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Abstract

Let G = (V,E) be a graph. A set SCV is a dominating set if every vertex of V' — S is
adjacent to some vertex in S. The domination number y(G) of G is the minimum cardinality of
a dominating set of G. A dominating set D is a least dominating set if p({(D))<y({S)) for any
dominating set S, and y,(G) is the minimum cardinality of a least dominating set. Sampathkumar
(Discrete Math. 86 (1990) 137-142) conjectured that 7y,(G)<3n/5 for every connected graph on
n>=2 vertices. This conjecture was proven by Favaron (Discrete Math. 150 (1996) 115-122).
We shall characterise graphs G of order n that are edge-minimal with respect to satisfying
G connected and y,(G) = 3n/5. Furthermore, we construct a family of graphs G of order n
that are not cycles and are edge-minimal with respect to satisfying G connected, 6(G)>2 and
1.(G) =3n/5. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Let G =(V,E) be a graph with vertex set ' and edge set £, and let v be a ver-
tex in V. The open neighbourhood of v is N(v) = {u€V|uv€E} and the closed
neighbourhood of v is N[v] = {v} U N(v). A path (cycle) on n vertices is denoted
by P, (C,, respectively). For a subset S of V, the subgraph of G induced by the
vertices in S is denoted by (S). The minimum (maximum) degree among the vertices
of G is denoted by d(G) (respectively, A(G)). For disjoint subsets 4 and B of V,
we define [4,B] to be the set of all edges that join a vertex of 4 and a vertex of
B. Furthermore, for a € 4, we define the private neighbourhood pn(a,A,B) of a in B
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to be the set of vertices in B that are adjacent to a but to no other vertex of 4;
that is, pn(a,4,B) ={b€B|N(b) N 4 = {a}}. For other graph theory terminology,
we follow [1].

A set DCV is a dominating set if every vertex in V' — D is adjacent to a vertex
in D. The domination number of G, denoted by y(G), is the minimum cardinality of
a dominating set. For disjoint subsets X and Y of V', we say X dominates Y if every
vertex of Y is adjacent to some vertex of X. The concept of domination in graphs, with
its many variations, is now well studied in graph theory. The book by Chartrand and
Lesniak [1] includes a chapter on domination. For a more thorough study of domination
in graphs, see [3,4].

Various authors have investigated upper bounds on the domination number of a
connected graph in terms of the minimum degree and order of the graph. The earliest
such result is due to Ore [6], who showed that if G is a graph of order n with no
isolated vertex, then y(G)<n/2. McCraig and Shepherd [5] investigated upper bounds
on the domination number of a connected graph with minimum degree at least 2.

Theorem 1 (McCraig and Shepherd [5]). If G is a connected graph of order n with
0(G)=2, and if G is not one of seven exceptional graphs (one of order 4 and six of
order 7), then y(G)<2n/5.

McCraig and Shepherd [5] also characterised those connected graphs G of order n
which are edge-minimal with respect to the satisfying 6(G)>=2 and y(G)>2n/5.

Sampathkumar [7] introduced the concept of least domination in graphs. A least
dominating set (l.d.s.) of a graph G is defined in [7] as a dominating set D satisfying
p({D))<y({S)) for any dominating set S. The least domination number y,(G) is the
minimum cardinality of a least dominating set. We refer to a 1.d.s. of G of cardinality
1,(G) as a ys-set of G. Least domination in graphs has been studied by among others,
Favaron [2], Sampathkumar [7], and Zverovich [8]. Results on least domination in
graphs can also be found in the two books on domination by Haynes et al. [3,4]. An
application for the concept of a least dominating set includes the following. A desirable
property for a committee from a collection of people might be that every nonmember
know at least one member of the committee, for ease of communication. Furthermore,
among all such committees we may wish to select a subcommittee of smallest size
from the committee with the desirable property that every committee member not on
the subcommittee know at least one member of the subcommittee. A committee with
a smallest such subcommittee is a least dominating set of the acquaintance graph of
the set of people.

The least domination number of a path and a cycle is established in [7].

