMMA 2.1. Lq Sylow 2-subgsoup of HE is n Sylow 2-subgroup of G. 

Proof. Let S be a Sylow 2-subgroup of H, . Note that z E S’ and S’ CL 
since He/L is cyclic. (See (1.2) f or notation.) By way of contradiction, suppose 
there exists x E G - H, which normalizes S; whence P E S’ _C L. By (1.2) 
z is the only involution in the center of a Sylow 2-subgroup of L. It follows 
zZ = z contradicting x 6 H, ; whence the result follows. 

LEMMA 2.2. x & to. 
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Pwo~~ Assume the contrary, i.e., z wG t, . Then there is an x E G - A@< 
such that (to)” = z. Since x E Cc(&)‘, (x)” E C,(z)‘. By (1.2): me may suppose 
that ,zF = t whence x normalizes C&z, to)’ = J&L, . It foliows that ,P = / 
[7]; whencZ ‘z(/)x = Z(J), i.e., x’ = z, a contradiction. 

LEMMA 2.3. Either G = O(G)H, or ,z ‘-G tie . 

PTOOJ. If z is conjugate to another involution of L, then we are done by 
(1.2) and (2.2). Suppose then 2 is not conjugate to another involution in L. 
Let S be a Sylow 2-subgroup of H, containing that of ,\A>. Suppose the 
unique involution of (Jz> is not conjugate to an involution 0fL then by ihe 
repeated use of Harada-Gorenstein-Thompson’s fusior, lemma [4], G 
contains a subgroup 6, of index O(Ir)a , not containing ,;12:> n S; whence 
S n L is a Sylow 2-subgroup of G’,, and z is not conjugate to another involutior. 
of S n L. Now Glauberman’s theorem states that 6, = O(G,)(,Fd”, n GE); 
whence G = O(G)H, since O(G,) = O(G). 

Finally suppose zl is conjugate to an involution of L. A. comparison cf the 
orders of CH,(u), CH,(z), CH,(tlG) and CAr,(fo) shows that if 7’ is a Sylow 
2-subgroup of CH,) there exists g E C,(U) -. CIi,(2i) normalizing T. Bp 
(!.3), we mzy choose T such that -Qr(Z(T)) = & z”, iI,‘: and : x, &; = 
Q,(Z(T n LV)). Since !,t,,> = L$(Z(T)) n T’, g centralizes t,, ; whence 
either zc = uz or zg = ztt,,z. Now u -H of,, (conjugation br ~~~~~~~ vrhen 
E = i ; by 4’XWVL~ --‘y’ when E = - 1 whke N! 2: have the same meaning as 
before.) If zg = ZLZ, then (t+)g = zttlSz &H UB. It follows that z bG ?,,a -il, 
t,, contradicting our assumption that z is not conjugate to ano. *her invointzor 
of L. The other case (z)” = ut,,z leads to the same contradiction in a simiiar 
way. This compiete the proof. 

3. CONSTRUCTION OF G, 

In view of (2.3), we shall assume from now on .a --G il, j This will enable 
us to show that G0 = <;Cc(x), C,(t,)> gg GE*. 

Booj. By (2.3), there exists g E G such that tjIE = z and we can further 
assume that 29 = t,, as in (2.3); whence g normaiizes C = CAq,(flG)’ which is 
isomorphic te Spin(8, 4). Replacing g with gg’ for some suitable g’ in C, we 
conclude by 19, p. 15661601 that 
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as we already know that t& = x and xQ = t,, and Z(C) = (t,, , ai. In 
particular, we get t,” = t, ; tog = to . 

Next we compute that (C,(t,) n C)’ = L,L,L,L, . It follows that g E N(L,) 

LEMMA 3.2. Ff71? hlXA? N(L,) = (h,2(K))L,, c(L,), [N(L,,): L,c(L,)] = 2, 
L, n C(L,) = (to) and C(L,) = SL,(6, q)/Z where Z to the mique subg,guoup 
of order d = (3, q - c) in Z(SL,(6, q)). 

Proof. We claim first N(L,) contains a subgroup N,, of index 2 not 
containing &(K). Clearly CH,(t,,) C N(L,) and a Sylow 2-subgroup T of 
C,,(t,,) is a Sylow 2-subgroup of N(L,); otherwise we would get f, .wc z as 
/ C(z): C(to)la = 2, in contradiction to (2.2). Now h*,(K) induces on outer 
automorphism on L ,, ; whereas all elements of order q -- E in <Iz, JL,L,) act 
as inner automorphisms. The claim follows immediately from Gorenstein- 
Harada-Thompson’s fusion lemma. 

