JOURNAL OF ALGEBRA 32, 141-151 (1974)

On Characterizing Finite Chevalley Groups of Type E_6 and Their Twisted Analogs

Kok-Wee Phan*

University of Notre Dame, Notre Dame, Indiana 46556 Communicated by Walter Feit Received January 9, 1973

Let $E_6(q)$ be the adjoint Chevalley group of type E_6 over the finite field of order $q = p^n$, p odd. We shall denote the simple twisted analogue of $E_6(q^2)$ by ${}^2E_6(q)$. Let $\epsilon = \pm 1$, $G_{\epsilon}^* = E_6(q)$ when $\epsilon = 1$ and $G_{\epsilon}^* = {}^2E_6(q)$ when $\epsilon = -1$. Suppose z^* is an involution in the center of a Sylow 2-subgroup of G_{ϵ}^* . The purpose of this paper is to prove the following.

THEOREM. Let G be a finite group with an involution z such that the centralizer $H_{\epsilon} = C_G(z)$ of z in G is isomorphic to $C_{G_{\epsilon}}(z^*)$. Then either G = O(G) H_{ϵ} or G is isomorphic to G_{ϵ}^* .

We begin the proof with a study of the structure of $C_{G_{\epsilon}}(z^*)$. For this, we use the method of Iwahori-Ree [6], with which we assume the reader is familiar. To give a decription of the structure, it is necessary to introduce a large number of notations for elements and subsets of G_{ϵ}^* . Our notation generally follows that of [9]. We also refer the reader to [9] for the construction of and standard facts on Chevalley groups. We then analyze the fusion of classes of involutions in H_{ϵ} . The information is used to construct a subgroup G_0 isomorphic to G_{ϵ}^* in the interesting case. We show finally that $G_0 = G$.

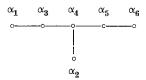
Our group-theoretic notation is standard except that A^x will denote xAx^{-1} for some subset A and element x of a group X. The reason for this deviation will be obvious.

1. Notation and Structure of H_{ϵ}

Let Φ be the set of roots of the complex semi-simple Lie algebra **G** of type E_6 relative to a Cartan subalgebra of **G**. For some fixed ordering of Φ , let

* Support in part by the National Science Foundation under Grant No. GP 29496X1 at the university of Notre Dame.

 Φ^+ be the set of positive roots. Φ^+ contains a simple system $\{\alpha_i \mid 1 \leq i \leq 6\}$ with the following Dynkin diagram.



Let F_{ϵ} be the finite field of order q when $\epsilon = 1$ and of order q^2 when $\epsilon = -1$. The universal Chevalley group E_{ϵ} of **G** over F_{ϵ} contains the oneparameter unipotent subgroups $X_{\alpha}^* = \langle x_{\alpha}^*(t) | t \in F_{\epsilon} \rangle$, $\alpha \in \Phi$. The following elements play important roles in the study of Chevalley groups.

$$w_{\alpha}^{*}(t) = x_{\alpha}^{*}(t) x_{-\alpha}^{*}(-t^{-1}) x_{\alpha}^{*}(t),$$
$$h_{\alpha}^{*}(t) = w_{\alpha}^{*}(t) w_{\alpha}^{*}(1)^{-1},$$
$$\omega_{\alpha}^{*} = w_{\alpha}^{*}(1).$$

For convenience, we record below some relations that are especially important to us.

$$\begin{split} &\omega_{\alpha}^{*}h_{\alpha'}^{*}(t) \ \omega_{\alpha}^{*-1} = h_{w_{\alpha}(\alpha')}^{*}(t), \\ &\omega_{\alpha}^{*}x_{\alpha'}^{*}(t) \ \omega_{\alpha}^{*-1} = x_{w_{\alpha}(\alpha')}^{*}(ct), \qquad c = \pm 1, \end{split} \tag{*} \\ &h_{\alpha}^{*}(t) \ x_{\alpha}^{*}(t') \ h_{\alpha}^{*}(t)^{-1} = x_{\alpha}^{*}(t^{\langle \alpha', \alpha \rangle}t'). \end{split}$$

Let σ be the identity automorphism of E_{ϵ} when $\epsilon = 1$ and the product of the graph automorphism of E_{ϵ} and the field automorphism of E_{ϵ} induced by: $t \rightarrow \bar{t} = t^{q}$, $t \in F_{\epsilon}$ when $\epsilon = -1$. Recall that in the later case, if ρ denotes the permutation of the roots induced by the graph automorphism, we have

$$\sigma(x_{\alpha}^{*}(t)) = x_{\rho(\alpha)}^{*}(\epsilon_{\alpha}t),$$

where $\epsilon_{\alpha} = \pm 1$ and $\epsilon_{\alpha} = 1$ if $\pm \alpha$ is a simple root. For any subset $A \subseteq E_{\sigma}$, let A_{σ} denote the set of fixed points of σ in A. Let X_{α} , $x_{\alpha}(t)$, $w_{\alpha}(t)$, and ω_{α} , be the images of X_{α}^{*} , $x_{\alpha}^{*}(t)$, $w_{\alpha}^{*}(t)$, and ω_{α}^{*} , respectively, in $\overline{E}_{\epsilon} = E_{\epsilon}/Z(E_{\epsilon,\sigma})$. We shall use the so-called 'bar' convention for homomorphic images of subsets of E_{ϵ} in \overline{E}_{ϵ} . Recall that $|Z(E_{\epsilon,\sigma})| = d = (3, q - \epsilon)$. (See [9].) If X is σ -invariant, σ acts canonically on \overline{X} . Because σ is involutory and $|Z(E_{\epsilon,\sigma})|$ is odd, it follows that $(\overline{X})\sigma = (\overline{X_{\sigma}})$. This fact will be used later without comment. We note that $\overline{E_{\epsilon,\sigma}} = G_{\epsilon}^{*}$. The resulting relations in \overline{E}_{ϵ} arising from (*) will be denoted by (*). Next we introduce notations for elements and subsets of \overline{E}_{ϵ} .