Proposition 2 (Sampathkumar [7]). For the path P, and cycle C,,

Pe(Pn) =7/(Cp)=n—2 [gw )
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When n = 0(mod5), Proposition 2 implies that y,(P,) = y,(C,) = 3n/5. Sampath-
kumar [7] conjectured that the least domination number of a connected nontrivial graph
is at most three-fifths its order. This conjecture was proven by Favaron [2] and inde-
pendently by Zverovich [8].

Theorem 3 (Favaron [2], Zverovich [8]). If G is a graph of order n with no isolated
vertex, then

3
(G)< T

Proposition 2 shows that the bound of Theorem 3 is sharp even if we restrict the
minimum degree to be at least 2. It appears a difficult problem to characterise connected
graphs of order at least 2 with least domination number three-fifths their order. Hence,
following McCraig and Shepherd [5] and others, we shall restrict our attention to
edge-minimal graphs. More precisely, we will refer to a graph G of order n>2 that is
edge-minimal with respect to satisfying G connected and y,(G)=3n/5 as a %—minimal
graph. Furthermore, we will refer to G as a %—minimal 2-graph if G is edge-minimal
with respect to satisfying the following three conditions:

(i) 4(G)=2,
(i) G is connected, and
(iii) y,(G) =3n/5.

In this paper we study graphs with least domination number three-fifths their order.
We have two aims: first to characterise %—minimal graphs, and second to construct a
family of %-minimal 2-graphs that are not cycles.

2. A family of g-minimal graphs

In order to characterise %-minimal graphs, we introduce a family 7 of %-minimal
graphs. Let F be a forest that consists of k> 1 (disjoint) paths Ps. Colour the end-vertices
in F with the colour blue, colour the vertices adjacent to an end-vertex with the colour
green, and colour the central vertex of each path with the colour red. Hence each
vertex in F is coloured either blue, green, or red. If k=2, then we construct a tree G
from the forest /' by adding k£ — 1 edges such that each added edge joins vertices of
the same colour. If k=1, then we let G=F. We refer to the forest F' as the underlying
forest of G. The collection of all such trees G of order 5k we denote by 7 and the
union of all the families 7 we denote by 7.

Before proceeding further, we introduce some additional notation. Let G € ;. We
let #c={H,H,,...,H}, where H,, H,,...,H; denote the k paths in the underlying
forest of G. Let Dg denote the set of all green and red vertices in G. Then Dg is a
dominating set of G of cardinality 3k=3n/5. Let R denote the set of red vertices in G.
Then Rg is a dominating set of (Dg) of cardinality &, and so y((Dg)) <k.
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We shall prove:

Theorem 4. If G € 7, then Dg is the unique l.d.s. of G and Rg is the unique y-set

of (Dq)-

Proof. We proceed by induction on k>1. If k =1, then G is a path Ps and it is
straightforward to verify that the statement of the theorem is true. Suppose the result
is true for all trees in 7 where 1 <k’ < k. Let G € 7 and let F denote the underlying
forest of G. Let S be a y,-set of G and let S’ be a y-set of (S). Since y({Dg))<k,
we know that |S’| = y(({S))<k.

Lemma 5. If G contains an edge joining two green vertices, then S=Dg and §' =Rg.

Proof. Suppose bb' € E(G), where b and b’ are two green vertices. By construction,
bb' is a bridge of G and the two components of G —bb’ both belong to 7. Let G; and
G, be the two components of G — bb’ where G| contains the vertex b. For i=1,2, let
S;=SNV(G;) and let S! =8"NV(G;). For i = 1,2, we may assume G; has order 5k;.

Claim 6. b, b’ €S.

Proof. If b,b' ¢ S, then S; is a dominating set of G; for i=1,2. Applying the inductive
hypothesis to G;, Dg, is the unique l.d.s. of G;. Since S; # Dg,, 7({S;))=k; + 1. Since
b.b' #5, 7((S)) = 7((S1)) + 2((S2)). Consequently, y((S)>ky +ky + 2=k + 2, a
contradiction. Hence we may assume that 5’ € S.