Let fl,, = No/LO and we shall use the ‘bar’ convention for homomorphic 
images of subsets of NO . Since tnLo contains precisely three involution, i.e., 
to, t, , tat,, = z. 4s to +c a by (2.2), it follows that 

In view of (3.1), we conclude from [7; 81 that N, = PSL,(6, q). By the 
uniqueness of composition factors of N,, and the structure of Aut(L,), it 
follows that C(L,)/Z(L,) = PSL,(6, q). From H, , we see that the 
central extension of C(L,)/Z(L,) . 1s nontrivial. As the universal covering group 
of PSL,(6, q) is SL,(6, q), we conclude that C(L,) s SL,(6, q)/Z where 
Z C Z(SL,(6, q)) and I Z I = (3, q - c). 

LEMMA 3.3. C(t,) = N(L,). 

Proof. It is obvious that N(L,) _C C(t,) = C. From the structure of 
C(L,), we conclude that there are precisely two conjugacy classes of involutions 
in C(L,) with representatives x, tB and C,(g) n CG(tO) C N(L,) for all in- 
volution g of C(L,). 

As in (3.2), we know that C(x, to) contains a Sylow 2-subgroup of C. 
Let z, be an involution in N(L,) - C,, where CO = L,C(L,) and suppose 
v “c x. We note that C(v) contains an element, say i, in the conjugacy class of 
x in N(L,). This follows from the fact that C(z) n N(L,) contains a Sylow 
2-subgroup of N(L,) and therefore the order of the class is odd; whence ZI 
fixes at least one element of this class. Similarly there is anj in the conjugacy 
class of ta , which centralizes ZJ. Let g E C such that .ug = z. Since 



CHARACTERIZING FINITE CHEVALLEY GROUPS 148 

C(z) n Cjtoj _C N(Lo), ig and jg lie in N&J. As i +oj, <q> contains a unique 
involution k. Thus one of is, jg’, kg, say 1” EL,C(L,). 

Now every involution w in L,C(L,) - C(L,) has the form wlwa I ZP~ E& I 
z.o, E C(L,) and z~lr~ = ZO:,~ z 
the folIo@rr.g Droups 1; ,I!’ = 

t,,, . As C(ZQ) r! C(L,)/(&,: involves one of 
: ; . 

PSL,(3, 4) \tl PSL,(3, q); PSL,(5, 4); PSL,(3, q*) we see that i, j, k cannot 
be conjugate in C to an involution of L,C(&) - C(L,). It follows that 
10 E C(L,); whence there exists g’ E C(L,) such that F = i, as two involuticns 
of C(L,) conjugate in G are already conjugate in G(L,). On the other hand, 
C(I) n C(f,) C l\‘(L,) and so g E A’(Lo). But eq +,(,,) a, a contradiction, 
Similarlv 57 7cc & ; whence no involution of ,V(E,) -S&L,) is conjugate 
in C to one In C(L,). 

The above paragraph also proves that no involution in L,C(L,) - C(L,) is 
conjugate to one in C(L,). 

T -et c E C. Since x and (Qc are not conjugate in G, <:z(t&, contains an 
involution t such that z, (t&c E C(t) and either at ra. z or af .x t3 . From 
above, t must lie in C(L,); whence C(t) n C(i,,,) C N(L,). But iz and (fa)” arc 
alread\- conjugate in C(L,). Hence there is an c’ E ,V(LL,) such that 
cc’ E d(Q n C(tJ L IV(&), proving our resuit. 

Lm131.k 3.4. Let Go = :,:C, (x), C,(t,)>. T&w Go gg G,*. 

Pamf. We prove the result in a number of steps. 

(9 wx w z and u w t, = 

Let x = C(LJZ(L,). Then Cx(t,) = c\h, L, f ,v:, and we have z .-z F3 . 
Hence :‘,:l, to:, is conjugate to :;to , to‘>. In the later group only one involution 
can be conjugate to x namely t,t, = z (by (2.2). Relabelling u by UX, if 
necessary, (i) foliows since utO ,wH uz (conjugation by (wi3w& WupW39Wa.,W~~~~liW1,\ 

-I. 
(ii) Let z’ be an inoolution’conjugate to t, ~ Denote the unique normal 

subgroup of C,(c)’ isomorphic to SL(2, q) by L(a). (See (3~2)). If z’, 6’: 
U” are pairwise commuting involutions in C(L(d)) conjugate to 5, I then 
L(o”), L(d”) L C(L(z7’)) and either [L(d), L!@“‘)] = i or L(d’), L(e”‘)> s 
X&(3, q) according as ~“z”” w L,, or z” u”’ - f, . 