$$L_{lpha} = \langle X_{lpha}, X_{-lpha}
angle, \qquad lpha \in arPhi,$$

 $\langle t_{lpha}
angle = Z(L_{lpha}).$

Recall that since Φ has only one root length, if $\alpha = \sum c_i \alpha_i$, then $t_{\alpha} = \prod_i t_{\alpha_i}^{c_i}$. Therefore $t_{\alpha} = \prod t_{\alpha_j}$ over all j such that c_j is odd. For brevity, we also denote t_{α} by $t_{j_1 j_2} \dots$ where c_{j_k} is odd.

$$\begin{split} \alpha_0 &= \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6 \text{, highest root of } \Phi, \\ \beta &= \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 \text{,} \\ \gamma &= \alpha_3 + \alpha_4 + \alpha_5 \text{,} \\ L_0 &= L_{\alpha_0,\sigma}, Z(L_0) = \langle t_{146} \rangle = \langle t_0 \rangle, \\ L_b &= L_{\beta,c}, Z(L_b) = \langle t_{13156} \rangle = \langle t_e \rangle, \\ L_c &= L_{\gamma,\sigma}, Z(L_c) = \langle t_{345} \rangle = \langle t_{\gamma} \rangle. \end{split}$$

Let ρ be the identity permutation on Φ when $\epsilon = 1$ and the permutation on Φ defined earlier when $\epsilon = -1$.

For all $i \in \{1, 2, ..., 6\}$, let

$$\begin{split} L_i &= L_{\alpha_i,\sigma} \cong SL(2,q), \quad \text{when} \quad i = \rho(i), \\ L_{i\nu(i)} &= \langle x_{\alpha_i}(t) | x_{\nu(\alpha_i)}(\bar{t}) | t \in F_e \rangle, \\ &\cong SL(2,q^2), \quad \text{when} \quad i = \rho(i), \end{split}$$

 κ is a generator of the multiplicative group of F_1 , λ is a generator of the multiplicative group of F_{-1} such that $\lambda^{q-1} = \kappa$.

$$h = \begin{cases} h_{\alpha_1}(\kappa), & \text{when } \epsilon = 1, \\ yxh_{\alpha_1}(\lambda^{q-1}) x^{-1}y^{-1}, & \text{when } \epsilon = -1. \end{cases}$$

where

$$egin{aligned} &x^{-1} = x_eta(t) \, w_eta(t) \, x_eta(rac{1}{2}t), \ &y^{-1} = x_eta(t) \, w_eta(t) \, x_eta(rac{1}{2}t), \ &t = \lambda^{1/2(q+1)}. \end{aligned}$$

and

$$h' = \frac{h_{\alpha_3}(\kappa), \text{ when } \epsilon = 1}{y' y h_{\alpha_3}(\lambda^{q-1}) y^{-1}(y')^{-1}},$$

where y is as above and $(y')^{-1} = x_{\alpha_4}(t)w_{\alpha_4}(t)x_{\alpha_4}(\frac{1}{2}); t = \lambda^{\frac{1}{2}(q-1)}$.

481/32/1-10

KOK-WEE PHAN

Using relations $(\bar{*})$, we compute that $h, h' \in \overline{E_{\epsilon,\sigma}}$ and obviously $|h| = |h'| = q - \epsilon$. We refer the reader to [1, p. 260] for pertinent facts necessary to above computations.

Finally if X is a Chevalley group, we shall call the automorphism σ' of X such that the twisted analogue of X is the set of fixed points of σ' , the twisting automorphism of X. Also to shorten some of the later proofs we introduce the following notations

$$GL_{\epsilon}(m, q) = \begin{cases} GL(m, q), & \text{when } \epsilon = 1, \\ GU(m, q), & \text{when } \epsilon = -1, \end{cases}$$
$$SL_{\epsilon}(m, q) = \begin{cases} SL(m, q), & \text{when } \epsilon = 1, \\ SU(m, q), & \text{when } \epsilon = -1, \end{cases}$$
$$PSL_{\epsilon}(m, q) = SL_{\epsilon}(m, q)/Z(SL_{\epsilon}(m, q), \end{cases}$$

and $\operatorname{Spin}_{\epsilon}(2m, q) = \operatorname{Spin}(2m, q)$, the universal Chevalley group of type D_m over the field of q elements when $\epsilon = 1$ and $\operatorname{Spin}_{\epsilon}(2m, q)$ is the set of fixed points in $\operatorname{Spin}(2m, q^2)$ of its twisting automorphism when $\epsilon = -1$.

We are now ready to determine the conjugacy classes of involutions in $\overline{E_{\epsilon,\sigma}}$ and their centralizers.