Suppose b ¢ S. If p((S2)) =k» + 1, then S; UDg, is a dominating set of G satisfying
Y((S1UDG,)) = 9((S1)) +7({Da)) < 7({(51)) +7((S2)) = 7((S)), contradicting the fact
that S is a Ld.s. of G. Hence y({(S;))<k,. Thus, applying the inductive hypothesis to
Ga, S» = Dg,, 7((S2)) =k, and S} consists of the red vertices of G,.

If S| dominates b, then S; is a dominating set of G;. However b¢.S;, and so,
applying the inductive hypothesis to G;, »((S1))=k + 1. Hence y({S)) = p({(S1)) +
((S2)) =k + k» + 1 =k + 1, a contradiction. Thus S; cannot dominate b, i.e., no
neighbour of b in G| belongs to §.

Let be V(H) where H € #; denotes the path a,b,c,d,e. Then a,c<¢S,. If b is
adjacent to a green vertex in G, then there exists two adjacent green vertices that do
not belong to S. As shown earlier, this produces a contradiction. Hence a and c¢ are
the only neighbours of b in Gj.

Since S| must dominate a, and a,b ¢ S}, a has degree at least 2 in Gy, and so k; >2.
Let G, be the component of G —ab containing a. By construction, G, has order 5k, + 1
for some k,>1. Let S, =SNV(G,).

Claim 6.1. |S,|<3k,.
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Proof. Since b ¢S, S, is a dominating set of G,. Since b is dominated by ' in S,
S, must be a y,-set of G,, for otherwise we could add the vertices in a 7y,-set of
G, to the vertices in § — S, to produce a dominating set S* of G satisfying either
P((S*)) < p((S)) or y((S*)) = y((S)) and |S*| < |S|, contradicting our choice of S.
Hence, by Theorem 3, |S,| = 7,(G,) <3(5k, + 1)/5, i.e., |S,| <3k,. O

Let D, = Dg N V(G,).
Claim 6.2. y((S,))=>y((D,)) + 1.

Proof. Let G’ be obtained from G, by attaching a path a,a;,az,as,a4 to a. Then
Y=S8,U{az,a3} is a dominating set of G’. By construction, G’ € 7 and G’ has order
less than 5k. Applying the inductive hypothesis to G’, D¢ is the unique y/-set of G’.
Note that y((Dg+)) =y({D4)) + 1 and y({Y))=7({S,)) + 1. Furthermore, |Y|=|S,|+2
while |Dg/| = |D,| + 3. Since Y #Dg/, Y cannot be a y,-set of G’. Hence either
J(Y))=>7((De)) + 1, in which case 7((S,))=7((Du)) + 1, or 3((¥)) = 9((Dgr)) and
|Y| > |Dg|, in which case p({S,)) = y({D,)) and |S,|>|D,| + 2 = 3k, + 2. However,
by Claim 6.1, |S,| <3k,. Consequently, y({(S,))=7y((D,))+ 1. O

Let G. be the component of G — bc containing c. By construction, G, has order
Sk. + 3 for some k.>=0. Let S, =S N V(G,.). Since b,c&S, b,c&S..

Claim 6.3. |S.|<3k. + 1.

Proof. Since b¢ S, S. is a dominating set of G.. Since b is dominated by b’ in S,
S, must be a y,-set of G.. Hence, by Theorem 3, |S.| = y/(G.)<3(5k. + 3)/5, i.e.,
S| <3k.+ 1. O

Let D, = Dg, — D,.
Claim 6.4. y((S.))=y((D.)).

