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An efficient and rapid on-bead screening method was established to identify non-natural peptides that
target the Androgen Receptor–cofactor interaction. Binding of the Androgen Receptor ligand binding
domain to peptide sequences displayed on beads in a One-Bead-One-Compound format could be
screened using fluorescence microscopy. The method was applied to generate and screen both a focussed
and a random peptide library. Resynthesis of the peptide hits allowed for the verification of the affinity of
the selected peptides for the Androgen Receptor in a competitive fluorescence polarization assay. For
both libraries strong Androgen Receptor binding peptides were found, both with non-natural and natural
amino acids. The peptides identified with natural amino acids showed great similarity in terms of pre-
ferred amino acid sequence with peptides previously isolated from biological screens, thus validating
the screening approach. The non-natural peptides featured important novel chemical transformations
on the relevant hydrophobic amino acid positions interacting with the Androgen Receptor. This screening
approach expands the molecular diversity of peptide inhibitors for nuclear receptors.

� 2010 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Nuclear receptors (NRs) are transcription factors which
typically bind small hydrophobic ligands in their Ligand Binding Do-
main (LBD).1 Depending on the molecular characteristics of these li-
gands, the LBD2 changes its conformation and binds to cofactor
proteins. The cofactor proteins are typically corepressors when the
ligand is an antagonist and coactivators in case the ligand is an ago-
nist.3 The interaction of the LBD with protein coactivators, inducing
gene transcription, occurs via leucine-rich motifs in the coactivator
proteins. This motif has the form of a short amphiphatic helix with a
characteristic LXXLL4 peptide sequence for almost all nuclear recep-
tors, but the Androgen Receptor (AR) preferentially binds cofactor
proteins with a FXXLF motif.5,6 This protein–protein interaction
constitutes an attractive interface, possibly amendable by synthetic
inhibitors.7 Synthetic compounds inhibiting NR–coactivator inter-
actions have been described in the last years, both based on pep-
tides8,9 and small molecules.10 Peptide based screening methods
have been based on large and diverse libraries such as those
obtained via phage display techniques9 and on smaller focussed
libraries obtained via synthetic techniques and allowing for the
incorporation of non-natural amino acids.8 New rapid screening
techniques of synthetic peptide libraries targeting the NR–coactiva-
tor interaction are highly desirable. This will enable the screening of
+31 40 2478367.
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new peptide inhibitor motifs for the NR–coactivator interaction, the
incorporation of non-natural amino acids, and possibly the genera-
tion of peptide binders targeting other NR surfaces. Using the AR11

as a model system, we show here that an on-bead screening of
One-Bead-One-Compound (OBOC) libraries12,13 against agonist-
liganded AR LBD provides an entry to generate such new peptide
binders for NRs (Fig. 1). Beads amendable to organic synthetic mod-
ifications and compatible to protein screening conditions were
modified in a combinatorial fashion with a specific peptide library
leading to OBOC peptide libraries. Incubation of these libraries with
glutathione-S-transferase (GST)-tagged AR LBD and GST-antibody
tagged quantum dots (Qdot) enabled detection via fluorescence
microscopy (Fig. 1). The approach was applied both for the screening
of a focussed peptide library around an established FXXLF motif and
for the screening of a random peptide library and provides entries to
identify new peptide binders for AR–coactivator interaction.

2. Results and discussion

2.1. Library design

To evaluate the potential of an OBOC approach to screen for AR
binding peptides, first an OBOC library was generated based on a
strong AR peptide binding motif. One of the best known AR peptide
binders (SSRFESLFAGEKESRG),6 found via phage display, was
selected as starting point for the focussed peptide library. This
peptide sequence features the characteristic FXXLF motif. Amino
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Figure 1. OBOC screening approach for peptides targeting the AR–cofactor interaction. GST-tagged AR is incubated with beads displaying peptides, binding is detected using
GST-antibody-tagged Qdots. Hits are identified via mass spectrometry, resynthesized and evaluated in a fluorescence polarization based competition assay.
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acid mutations of the three hydrophobic F and L positions would
result in a library that allows for evaluation of the hydrophobic
groove on the AR with respect to recognition motif and steric
adaptability. The amino acids in these three important positions
were randomized in the library with nine natural amino acids of
diverse nature (A, F, H, L, M, P, Q, W, Y) and the three non-natural
hydrophobic amino acids b-cyclohexylalanine (Cha), b-(2-naph-
thyl)alanine (Nap) and 4-chlorophenylalanine (PhCl) (Fig. 2). The
hydrophobic nature of the non-natural amino acids was specifi-
cally selected, because of its documented importance to confer
high binding affinity of peptides to the AR.5,6