LEMMA 1.1. (i) There are precisely two conjugacy classes of involutions in $\overline{E_{\epsilon,\sigma}}$ with representatives t_{35} and t_0 ;

(ii) $C_{\overline{E_{\epsilon,\sigma}}}(t_{35}) = \langle h \rangle L$ where $L = \langle L_0, L_2, L_3, L_4, L_5 \rangle$ when $\epsilon = 1$; $L = \langle L_0, L_2, L_4, L_{35} \rangle$ when $\epsilon = -1$; $L \cong \operatorname{Spin}_{\epsilon}(10, q)$ and L is a normal subgroup of index $(q - \epsilon)/d$;

(iii) $C_{\overline{E_{\epsilon,\sigma}}}(t_0) = \langle h_{\alpha_2}(\kappa) \rangle ML_0$ where $M = \langle L_1, L_3, L_4, L_5, L_6 \rangle$ when $\epsilon = 1$; $M = \langle L_4, L_{35}, L_{16} \rangle$ when $\epsilon = -1$; $M \cong SL_{\epsilon}(6, q)/Z$ where Z is the subgroup of order d in $Z(SL_{\epsilon}(6, q))$; $[M, L_0] = 1$ and $M \cap L_0 = \langle t_0 \rangle$;

(iv) t_{35} is contained in the center of a Sylow 2-subgroup of $\overline{E_{\epsilon,\sigma}}$, whereas t_0 is not.

Proof. The case $\epsilon = 1$ has already been worked out in details by Iwahori [6]; whence we shall assume that $\epsilon = -1$.

 E_{ϵ} may be viewed in a natural manner as a subgroup of a connected linear algebraic group X over the algebraic closure of F_{ϵ} [6, p. F1]. Both $C_X(t_{15})$ and $C_X(t_{146})$ are connected [6, p. F21]; whence by [10, p. E11] (i) follows as $|Z(E_{\epsilon,\sigma})|$ is odd.

Since $|Z(E_{\epsilon,o})|$ is odd, $C_{\overline{E_{\epsilon,o}}}(t_{35}) = C_{E_{\epsilon,o}}(h_{\alpha_3}^*(-1) h_{\alpha_5}^*(-1)) Z(E_{\epsilon,o})/Z(E_{\epsilon,o});$ whence we may assume without loss of generality that $Z(E_{\epsilon,o}) = 1$. Then, applying the case $\epsilon = 1$ to our situation we get $C_{E_{\epsilon}}(t_{35}) = \langle h_{\alpha_1}(\lambda) \rangle \tilde{L}$ where $\tilde{L} = \langle L_{\alpha_0}, L_{\alpha_2}, L_{\alpha_3}, L_{\alpha_4}, L_{\alpha_5} \rangle$ and $\tilde{L} \cong \text{Spin}(10, q^2)$. Now α_0 is in the orbit of

144

a simple root of Φ by the action of $\langle \omega_{\alpha_i} | 1 \leq i \leq 6 \rangle$. [9, p. 268]. Since σ leaves $\langle \omega_{\alpha_i} | 1 \leq i \leq 6 \rangle$ pointwise fixed, it follows $\sigma(x_{\pm \alpha_0}(t)) = x_{\pm \alpha_0}(i)$ as $x_{\pm \alpha_0}(t) = \omega x_{\pm \alpha_i}(t) \omega^{-1}$ for some *i* and $\omega \in \langle \omega_{\alpha_i} | 1 \leq i \leq 6 \rangle$. Therefore σ restricted to \tilde{L} acts as its twisting automorphism and so $L = (\tilde{L})_{\sigma} \cong$ Spin_e(10, q).

Because of the uniqueness of Bruhat factorization of elements of E_{ϵ} , and in view of the action of σ on E_{ϵ} it follows easily that $C_{\overline{E_{\epsilon,\sigma}}}(t_{35}) = \langle h_{\alpha_1}(\lambda)h_{\alpha_3}(\bar{\lambda})\rangle \tilde{L}_{\sigma}$. We note that $(h_{\alpha_1}(\lambda)h_{\alpha_6}(\bar{\lambda}))^{q-\epsilon} \in \tilde{L}_{\sigma}$ and $h \in C_{\overline{E_{\epsilon,\sigma}}}(t_{35}) - L$, whence $C_{\overline{E_{\epsilon,\sigma}}}(t_{35}) = \langle h_{\gamma}L$. The last assertion follows easily as in [9, p. 178-182].

Part (iii) may be proved as in (ii) and (iv) follows by a direct comparison of $|\overline{E_{\epsilon,\sigma}}|, |C_{\overline{E_{\epsilon,\sigma}}}(t_{35})|$ and $|C_{\overline{E_{\epsilon,\sigma}}}(t_0)|$.

We turn next to a study of $C_{\overline{E_{\epsilon,\sigma}}}(t_{35})$, which will henceforth be identified with $H_{\epsilon}^* = C_{G_{\epsilon}^*}(z^*)$ in view of (1.1) (iv).

LEMMA 1.2. (i) There are precisely two noncentral conjugacy classes of involutions in $L = (H_{\epsilon}^*)'$ with representatives t_{16} and t_0 .

(ii) $C_{H_{\mathfrak{c}}^*}(t_{16}) = \langle h, h' \rangle K$ where $K = \langle L_{\mathfrak{a}_4}, L_{\mathfrak{a}_2}, L_{\mathfrak{a}_0}, L_{\mathfrak{a}} \rangle_{\sigma}$ is normal in $C_{H_{\mathfrak{c}}^*}(t_{16})$ and is isomorphic to Spin(8, q). Also $(C_{H_{\mathfrak{c}}^*}(t_{16}))' = K$.

(iii) $C_{H_{\epsilon}^{*}}(t_{146}) = \langle h_{x_{2}}(\kappa) \rangle \langle JL_{0}L_{b}, h \rangle$ where $J = \langle L_{x_{3}}, L_{x_{4}}, L_{x_{5}, \sigma}$ and is isomorphic to $SL_{\epsilon}(4, q)$. Moreover $[J, L_{0}] = [J, L_{b}] = [L_{0}, L_{b}] = 1$ and $\langle JL_{0}L_{b}, h \rangle$ is a subgroup of index 2 in $C_{H_{\epsilon}^{*}}(t_{0})$.