Proof. Let G’ be obtained from G. by attaching a path ¢, f,¢g to ¢. By construction,
G’ €7 and G’ has order less than 5k. Applying the inductive hypothesis to G’, Dg =
D, is the unique y,-set of G'. Let ¥ =S. U {g}. Then Y is a dominating set of G'.
Furthermore, y({Y)) = 7({(S.)) + 1 and |Y| =S|+ 1. Since Y # D¢/, ¥ cannot be a
y,-set of G’. Hence either y((¥Y))=y({Dg')) + 1, in which case y({S.))=7({D.)), or
J(Y))=1((D")) and Y| > | D], in which case ({S.))=7((D.))— 1 and [S.|>[D,|=
3k. 4+ 3. However, by Claim 6.3, |S.| <3k, + 1. Consequently, y({S.))=y((D.)). U

By Claims 6.2 and 6.4, p({(S1)) = p((S.)) + y((S:)=y((D.)) + y({D.)) + 1 =
({Dg,)) + 1 = ky + 1. Furthermore, y({(S,)) =k, as observed earlier. Hence, y({S)) =
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y({(S1))+7((S2)) =ki +k» + 1=k + 1, a contradiction. Hence we must have b € S. This
completes the proof of Claim 6. [

By Claim 6, b,b’ €S. Thus S; is a dominating set of G; for i = 1,2. Applying the
inductive hypothesis to G;, y({S;))=k; with equality if and only if S; = Dg,.

Suppose S;# Dg, for i = 1,2. Then p({S;))=k; + 1 for each i. If b,b’€S’, then
S/ dominates S;, whence |S/|=>7((S;))=k; + 1. But then |S’'| = |S]| + S| =k + 2, a
contradiction. So we may assume that 5 ¢ S’. Then S| U {b} dominates S;, and so
IST] + 1=2y({(S1)) =k + 1, ie., |S{|=k. If ' €8, then |S;|=k, + 1, and so |S'| =
IS7] + S| =k + 1, a contradiction. Hence &' ¢ S’. Since b,b’ ¢S’, S/ dominates S; for
i=1,2, and so |S/|=k; + 1. Thus, |S'| =|S]| + |S5| =k + 2, a contradiction. Hence we
may assume that S; = Dg,.

Since S| = Dg,, 7({S1)) = k1 and the k; red vertices in G| form a unique y-set of
(S1). If S7 does not dominate S, then S{ U {b} dominates ;. However, S| U {b} is
not the unique y-set of (S;), and so |S{|+ 1=k +1, i.e., |S]|=k;. On the other hand,
if S does dominate S, then |S{| >k, with equality if and only if S| consists of the
red vertices of Gy. In any event, |S]|=k;.

Suppose > # Dg,. Then y((S,)) =ky+1. If b’ € §’, then S} dominates S, and therefore
|S}| =k, + 1. But then |S'| = |S]| + |S;| =k + k2 + 1 =k + 1, a contradiction. Hence
b’ ¢8’. Suppose S} does not dominate S,. Then b€ S], and so S| is not the unique
y-set of (S)). Thus |S{|=k; + 1. Furthermore, S5 U {4’} dominates S,. Consequently,
15| + 1=9((S2))=ky + 1, ice., |Sy| =ky. Thus |S'| =S|+ |Ss|=ki +hka + 1=k +1, a
contradiction. Hence S; dominates S,, and so [S;|=y((S2)) =k, + 1. Thus |S| = |S]| +
|S}|=k) + k2 + 1 =k + 1, a contradiction. Hence S, = Dg,.

We have now established that S =S, US, =Dg, UDg, =Dg. Furthermore, y({S;))=k;
and the k; red vertices in G; form a unique y-set of (S;). As observed earlier, |S/|=k;
for i=1,2. If b€ S’, then, as observed earlier, |S{| =k +1, and so |[S|=|S||+|S5| =k +
ky + 1=k + 1, a contradiction. Hence b ¢ S’. Similarly, 4’ & S’. Thus S; dominates S;
for i = 1,2. By induction, |S/|>k; with equality if and only if S/ consists of the red
vertices of G;. Since k =|S'| = |S|| + |S;| =k + k2 =k, it follows that |S/| =k; and S!
consists of the red vertices of G; for i = 1,2. Thus S’ = Rg. This completes the proof
of Lemma 5. [J

By Lemma S5, if G contains an edge joining two green vertices, then S = D and
S" =Rg, i.e., D¢ is the unique l.d.s. of G and R is the unique y-set of (Dg). Hence
in what follows, we assume that there is no edge joining two green vertices.