2.2. Library synthesis

The peptide-bead library was synthesized on a glycine-preloaded
TentaGel MB HMB resin using an automatic peptide synthesizer via
standard solid phase Fmoc-chemistry with HOBt/DIC as coupling
reagents. This specific resin has good swelling characteristics in both
aqueous and organic solvents. This allows peptide synthesis with
Figure 2. Library design of a focused combinatorial peptide library targeting the
AR–coactivator interaction. The three positions in the peptide marked X were
randomized using nine natural amino acids (A, F, H, L, M, P, Q, W, Y) and three non-
natural amino acids (b-cyclohexylalanine (Cha), 4-chlorophenylalanine (PhCl),
b-(2-naphthyl)alanine Nap)).
concomitant on-bead evaluation, while featuring good mechanical
stability and low non-specific protein binding. The permutation
steps were performed in accordance with the split and pool synthe-
sis methodology. After the incorporation of random amino acids in
positions +5, +4 and +1 a partial end-capping of the peptide
sequence was performed after each of the coupling steps using
10% of acetylated alanine as an endcapper. This capping step was
essential to simplify the analysis of the peptide sequence on a single
bead. As a result, each bead is not completely covered with one
peptide sequence anymore, but also contains capped, truncated
peptides. Even though these might bind in the initial screen, the sub-
sequent control experiments will evaluate each complete peptide
for binding. The complete synthesis resulted in an OBOC library with
a theoretical size of 12E3 different peptide sequences. For control
experiments a batch of beads was prepared displaying only the
SSRFESLFAGEKESRG6 sequence.

2.3. Protein expression

The LBD of the AR was expressed in Escherichia coli as a fusion
protein with an N-terminal Glutathione-S-Transferase (GST), in
the presence of the endogenous agonist dihydrotestosterone
(DHT) and purified via glutathione affinity chromatography.14 Ini-
tially, the protein was labelled with amine reactive texas red dye
for fluorescence microscopy visualization. However, this resulted
in rapid protein aggregation and denaturation. Therefore, an alter-
native labelling strategy was developed using the already incorpo-
rated GST-tag of the protein. The GST-tag was used to detect beads
to which the fusion protein was bound by a subsequent incubation
with quantum dots (Qdot) functionalized with a GST-antibody. The
large wavelength difference between the excitation and emission
spectrum of the Qdot (kex: 405 nm; kem: 655 nm) has the additional
advantage that unfavourable autofluorescence (intense and broad)
of the polystyrene-based resin is not hampering the fluorescence
microscopy evaluation of the protein binding to the beads.13

2.4. On-bead screening of a focused library

The on-bead screening was performed by preblocking the
peptide beads with bovine serum albumin (BSA) in HEPES-buffer
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for 24 h at 4 �C. After removal of this solution, the beads were incu-
bated with the GST-tagged AR LBD bound to dihydrotestosterone
(DHT) in the presence of BSA for 4 h at room temperature. Finally,
for monitoring, the library was washed and incubated with a
0.01 lM solution of Qdot-labelled anti-GST-antibody (Qdot� 655
goat anti-glutathione-S-transferase, Invitrogen) for 2 h at room
temperature. After the supernatant solution was removed and
the beads were washed, the binding of the AR to the beads was
screened using a fluorescence microscope. Beads binding the la-
belled AR protein by virtue of their attached peptides are expected
to strongly fluoresce at 655 nm. On the other hand beads binding
the AR weakly or not are expected to show little or no fluorescence
intensity at that wavelength (Fig. 3). Firstly, both positive and neg-
ative reference beads were analyzed in the absence and presence of
AR-GST and the anti-GST Qdot, in order to evaluate the range of
bead intensities to be expected. Unmodified TentaGel beads
(Fig. 3a) or beads known to carry a non-binding peptide sequence
exhibited almost no background fluorescence, prior or after expo-
sure to the protein and Qdots. Beads functionalized solely with
the strongly binding peptide reference sequence6 showed high
fluorescence upon incubation with the AR protein and the
Qdot-labelled antibody (Fig. 3b).