Proof. When $\epsilon = 1$, Iwahori-Ree's method [6, p. 280] shows that L contains two conjugacy classes of involutions with representatives t_{16} , t_0 . Since $C_L(t_{16})$ and $C_L(t_0)$ are not isomorphic, therefore t_{16} and t_0 do not fuse in H_{ϵ}^* . The other assertions in this case follow immediately by direct computation as in [6, p. 280]

Assume that $\epsilon = -1$. Applying (1.1), we have $H_{\epsilon}^* = \langle h \rangle (\tilde{L})_{\sigma}$ where $\tilde{L} = \langle L_{\alpha_0}, L_{\alpha_2}, L_{\alpha_3}, L_{\alpha_4}, L_{\alpha_5} \rangle$. By [6, p. 275] and [10, p. 177], it follows that $L = \tilde{L}_{\epsilon}$ satisfies (i).

To prove (ii), we note that $C_{\tilde{E}_{\epsilon}}(i_{35}, t_{16}) \cap \tilde{L} = \langle h_{s_3}(\lambda) \rangle \tilde{K}$ where $\tilde{K} = \langle L_{s_4}, L_{s_5}, L_{s_6}, L_{\beta} \rangle$. As in (1.1) (ii), we show that $\sigma(x_{\pm\beta}(t)) = x_{\pm\beta}(t)$. Thus σ acts as the field automorphism of order 2 on \tilde{K} . It follows from the uniqueness of Bruhat factorization of element in \tilde{K} , that $K = \tilde{K}_{\sigma} = \langle L_{s_3}, L_{2}, L_{0}, L_{b} \rangle \cong$ Spin(8, q). Again as in (1.1) (ii), we conclude that $C_{H_{\epsilon}^{*}}(t_{16}) = \langle h, h' \rangle K$. The other assertions of (ii) are obvious (iii) is proved in a similar manner as in (ii).

LEMMA 1.3. Let u be the unique involution in $\langle h \rangle$. Then $C_{H^*_{\epsilon}}(u) = \langle h \rangle \times N$ where $N \cong GL_{\epsilon}(5, q)$ and $\langle t_{35}, t_{16} \rangle = \Omega_1(Z(S))$ for some Sylow 2-subgroup of N.

Proof. First let $\epsilon = 1$. In view of the uniqueness of Bruhat factorization

of elements of $L = \langle L_{\alpha_0}, L_{\alpha_2}, L_{\alpha_3}, L_{\alpha_4}, L_{\alpha_5} \rangle$ and the fact $u = h_{\alpha_1}(-1)$ normalizes x_{α} , α a root of Φ with $X_{\alpha} \subseteq \tilde{L}$, it follows $C^*_{H_{\epsilon}}(u) = \langle h \rangle \times N$ where $N = \langle h_{\alpha_3}(\kappa), L_{\alpha_0}, L_{\alpha_2}, L_{\alpha_4}, L_{\alpha_5} \rangle$ and $N \simeq GL(5, q)$. The remaining assertion follows from the structure of GL(5, q).

Next assume $\epsilon = -1$. Apply the previous paragraph to $C_{E_{\epsilon}}(h_{\alpha_1}(-1)) \cap C_{E_{\epsilon}}(t_{35}) = C$, we see that $C = \langle h_{\alpha_1}(y) \rangle \times \langle h_{\alpha_3}(\lambda), \tilde{N} \rangle$ where $\tilde{N} = \langle L_{\alpha_0}, L_{\alpha_2}, L_{\alpha_4}, L_{\alpha_5} \rangle$. Therefore $yxCx^{-1}y^{-1} = C_{E_{\epsilon}}(u) \cap C_{E_{\epsilon}}(t_{35})$ where x, y are the elements used to define h earlier; whence $C_{H_{\epsilon}^*}(u) = \langle h \rangle \times \langle h', (y x\tilde{N}x^{-1}y^{-1})\sigma \rangle$.

We claim that $(y \ x \tilde{N} x^{-1} y^{-1}) \sigma \simeq$ the set of fixed points of $x^{-1} y^{-1} \sigma y x$ in \tilde{N} . Set $\theta_1 = (-\alpha_2)$; $\theta_2 = (-\alpha_4 - \alpha_5)$; $\theta_3 = \alpha_5$ and

$$\theta_4 = -(\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6).$$

We note that the θ_i 's form a simple system of $\{\alpha \in \Phi \mid L_\alpha \subset N\}$. As $\sigma' = x^{-1}y^{-1}\sigma yx = \sigma w_\beta(t) w_p(t)$ where $t = \lambda^{\frac{1}{2}(q+1)}$, it follows from $(\overline{*})$,

$$egin{aligned} \sigma' x_{ heta_1}(t') \sigma' &= x_{ heta_4}(ct^2t'), \ \sigma' x_{ heta_2}(t') \sigma' &= x_{ heta_3}(c't^{-1}t'), \end{aligned}$$

where $c, c' = \pm 1$.