By assumption, we may assume 3’ = t, whence L(e)‘) = L, = (See 3.2). 
It follows :hen we may suppose z’” = iu ~ In view of (1.2) and because of 
symmetry, it is clear that L(v”) = L, . Now L, as subgroup of C(L(c’)) is the 
unique normal subgroup of C(i,) n C(L(a’)) isomorphic to X(2, 4). From the 
structure of C(L(a’)), there is an x E C(L(a’)) such that tE”’ = ~1”’ and so 
sL(v”)x-1 = L(d”) by the uniqueness of L(v”‘) in C(&“). On the other hand 
L(zY) is also the unique normal subgroup of C(L(u’)) 19 C@J”) isomorphic to 
332, 4)~ The assertion now follows from the structure of Cjt,). 
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(iii) Let E = 1; L, = L(u); L, = L(ut&,). Then [L, , L,] = [L, , La] = 
L,L,l = L,-k-I = P?.,-h31 = L,-bl =L,-hl = 1; G,W cz 
SL(3,q) E (L5, L6) and GO = (Li 1 1 < i < 6) E E,(q). 

Since u wH, utR (See (i)) and (utR)we3wa4wa5 = utRt,, . By (i), we see that both 
L(u) and L(ut,t,) are defined. 

We now apply (ii) to to , u, t, [respectively, to, U, t, ; t, u, t5 ; to, 24, utRty ; 
t, ) ut t. a ,’ 9 t 3 ; QWY Y 4 1 II 7 t . t ut&, ; t5] in the roles of v’, v”, v”‘. From the fact 
uts = (up [respectively, ut4 = (U.z)W~30z~Wa5; ut, = (ux)~*~; u . ut&, = 

- ts5 ; alt&& = (utotyz)w”~ - 24x; ut&,t4 = (utgtyt3)w+~ - uz; ut&/t5 = 
;:t$,)“*q. It f 11 0 ows <L, , L3) E X(3,4) [respectively, [L, , L,] = 1; 
[L, , L6] = 1; [L6 , L3] = 1; [L6 , L,] = 1 <L6, L,) E SL(3, q)]. Note that 
we have used the fact L(tJ = Li for i = 3, 4, 5 as Li is conjugate to L, = L(t,) 
in H, . 

We can now apply (ii) again to ts , t, , u in the roles of z”, v”, v”’ and since 
ut, “ff E ux (conjugation by (wn3we5)wolaw w w OLs a* O1a), it follows [L, , L,] = 1. 
Similarly [Lp , L6] = 1. 

An argument of Humphreys [5] shows that the conditions of Curtis’ 
Theorem [2] are satisfied and (Li j 1 < i < 6) = G* is isomorphic to a 
factor group of the universal Chevalley group of type Es over F, . 
It follows immediately from the order of H, that G* is isomorphic 
to E,(q). Also from (1.1) we conclude that Cc(t,,) _C G* and therefore we have 
G,, = G”. 

(iv) Let E = - 1. Then G contains a subgroup L,, such that [L16 , LB] = 
1 = [L,, , L,]; (L,, , L,,) z SL(3, 4”) and G,, = (L, , L, , L,, , L,,) which is 
isomorphic to *E,(q). 

Let g be the element of (3.1). Replacing g with a suitable element in 
g/L,, &(K)), we may suppose g E C(L,) and still have t,” = t, ; tag = td , 
t,g = t a : Since C(L,) g SU(6,2)/2 where Z_C Z(SU(6, 2)) and / 2 1 = 
(3, 4 + 1) and from the structure of C(L,), it follows that, after replacing g 
again with a suitable element gg’ where g’ E C(to , t4) n C&J, (L,, , L,,> g 
SL(3, q”) where L,, = (L3$g’ (This is so because if we let SU(6, 2) acts 
naturally on a six-dimensional hermition vector space overFQs, L,, corresponds 
to the image of a subgroup of SU(6,q) fixing a totally isotopic subspace of 
dimension 2.) 

Now since [Lb, L,,] = 1, [L, , L,,] = 1 as Lf = L, , because t,” = t, , it 
follows from the uniqueness L, as the normal subgroup of C(t,) isomorphic 
to SL(2, q) that L,g = L, . Finally from the fact CG(ta , tJ n C(L,) = 
(h, h’, L, , Lb , L, , LA, L;’ = L, , [L, , L,,] = [LZQ’, Lg] = [L, , L,,] = 1. 

As in (iii), we conclude from Curtis’ theorem [2] that (L2 , L, , L,, , L,,) = 
G,, and is isomorphic to sE,(q). 
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Conchs~oon of poop 6, = 6. 
Since 6, has exactly two classes of invoiutions wi& represeiltatives xy 

f, = It follows from (2.3) that G has precisely two ciasses of invo!utions. 
Let s E G. Since t, wG ~2, it follows there is an involutim ix C;‘,+“> such 

that t, i ax E C(a). Sicce Cc(t,) C Ga , z’ E 6, ; whence C(V) _C GG , Thereforc 
xx E G, i But 2, z’ are aiready conjugate in G, ; whence .V E G, and G = G, . 
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