The focused library was screened in exactly the same way as the
reference beads (Fig. 3c). The brightest beads observed under the
fluorescence microscope were isolated from the library using a
micropipette. Beads were considered as positive hits when the
average minimum intensity of the bead, as measured across the
bead diameter, was higher than the intensity of the reference
beads with the FXXLF motif. Single beads visually identified as hits
were incubated with a 1% SDS-solution at 99 �C for 30 min to dena-
ture the bound protein and subsequently washed. The cleavage of
the peptide from the single bead was achieved by treatment of the
single bead with a 1 M NaOH solution, which was afterwards
neutralized with an equimolar amount of a 1 M HCl solution and
formic acid. The sequences of the cleaved peptides were
determined using MALDI-TOF mass spectrometry. Table 1 shows
an overview of selected peptide sequences with their correspond-
ing bead fluorescence intensities (additional bead sequences can
be found in Supplementary Table 1). The hit sequences contain var-
Figure 3. Representative fluorescence microscopy images recorded under identical condi
beads; (b) beads with a strongly binding reference peptide sequence; (c) bead from a co
ious amino acids, both of natural and of non-natural nature, at the
randomized positions.

The affinity of the peptide hits for the AR coactivator binding
pocket was determined using a fluorescence polarization competi-
tion assay. The peptide hits were resynthesized on solid-phase
Rink amide resin using standard Fmoc-chemistry and HOBt/DIC
as coupling reagents. Peptides were cleaved under acidic condi-
tions and purified by reversed phase preparative high performance
liquid chromatography. The affinity constants Ki of the peptide
inhibitors were calculated from the observed IC50 values (see Sup-
plementary data). The resulting Ki values are listed in Table 1.

Interestingly, most of the identified peptide sequences con-
tained one or two non-natural amino acids at the three mutated
amino acid positions and a few selected natural amino acids were
incorporated. The most frequently encountered natural amino
acids at the mutated positions were F, W and L. There is a prefer-
ence of the leucine for the +4 position, in line with the natural mo-
tif. The high occurrence of phenylalanines is similarly in line with
its high occurrence in the natural FXXLF motif. The frequent occur-
rence of tryptophan nicely complements previous reports from
Fletterick and co-workers who reported similar results from pep-
tides isolated via phage display.6 Especially the high affinity of
hit 10 with the FXXWF motif is striking in this respect. All three
non-natural amino acids were frequently encountered in the pep-
tide hits at all positions. The hydrophobic/aromatic nature of these
non-natural amino acids apparently makes them good replace-
ments for the natural hydrophobic and aromatic amino acids phen-
ylalanine and leucine encountered normally at these positions. The
bead with the highest fluorescence intensity and binding affinity
(entry 11) featured the sequence NapESChaW, thus displaying
none of the naturally found F and L amino acids. Picked beads with
fluorescence intensities lower than that the FXXLF reference pep-
tide, in general featured peptide sequences which included natural,
small or polar amino acids, like alanine, methionine or histidine
(see Supplementary material). These results thus confirm the
importance for large, hydrophobic amino acids, frequently of aro-
matic nature, at the +1, +4 and +5 positions in the peptides for
strong affinity to the AR. Also the results show the validity of the
on-bead assay in identifying relevant AR peptide binders.
tions from GST-AR-LBD and anti-GST-Qdot incubated with: (a) unmodified TentaGel
mbinatorial library featuring both high and low fluorescence intensity.



Table 2
Peptide sequence XXXXXXXSSG of picked hits, the fluorescence intensity of the bead
and the affinity of the resynthesized peptide for the AR

Entry XXXXXXXSSG Intensitya Ki (lM)

12 LLGLWVSSSG 500 —
13 SVFFGFFSSG 800 5.8
14 LVYLYLVSSG 400 —
15 YSVFVLYSSG 650 44.9
16 VGFWGWWSSG 600 —

a Minimum intensity of the beads as measured along the diameter.