Let $h_4 \in \langle h_{\theta_4}(\lambda) \rangle$ such that $h_4^{-1}x_{\theta_4}(ct^2t')h_4 = x_{\theta_4}(t')$. (Such element exists because ct^2 is a square in $\langle \lambda \rangle$). Since $\langle h_{\alpha_3}(\lambda), L_{\alpha_4+\alpha_5} \rangle \cong \operatorname{GL}(2, q^2)$, there is $h_3 \in \langle h_{\alpha_3}(\lambda) \rangle$ such that $h_3x_{\theta_2}(t')h_3^{-1} = x_{\theta_2}(c'tt')$. Set $\sigma^* = h_3^{-1}h_4^{-1}\sigma h_4h_3$. We see that σ^* acts as the twisting automorphism on \tilde{N} . Thus the set of fixed point of σ^* in \tilde{N} is isomorphic to SU(5q); whence $(yx\tilde{N}x^{-1}y^{-1})\sigma \cong$ SU(5, q). Now $\langle h', (yx\tilde{N}x^{-1}y^{-1})\sigma \rangle \cong GU(5, q)$ follows from direct computations.

2. Fusion of Involutions

We shall identify $H_{\epsilon} = C_{G}(z)$ with H_{ϵ}^{*} and hence z with t_{35} and use only those relations of $(\bar{*})$ which involve only element of H_{ϵ} .

LEMMA 2.1. A Sylow 2-subgroup of H_{ϵ} is a Sylow 2-subgroup of G.

Proof. Let S be a Sylow 2-subgroup of H_{ϵ} . Note that $z \in S'$ and $S' \subseteq L$ since H_{ϵ}/L is cyclic. (See (1.2) for notation.) By way of contradiction, suppose there exists $x \in G - H_{\epsilon}$ which normalizes S; whence $z^{x} \in S' \subseteq L$. By (1.2) z is the only involution in the center of a Sylow 2-subgroup of L. It follows $z^{x} = z$ contradicting $x \notin H_{\epsilon}$; whence the result follows.

LEMMA 2.2. $z \not\sim_G t_0$.

Proof. Assume the contrary, i.e., $z \sim_G t_0$. Then there is an $x \in G - H_{\varepsilon}$ such that $(t_0)^x = z$. Since $z \in C_G(t_0)'$, $(z)^x \in C_G(z)'$. By (1.2), we may suppose that $z^x = t_0$, whence x normalizes $C_G(z, t_0)' = JL_0L_b$. It follows that $J^x = J$ [7]; whence $Z(J)^x = Z(J)$, i.e., $z^x = z$, a contradiction.

LEMMA 2.3. Either
$$G = O(G)H_{\epsilon}$$
 or $z \sim_G t_{16}$.

Proof. If z is conjugate to another involution of L, then we are done by (1.2) and (2.2). Suppose then z is not conjugate to another involution in L. Let S be a Sylow 2-subgroup of H_{ϵ} containing that of $\langle h \rangle$. Suppose the unique involution of $\langle h \rangle$ is not conjugate to an involution of L then by the repeated use of Harada–Gorenstein–Thompson's fusion lemma [4], G contains a subgroup G_0 of index $O(h)_2$, not containing $\langle h \rangle \cap S$; whence $S \cap L$ is a Sylow 2-subgroup of G_0 and z is not conjugate to another involution of $S \cap L$. Now Glauberman's theorem states that $G_0 = O(G_0)(H_{\epsilon} \cap G_0)$; whence $G = O(G)H_{\epsilon}$ since $O(G_0) = O(G)$.

Finally suppose u is conjugate to an involution of L. A comparison of the orders of $C_{H_{\epsilon}}(u)$, $C_{H_{\epsilon}}(z)$, $C_{H_{\epsilon}}(t_{16})$ and $C_{H_{\epsilon}}(t_{0})$ shows that if T is a Sylow 2-subgroup of $C_{H_{\epsilon}}(u)$ there exists $g \in C_{G}(u) - C_{H_{\epsilon}}(u)$ normalizing T. By (1.3), we may choose T such that $\Omega_{1}(Z(T)) = \langle u, z, t_{16} \rangle$ and $\langle z, t_{16} \rangle = \Omega_{1}(Z(T \cap N))$. Since $\langle t_{16} \rangle = \Omega_{1}(Z(T)) \cap T'$, g centralizes t_{16} ; whence either $z^{g} = uz$ or $z^{g} = ut_{16}z$. Now $u \sim_{H_{\epsilon}} ut_{16}$ (conjugation by $\omega_{\beta}\omega_{\gamma}$ when $\epsilon = 1$; by $yx\omega_{\gamma}x^{-1}y^{-1}$ when $\epsilon = -1$ where x, y have the same meaning as before.) If $z^{g} = uz$, then $(t_{16}z)^{g} = ut_{16}z \sim_{H_{\epsilon}} uz$. It follows that $z \sim_{G} t_{16}z \sim_{H_{\epsilon}} t_{16}$ contradicting our assumption that z is not conjugate to another involution of L. The other case $(z)^{g} = ut_{16}z$ leads to the same contradiction in a similar way. This complete the proof.

3. Construction of G_0

In view of (2.3), we shall assume from now on $z \sim_G t_{16}$. This will enable us to show that $G_0 = \langle C_G(z), C_G(t_0) \rangle \cong G_{\epsilon}^*$.

LEMMA 3.1. There exists an element $g \in N(L_0) \cap C(t_2)$ such that g interchanges t_β , t_4 and z, t_{16} by conjugation.

Proof. By (2.3), there exists $g \in G$ such that $t_{16}^g = z$ and we can further assume that $z^g = t_{16}$ as in (2.3); whence g normalizes $C = C_{H_{\epsilon}}(t_{16})'$ which is isomorphic to Spin(8, q). Replacing g with gg' for some suitable g' in C, we conclude by [9, p. 156–160] that

$$(X_{\pm lpha_1})^g=X_{\pm eta}$$
 , $(X_{\pm lpha_2})^g=X_{\pm lpha_2}$, $(X_{\pm lpha_0})^g=X_{\pm lpha_0}$

as we already know that $t_{16}^g = z$ and $z^g = t_{16}$ and $Z(C) = \langle t_{16}, z \rangle$. In particular, we get $t_2^g = t_2$; $t_0^g = t_0$.

Next we compute that $(C_G(t_0) \cap C)' = L_0 L_b L_4 L_c$. It follows that $g \in N(L_0)$ [7].

LEMMA 3.2. We have $N(L_0) = \langle h_{\alpha_2}(\kappa) \rangle L_0 C(L_0)$, $[N(L_0): L_0C(L_0)] = 2$, $L_0 \cap C(L_0) = \langle t_0 \rangle$ and $C(L_0) = SL_{\epsilon}(6, q)/Z$ where Z to the unique subgroup of order $d = (3, q - \epsilon)$ in $Z(SL_{\epsilon}(6, q))$.

Proof. We claim first $N(L_0)$ contains a subgroup N_0 of index 2 not containing $h_{\alpha_2}(\kappa)$. Clearly $C_{H_{\epsilon}}(t_0) \subseteq N(L_0)$ and a Sylow 2-subgroup T of $C_{H_{\epsilon}}(t_0)$ is a Sylow 2-subgroup of $N(L_0)$; otherwise we would get $t_0 \sim_G z$ as $|C(z): C(t_0)|_2 = 2$, in contradiction to (2.2). Now $h_{\alpha_2}(\kappa)$ induces on outer automorphism on L_0 ; whereas all elements of order $q - \epsilon$ in $\langle h, JL_0L_b \rangle$ act as inner automorphisms. The claim follows immediately from Gorenstein-Harada-Thompson's fusion lemma.

Let $\overline{N}_0 = N_0/L_0$ and we shall use the 'bar' convention for homomorphic images of subsets of N_0 . Since $t_{\beta}L_0$ contains precisely three involution, i.e., t_{β} , t_0 , $t_{\beta}t_0 = z$. As $t_{\beta} \not\sim_G z$ by (2.2), it follows that

$$C_{ar{N}_0}(ar{t}_eta) = \overline{C_{N_0}(t_eta)}$$

and so $C_{\bar{N}_0}(\bar{t}_{\beta}) = \langle \bar{h}, \overline{JL_b} \rangle$.

In view of (3.1), we conclude from [7; 8] that $\overline{N}_0 = PSL_{\epsilon}(6, q)$. By the uniqueness of composition factors of N_0 and the structure of $Aut(L_0)$, it follows that $C(L_0)/Z(L_0) = PSL_{\epsilon}(6, q)$. From H_{ϵ} , we see that the central extension of $C(L_0)/Z(L_0)$ is nontrivial. As the universal covering group of $PSL_{\epsilon}(6, q)$ is $SL_{\epsilon}(6, q)$, we conclude that $C(L_0) \simeq SL_{\epsilon}(6, q)/Z$ where $Z \subseteq Z(SL_{\epsilon}(6, q))$ and $|Z| = (3, q - \epsilon)$.

Lemma 3.3. $C(t_0) = N(L_0)$.

Proof. It is obvious that $N(L_0) \subseteq C(t_0) = C$. From the structure of $C(L_0)$, we conclude that there are precisely two conjugacy classes of involutions in $C(L_0)$ with representatives z, t_β and $C_G(g) \cap C_G(t_0) \subseteq N(L_0)$ for all involution g of $C(L_0)$.

As in (3.2), we know that $C(z, t_0)$ contains a Sylow 2-subgroup of C. Let v be an involution in $N(L_0) - C_0$ where $C_0 = L_0C(L_0)$ and suppose $v \sim_C z$. We note that C(v) contains an element, say i, in the conjugacy class of z in $N(L_0)$. This follows from the fact that $C(z) \cap N(L_0)$ contains a Sylow 2-subgroup of $N(L_0)$ and therefore the order of the class is odd; whence v fixes at least one element of this class. Similarly there is an j in the conjugacy class of t_β , which centralizes v. Let $g \in C$ such that $v^g = z$. Since $C(z) \cap C(t_0) \subseteq N(L_0)$, i^g and j^g lie in $N(L_0)$. As $i \not\sim_G j$, $\langle ij \rangle$ contains a unique involution k. Thus one of i^g , j^g , k^g , say $l^g \in L_0C(L_0)$.

Now every involution w in $L_0C(L_0) - C(L_0)$ has the form w_1w_2 , $w_1 \in L_0$, $w_2 \in C(L_0)$ and $w_1^2 = (w_2^{-1})^2 = t_{146}$. As $C(w_2) \cap C(L_0)/\langle t_0 \rangle$ involves one of the following groups [7; 8]:

 $PSL_{\epsilon}(3, q) \times PSL_{\epsilon}(3, q); PSL_{\epsilon}(5, q); PSL_{\epsilon}(3, q^2)$ we see that i, j, k cannot be conjugate in C to an involution of $L_0C(L_0) - C(L_0)$. It follows that $l^g \in C(L_0)$; whence there exists $g' \in C(L_0)$ such that $l^{gg'} = l$, as two involutions of $C(L_0)$ conjugate in G are already conjugate in $C(L_0)$. On the other hand, $C(l) \cap C(t_0) \subseteq N(L_0)$ and so $g \in N(L_0)$. But $v \not\sim_{N(L_0)} s$, a contradiction. Similarly $v \not\sim_C t_\beta$; whence no involution of $N(L_0) - L_0C(L_0)$ is conjugate in C to one in $C(L_0)$.