Table 1
Peptide sequences SSRXESXXAGEKESRG of selected bead hits, the fluorescence
intensity of the bead and the affinity of the resynthesized peptide for the AR

Entry �X ES X X� Intensitya Ki (lM)

1 �P ES F Nap� 500 —c

2 �W ES W F� 550 82.9
3 �W ES F Cha� 550 2.44
4 �L ES W PhCl� 600 166
5b �F ES L F� 600 0.76
6 �Nap ES L PhCl� 650 38.5
7 �F ES F Nap� 700 8.82
8 �H ES Cha H� 750 —
9 �Nap ES L W� 800 3.68
10 �F ES W F� 800 0.94
11 �Nap ES Cha W� 900 0.47

a Minimum intensity of the beads as measured along the diameter.
b Reference peptide.6
c No affinity determinable.
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The beads that showed high fluorescence intensities under the
microscope generally carried peptides that also demonstrated high
binding affinities in the fluorescence polarization competition as-
say. There is a correlation between bead intensity and peptide
affinity. In cases where a distinct discrepancy was found such as
for bead entries 1 and 8 (Table 1), the peptides featured amino
acids that are not supporting helix formation, such as proline, or
are of polar nature, like histidine. For these peptides the high bead
fluorescence could not be confirmed in the solution assay. Either
these peptides featured strong unspecific binding to the GST-AR-
LBD, or they bind at different sites on the AR surface and are signal
silent in the solution assay. In general the small and polar amino
acids (A, H, M, P, Q, Y) in the library did not occur in peptide hits.
The strongest peptide sequence (entry 11) featured a Ki = 0.5 lM.
This is slightly stronger than the already very strongly binding ref-
erence peptide, obtained out of a large phage display library.6 The
possibility to incorporate non-natural amino acids, thus allows for
screening of libraries chemically more diverse than natural peptide
libraries, with possibly novel properties such as protease stability.9

The design of the current peptide library was rather similar to the
starting sequence. The amino acids surrounding the hydrophobic
motif are most probably already favourable for obtaining a good
binding affinity of peptides for the AR.6 Nevertheless, by varying
only three positions within the peptide remarkable changes in
the affinity for the target protein could be observed. Also it could
be shown that the hydrophobic groove on the AR surface is
adaptable to large hydrophobic side chains such as those from
b-cyclohexylalanine (Cha) and b-(2-naphthyl)alanine (Fig. 2).

2.5. On-bead screening of a random library

We subsequently applied the developed on-bead screening
approach to evaluate a random peptide library (XXXXXXXSSG).
This library contained a random seven amino acid stretch. To en-
sure water solubility and facilitate peptide sequence analysis, the
peptide additionally featured three hydrophilic amino acids at
the C-terminus (SSG). Seven natural amino acids (S, Y, L, F, G, V
and W) were selected for the random positions X in the peptide.
The library was synthesized in a similar approach as described
above for the focussed library and subsequently evaluated for its
affinity to the AR LBD. Microscopy evaluation of this library also
showed a number of brightly fluorescent beads. However, the over-
all ‘hit-rate’ of this library as observed by the eye was significantly
lower than for the first focussed library. The random character of
this library thus apparently results in many peptide sequences
without significant affinity. Hits were picked, their sequences
analyzed, the peptides resynthesized and evaluated in the
fluorescence polarization competition assay for binding to the AR
coactivator interaction site (Table 2).
For this series, some of the peptide hits were badly soluble,
which prevented the determination of their AR binding affinity
(Table 2, entries 12 and 16). Entry 14 in Table 2 did not show a dis-
placement of the fluorescent peptide in the competitive fluores-
cence polarization assay. This could result from either unspecific
binding or from binding to an allosteric site on the AR surface, or
from simply weak affinity. The two beads that showed the highest
fluorescence intensities (Table 2, entries 13 and 15) also featured
peptides that demonstrated high binding affinities in the fluores-
cence polarization competition assay. This points to a favourable
correlation between bead intensity and peptide affinity. Hit 13
exhibited the highest fluorescence intensity in the on-bead assay
and also showed a strong binding affinity to the AR–coactivator
site. After resynthesis, a Ki value of 5.8 lM was determined. This
peptide contains a high number of phenylalanines and a so-called
FXXFF motif. The same motif has also been established in peptides
screened against the AR with phage display and shown to bind to
the adaptive surface of the AR.6 Even though the size of the random
library was rather limited, also this chemically randomized ap-
proach yields peptide hits in line with biological approaches.

3. Conclusions

An on-bead OBOC library was set-up and shown to be success-
fully used for screening peptides targeting the AR–coactivator inter-
action. Hits could be selected based on the bead fluorescence and the
identity could be determined with mass spectrometry. The AR affin-
ity of the isolated hits correlated nicely with the bead fluorescence
intensity. The screening approach could both be applied to focused
and diverse peptide mutations. Peptide hits with a high affinity for
the AR featured bulky, hydrophobic amino acids at the characteristic
FXXLF positions, known from natural proteins. Especially large aro-
matic and non-natural hydrophobic amino acids turned out to be
preferred candidates for optimal AR affinity. In both screening ap-
proaches, focused or randomized, peptides hits were found with
natural peptide sequence motifs, like FXXWF and FXXFF, also
encountered in biological screens.5,6 The synthetic libraries thus
yield relevant peptide hits, in line with biological screening, but
with the potential to insert amino acids or chemical moieties not
accessible via biological approaches. The use of non-natural amino
acids at the critical interaction positions opens up the opportunity
to increase binding affinity, NR selectivity and membrane perme-
ability.8 Additionally, such synthetic peptides could provide design
parameters for the generation of small molecules targeting
AR–coactivator interactions.10 The developed on-bead screening of
non-natural peptide inhibitors for the AR–cofactor interaction could
generate a set of molecular tools for the biological evaluation of this
important protein–protein interaction.

4. Experimental procedures

4.1. General information

Rink Amide MBHA resin with an initial loading of 0.72 mmol/g
was purchased from Novabiochem. Fmoc-protected amino acids
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were purchased from MultiSyntech and Novabiochem in their
appropriately protected form. All other reagents were purchased
from Aldrich–Sigma, Fluka and Acros. All automated peptide
syntheses were performed on a Syro II automated peptide
synthesizer (MultiSynTech GmbH) using standard solid phase
Fmoc-chemistry. The on-bead libraries were synthesized automati-
cally (MultiSynTech GmbH) by the pool and split synthesis and
standard solid phase Fmoc-chemistry using TentaGel Macrobeads
HMB (200 lm diameter, 0.26 mmol/g, Rapp Polymere Germany)
as solid-phase support.

LCMS experiments were performed on an Agilent 1100 series
HPLC system connected to a Thermo LCQ Advantage mass spectrom-
eter equipped with an electrospray ion source. Analytical chroma-
tography separations were performed using a C18 Nucleodur
gravity column (125 � 4 mm, 3 lm particle size, Macherey–Nagel).
Material was eluted using a gradient of acetonitrile and water
containing 0.1% formic acid and a flow rate of 1 mL/min. Prepara-
tive HPLC was performed on a Agilent Series 1100 system
equipped with a C18 Nucleodur gravity column (125 � 21 mm,
5 lm particle size, Macherey–Nagel) using a gradient of acetoni-
trile and water each containing 0.1% trifluoroacetic acid and a flow
rate of 25 mL/min.

MALDI-TOF mass spectra were recorded on a Voyager DE Pro
MALDI-TOF instrument equipped with a LeCroy Digitizer and an
internal nitrogen laser using a-cyano-4-hydroxycinnamic acid
(CHCA) as matrix.

Image acquisition was performed with an Axiovert 40 CFL fluo-
rescence microscope (Carl Zeiss). Quantum dots (Qdot� 655 goat
anti-glutathione-S-transferase, Invitrogen) were excited at 405 nm
and images were taken with a camera with an exposure time of
100 ms.
4.2. Bead library synthesis

Loading of the resin: TentaGel MB HMB resin (1 g, 0.26 mmol/
g initial loading) was swollen first in dry dichloromethane
(10 mL) for 30 min. A solution of Fmoc-glycine (3 equiv) and
DIC (1.5 equiv) in dry dichloromethane (2 mL) stirred for 20 min
at room temperature. Then DMAP (1.5 equiv) was added to the
resin and the suspension was stirred at room temperature over-
night. The resin was washed with dichloromethane and washed
with diethyl ether and dried under vacuum. Fmoc-quantification
was determined by UV-spectroscopy at 301 nm with a small
amount of resin (5 mg) and allowed the calculation of the initial
resin loading.