The above paragraph also proves that no involution in $L_0C(L_0) - C(L_0)$ is conjugate to one in $C(L_0)$.

Let $c \in C$. Since z and $(t_{\beta})^c$ are not conjugate in G, $\langle z(t_{\beta})^c \rangle$ contains an involution t such that z, $(t_{\beta})^c \in C(t)$ and either $zt \sim z$ or $zt \sim t_{\beta}$. From above, t must lie in $C(L_0)$; whence $C(t) \cap C(t_{146}) \subseteq N(L_0)$. But t_{β} and $(t_{\beta})^c$ are already conjugate in $C(L_0)$. Hence there is an $c' \in N(L_0)$ such that $cc' \in C(t_{\beta}) \cap C(t_0) \subseteq N(L_0)$, proving our result.

LEMMA 3.4. Let
$$G_0 = \langle C_G(z), C_G(t_0) \rangle$$
. Then $G_0 \simeq G_{\epsilon}^*$.

Proof. We prove the result in a number of steps.

(i) $uz \sim z$ and $u \sim t_0$.

Let $\overline{X} = C(L_0)/Z(L_0)$. Then $C_{\overline{X}}(\overline{t}_{\beta}) = \langle \overline{h}, \overline{L}_b, \overline{N} \rangle$ and we have $\overline{v} \sim_{\overline{X}} \overline{t}_{\beta}$. Hence $\langle u, t_0 \rangle$ is conjugate to $\langle t_0, t_{\beta} \rangle$. In the later group only one involution can be conjugate to z namely $t_0 t_{\beta} = z$ (by (2.2). Relabelling u by uz, if necessary, (i) follows since $ut_0 \sim_{H_{\varepsilon}} uz$ (conjugation by $(\omega_{\alpha_3} \omega_{\alpha_5})^{\omega_{\alpha_4} \omega_{\alpha_3} \omega_{\alpha_4} \omega_{\alpha_6} \omega_{\alpha_5})^{\omega_{\alpha_4} \omega_{\alpha_5} \omega_{\alpha_5}$

(ii) Let v be an involution conjugate to t_0 . Denote the unique normal subgroup of $C_G(v)'$ isomorphic to SL(2, q) by L(v). (See (3.2)). If v', v'', v'' are pairwise commuting involutions in C(L(v')) conjugate to t_0 , then L(v''), $L(v''') \subseteq C(L(v'))$ and either [L(v''), L(v''')] = 1 or $(L(v')), L(v''') \geq SL_{\epsilon}(3, q)$ according as $v''v''' \sim t_{35}$ or $v' v''' \sim t_0$.

By assumption, we may assume $v' = t_0$ whence $L(v') = L_0$. (See 3.2). It follows then we may suppose $v'' = t_\beta$. In view of (1.2) and because of symmetry, it is clear that $L(v'') = L_b$. Now L_b as subgroup of C(L(v')) is the unique normal subgroup of $C(t_\beta) \cap C(L(v'))$ isomorphic to SL(2, q). From the structure of C(L(v')), there is an $x \in C(L(v'))$ such that $t_{\beta'} = v''$ and so $xL(v'')x^{-1} = L(v''')$ by the uniqueness of L(v''') in C(v''). On the other hand L(v'') is also the unique normal subgroup of $C(L(v')) \cap C(v'')$ isomorphic to SL(2, q). The assertion now follows from the structure of $C(L_0)$.

KOK-WEE PHAN

(iii) Let $\epsilon = 1$; $L_1 = L(u)$; $L_6 = L(ut_\beta t_\gamma)$. Then $[L_1, L_2] = [L_1, L_4] = [L_1, L_5] = [L_1, L_6] = [L_2, L_6] = [L_3, L_6] = [L_4, L_6] = 1$; $\langle L_1, L_3 \rangle \cong SL(3, q) \cong \langle L_5, L_6 \rangle$ and $G_0 = \langle L_i | 1 \leq i \leq 6 \rangle \cong E_6(q)$.

Since $u \sim_{H_{\epsilon}} ut_{\beta}$ (See (i)) and $(ut_{\beta})^{\omega_{\alpha_3}\omega_{\alpha_4}\omega_{\alpha_5}} = ut_{\beta}t_{\gamma}$. By (i), we see that both L(u) and $L(ut_{\beta}t_{\gamma})$ are defined.

We now apply (ii) to t_0 , u, t_3 [respectively, t_0 , u, t_4 ; t_0 , u, t_5 ; t_0 , u, $ut_\beta t_\gamma$; t_0 , $ut_\beta t_\gamma$, t_3 ; $t_0 ut_\beta t_\gamma$, t_4 ; t_0 , $ut_\beta t_\gamma$; t_5] in the roles of v', v'', v'''. From the fact $ut_3 = (u)^{\omega_{\alpha_3}}$ [respectively, $ut_4 = (uz)^{\omega_{\alpha_3}\omega_{\alpha_4}\omega_{\alpha_5}}$; $ut_5 = (uz)^{\omega_{\alpha_3}}$; $u \cdot ut_\beta t_\gamma = t_{16} \sim t_{35}$; $ut_\beta t_\gamma t_3 = (ut_\beta t_\gamma z)^{\omega_{\alpha_5}} \sim uz$; $ut_\beta t_\gamma t_4 = (ut_\beta t_\gamma t_3)^{\omega_{\alpha_4}\omega_{\alpha_3}} \sim uz$; $ut_\beta t_\gamma t_5 = (ut_\beta t_\gamma)^{\omega_{\alpha_5}}$]. It follows $\langle L_1, L_3 \rangle \simeq SL(3, q)$ [respectively, $[L_1, L_4] = 1$; $[L_1, L_6] = 1$; $[L_6, L_3] = 1$; $[L_6, L_4] = 1 \langle L_6, L_5 \rangle \simeq SL(3, q)$]. Note that we have used the fact $L(t_i) = L_i$ for i = 3, 4, 5 as L_i is conjugate to $L_0 = L(t_0)$ in H_ϵ .

We can now apply (ii) again to t_5 , t_2 , u in the roles of v', v'', v''' and since $ut_2 \sim_{H_{\epsilon}} uz$ (conjugation by $(\omega_{\alpha_3} \omega_{\alpha_5})^{\omega_4 \omega_{\alpha_3} \omega_{\alpha_2} \omega_{\alpha_4}}$), it follows $[L_1, L_2] = 1$. Similarly $[L_2, L_6] = 1$.

An argument of Humphreys [5] shows that the conditions of Curtis' Theorem [2] are satisfied and $\langle L_i | 1 \leq i \leq 6 \rangle = G^*$ is isomorphic to a factor group of the universal Chevalley group of type E_6 over F_q . It follows immediately from the order of H_ϵ that G^* is isomorphic to $E_6(q)$. Also from (1.1) we conclude that $C_G(t_0) \subseteq G^*$ and therefore we have $G_0 = G^*$.

(iv) Let $\epsilon = -1$. Then G contains a subgroup L_{16} such that $[L_{16}, L_2] = 1 = [L_{16}, L_4]$; $\langle L_{16}, L_{35} \rangle \cong SL(3, q^2)$ and $G_0 = \langle L_2, L_4, L_{35}, L_{16} \rangle$ which is isomorphic to ${}^{2}E_{6}(q)$.

Let g be the element of (3.1). Replacing g with a suitable element in $g\langle L_0, h_{\alpha_2}(\kappa) \rangle$, we may suppose $g \in C(L_0)$ and still have $t_2^g = t_2$; $t_\beta^g = t_4$, $t_4^g = t_\beta$. Since $C(L_0) \cong SU(6, q)/Z$ where $Z \subseteq Z(SU(6, q))$ and |Z| = (3, q + 1) and from the structure of $C(L_0)$, it follows that, after replacing g again with a suitable element gg' where $g' \in C(t_\beta, t_4) \cap C(L_0)$, $\langle L_{16}, L_{35} \rangle \cong SL(3, q^2)$ where $L_{16} = (L_{35})^{gg'}$ (This is so because if we let SU(6, q) acts naturally on a six-dimensional hermition vector space over F_q^2 , L_{35} corresponds to the image of a subgroup of SU(6, q) fixing a totally isotopic subspace of dimension 2.)

Now since $[L_b, L_{35}] = 1$, $[L_4, L_{16}] = 1$ as $L_b^{gg'} = L_4$, because $t_2^g = t_2$, it follows from the uniqueness L_2 as the normal subgroup of $C(t_2)$ isomorphic to SL(2, q) that $L_2^g = L_2$. Finally from the fact $C_G(t_\beta, t_4) \cap C(L_0) = \langle h, h', L_0, L_b, L_4, L_C \rangle$, $L_2^{g'} = L_2$, $[L_2, L_{16}] = [L_2^{gg'}, L_{35}^{gg'}] = [L_2, L_{35}] = 1$.

As in (iii), we conclude from Curtis' theorem [2] that $\langle L_2, L_4, L_{35}, L_{16} \rangle = G_0$ and is isomorphic to ${}^2E_6(q)$.

Conclusion of proof: $G_0 = G$.

Since G_0 has exactly two classes of involutions with representatives x, t_0 . It follows from (2.3) that G has precisely two classes of involutions.

Let $x \in G$. Since $t_0 \sim_G z^x$, it follows there is an involution in $\langle t_0 z^x \rangle$ such that t_0 , $z^x \in C(v)$. Since $C_G(t_0) \subseteq G_0$, $v \in G_0$; whence $C(v) \subseteq G_0$. Therefore $z^x \in G_0$. But z, z^x are already conjugate in G_0 ; whence $x \in G_0$ and $G = G_0$.

References

- 1. N. BOURBAKI, "Groupes et algèbre de Lie," Hermann, Paris, 1969.
- C. W. CURTIS, Central extensions of groups of Lie type, J. Reine Angew. Math. 220 (1965), 174–185.
- 3. G. GLAUBERMAN, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
- D. GORENSTEIN AND K. HARADA, A characterization of Janko's two new simple groups, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1970), 331-406.
- 5. J. HUMPHREYS, Remarks on a theorem on special linear groups, J. Algebra 22 (1972), 316-320.
- N. IWAHORI, Centralizers of involutions in finite Chevalley groups, in "Seminar on Algebraic Groups and Related Finite Groups," Lecture notes in Math. 131, Springer-Verlag, Berlin, 1970.
- K.-W. PHAN, A characterization of the finite groups PSL(n, q), Math. Z. 124 (1972), 169–185.
- 8. K.-W. PHAN, A characterization of the finite groups PSU(n, q), to appear.
- R. STEINBERG, Lectures on Chevalley groups, Yale University lecture notes (mimeo), 1967/1968.
- R. STEINBERG AND T. A. SPRINGER, Conjugacy classes, in "Seminar on Algebraic Groups and Related Finite Groups," Lecture notes in Math. 131, Springer-Verlag, Berlin, 1970.