The ‘One-Bead-One-Compound’ combinatorial library was pre-
pared by a ‘spilt and pool-synthesis’ approach using a glycine-
preloaded TentaGel MB HMB resin and standard Fmoc-chemistry
with HOBt/DIC as coupling reagents. The first coupling step on
the preloaded resin was performed routinely by double coupling
cycles and all other coupling steps were performed as single cou-
pling cycles. Each of the amino acids which were used after the
permutation steps contained 10% of acetylated alanine as an end-
capper. In the case of peptide libraries, the resin was first split into
as many aliquots as there were different amino acids for the per-
mutation, after which a fourfold molar excess of each individual
Fmoc-amino acid, together, with the coupling reagents was added.
After the coupling reactions were complete, the samples were
washed, mixed together and split into aliquots again and made
ready for the next cycle of couplings. After the permutation steps
of the synthesis, all aliquots were mixed together and the common
successive couplings were completed to achieve the complete
sequence. After that, the resin was washed carefully with dichloro-
methane and diethyl ether, dried under high vacuum over night
and stored at �20 �C.
4.3. Peptide hit synthesis and purification

All sequences were synthesized from C- to N-terminus on solid
support, using an automatic solid-phase synthesizer on a 144 lmol
scale (200 mg of Rink Amide MBHA resin, loading of 0.72 mmol/g).
The coupling of amino acids was carried out following standard
Fmoc-chemistry, using HOBt (4 equiv) as amino acid activation,
DIC (4 equiv) as coupling reagent, DMF as solvent and 4 equiv of
the protected Fmoc-amino acids. The resin was first swollen in
DMF (1 � 30 min) and the Fmoc protecting group was removed by
treatment with piperidine/DMF (2/3, 1 � 3 min; 1/4, 1 � 10 min),
then washed with DMF (6 � 1 min). One cycle of peptide elongation
consisted of the following steps. First, the deprotected resin was
treated for 50 min with a mixture containing the appropriate amino
acid (4 equiv, solution 0.3 M in DMF) with an equimolar addition of
HOBt/DIC (4 equiv, solution 0.3 M in DMF) and DIPEA (4 equiv).
After washing the resin with DMF (4 � 1 min), the Fmoc protecting
group was removed by treatment with piperidine/DMF (2/3,
1 � 3 min; 1/4, 1 � 10 min). After deprotection, the resin was again
washed with DMF (6 � 1 min). These steps were repeated until the
desired peptide sequence was complete. After the completion of the
sequence, the resin was washed with DMF (5 � 30 s), CH2Cl2

(5 � 30 s) and Et2O (5 � 30 s) and dried under vacuum for 2–3 h.
Simultaneously, cleavage and side chain deprotection was car-

ried out by treatment of the resin for 2 h with a mixture containing
TFA/H2O/EDT/TIS (96:2:1:1). The cleaved resin was washed with
TFA (2 � 2 mL) and the cleaved peptide was collected, concen-
trated into less than 1 mL solution and precipitated by addition
of cold Et2O (30 mL). The mixture was cooled, centrifuged
(4000 rpm, 5 min, 4 �C) and the Et2O was decanted from the pellet.
Cold Et2O was added again and the procedure was repeated twice.
The crude peptide obtained was dissolved in H2O/CH3CN and
lyophilized to dryness.

The crude mixture of each peptide hit was analyzed by LCMS
and purified by reversed phase preparative HPLC on Nucleodur
C18 Gravity column with a gradient of A (0.1% TFA in H2O) and B
(0.1% TFA in CH3CN) with a flow rate of 25 mL/min. After purifica-
tion, all peptides were lyophilized and stored at �20 �C.

4.4. Protein expression and purification

The protein GST_hAR_LBD (residues 664–919) was expressed
from E. coli BL21(DE3). A 200 mL overnight culture was used to
inoculate in 2.5 L of TB media containing 150 lM ampicillin and
10 lM DHT. After being induced with 30 lM IPTG at OD600 = 1
the cells were grown in the presence of 10 lM DHT and 150 lM
ampicillin overnight at 17 �C. The cells were centrifuged at
4500 rpm for 20 min and lysed with a microfluidizer (7 passes at
600 kPa) in buffer (50 mM HEPES, pH 7.3, 300 mM NaCl, 5 mM
EDTA, 10% glycerol, 100 lM DHT, 100 lM PMSF and 10 mM DTT)
and centrifuged at 20.000 rpm for 30 min. The soluble fraction
was filtered (Schleicher & Schnell, Whatman FP 30/0.45 lM CA-S)
before isolating GST-hAR-LBD using FPLC (Amersham Bioscience,
Äkta FPLC) and a GSTrapFF 5 mL column from GE Health. The sol-
uble cell lysate was immobilized on a glutathione Sepharose 4 Fast
Flow affinity matrix, washed with buffer (50 mM HEPES, pH 7.3,
300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT and 1 mM
DTT) and eluted with elution buffer (50 mM HEPES, pH 7.3,
300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT and 1 mM
DTT) containing 15 mM glutathione. The fractions containing the
fusion protein were combined and desalted on a Sephadex G25
PD-10 column (Amersham Biosciences) and preequilibrated with
buffer (50 mM HEPES, pH 7.3, 300 mM NaCl, 5 mM EDTA, 10%
glycerol, 10 lM DHT and 1 mM DTT). The concentration of the
protein was determined using the Nano-Drop (Peqlab, Nanodrop
ND-1000) machine.
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4.5. On-bead screen

The on-bead screen was performed using following procedure:

1. Bead swelling in DMF for 2 h at room temperature.
2. Bead washing with buffer A (containing 50 mM HEPES, pH 7.3,

300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT), 3 � 5 min.
3. Bead swelling in buffer A (containing 50 mM HEPES, pH 7.3,

300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT).
4. Bead blocking with 75 lM BSA overnight at 4 �C.
5. Bead washing with buffer A (containing 50 mM HEPES, pH 7.3,

300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT),
3 � 5 min.

6. 0.5 lM GST-h-LBD binding for 2 h at room temperature.
7. Bead washing with buffer A (containing 50 mM HEPES, pH 7.3,

300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT), 5 � 5 min.
8. Bead incubation with 0.01 lM Qdot� goat-anti-glutathione-S-

transferase for 4 h at room temperature.
9. Bead washing with buffer A (containing 50 mM HEPES, pH 7.3,

300 mM NaCl, 5 mM EDTA, 10% glycerol, 10 lM DHT), 3 � 5 min.

The beads were subsequently imaged and characterized using a
fluorescence microscope using 405 nm excitation and 655 nm emis-
sion wavelengths and an exposure time of 100 ms. Each picked bead
carrying bound protein were then treated with 1% of a SDS-solution
at 99 �C for 30 min and washed to remove the attached protein. After
transferring the beads into a new vial, the cleavage of each single
peptide from the resin was performed using 4.4 lL of 1 M NaOH.
After shaking the solution for 15 min at room temperature, the solu-
tion was neutralized by 4.4 lL of 1 M HCl and 4.4 lL formic acid.13

The resulting solution was then analyzed via MALDI-TOF usinga-cy-
ano-4-hydroxycinnamic acid (CHCA) as matrix.

4.6. Fluorescence polarization assay

The fluorescence competitive assay was performed using
0.1 lM fluorescein-labelled peptide Fl-CSSRFESLFAGEKESR and a
1 lM solution of purified GST_hAR_LBD in assay buffer (50 mM
HEPES, pH 7.3, 300 mM NaCl, 5 mM EDTA, 10% glycerol and
10 lM DHT). The competition assays were performed in 384-well
plates (Perkin–Elmer, Optiplate-384 F) by adding 40 lL of the
protein–peptide mixture to 10 lL of solution with increasing con-
centrations of inhibitor (diluted in assay buffer). Wells not contain-
ing inhibitor as well as wells only containing Fl-labelled peptide in
assay buffer were used as controls. The plates were then incubated
at 4 �C for 1 h. The fluorescence polarization was measured at 23 �C
using black 384-well plate (Perkin–Elmer, Optiplate-384 F) with
490 nm as excitation and 530 nm as emission wavelength using a
Tecan Safire2 plate reader with fluorescence polarization option.
The Ki values were determined following a published procedure
(Vaz et al.).8
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