Lemma 7. If G contains an edge joining two red vertices, then S =Dg and S’ =Rg.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore
omitted. Suppose cc’ € E(G), where ¢ and ¢’ are two red vertices. By construction, cc’
is a bridge of G and the two components of G — cc¢’ both belong to 7. Let G| and
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G, be the two components of G — cc’ where G| contains the vertex c. For i =1,2, let
S;=SNV(G;) and let S! =8"NV(G;). For i = 1,2, we may assume G; has order 5k;.

As in the proof of Claim 6, at least one of ¢ or ¢’ belongs to S. We may assume
¢’ €8. Suppose ¢ ¢S. Then (as in the proof of Claim 6) S, = Dg, and y((S2)) = k».
Furthermore no neighbour of ¢ in G; belongs to S;. Let c€ V(H) where H € #;
denotes the path a,b,c,d,e. Then b,d ¢ S;. If ¢ is adjacent to a red vertex in Gy, then
there exists two adjacent red vertices that do not belong to S. This, however, produces
a contradiction. Hence b and d are the only neighbours of ¢ in Gj.

Let G, be the component of G — bc containing b. By construction, G, has order
Sk + 2 for some k;, >0. Let S, =SNV(Gy) and let Dy =(DgNV(Gp))U{c,d}. Then
|Sp| <3k, + 1 while |Dy| =3k, + 3. Let G’ be obtained from G, by attaching a path
b,c,d,e to b. Then Y =S, U {d} is a dominating set of G’. By construction, G' € 7
and G’ has order less than 5k. Applying the inductive hypothesis to G’, Dg: = D}, is
the unique y,-set of G’. Note that p((¥Y)) = 7({Sp)) + 1 while |Y| =|S,| + 1. Since
Y #Dg/, Y cannot be a y,-set of G’. Hence either y((¥Y))=7({Dg')) + 1, in which
case 7((S5))=7((Ds)). or 7((¥)) = ((Dc+)) and |¥| > | D], in which case 7((Sh)) =
y({Dp)) — 1 and |Sp|=|Dp| = 3k, + 3. However, as observed earlier, |Sp| <3k, + 1.
Consequently, y((Sp))=7((Ds)).

Let G; be the component of G — ¢d containing d. By construction, G; has order
5ky+2 for some k;>0. Let S;=SNV(G,) and let D;=(DgNV(Gz))U{b,c}. Then
7((Sa)) Z7((Da)).

Now ({$1))=({Ss))+7({Sa)) Z7((Ds))+7((Da))=7({Dg, ) )+1=k1+1. Furthermore,
7({S2)) =k, as observed earlier. Hence, y({S))=7y({(S;))+y((S2)) =k +hky + 1=k +1,
a contradiction. Hence we must have c€ S.

Since ¢,c’ €8, S; is a dominating set of G; for i = 1,2. Continuing now as in the
last four paragraphs of the proof of Lemma 5 (with ‘6’ and ‘6" replaced by ‘¢’ and
‘c’”), respectively, we can show that S =Dg and S’ = Rg. This completes the proof of
Lemma 7. [

By Lemma 7, if G contains an edge joining two red vertices, then D¢ is the unique
l.d.s. of G and Rg is the unique y-set of (D). Hence in what follows, we assume
that there is no edge joining two red vertices. Thus all £k — 1>1 edges added to the
underlying forest of G to construct G join blue vertices.

Suppose a and &’ are two adjacent blue vertices of G. Let G| and G, be the two
components of G —aa’ where G| contains the vertex a. For i=1,2, let S;=SNV(G;)
and let S; =S"NV(G;). By construction, each of G| and G, belong to 7. For i=1,2,
we may assume G; € .7;,. Applying the inductive hypothesis to G;, Dg, is the unique
l.d.s. of G; and the red vertices in G; form a unique y-set of (Dg,) for i =1,2.

Suppose a,a’ € S. Then S;# Dg, and y((S;))=k; + 1 for i =1,2. If a,a’ €S’, then
S! dominates S;, whence [S/|=7((S;))=k; + 1. But then |S'| = |S]| + |S}|=k + 2, a
contradiction. So we may assume that a ¢ S’. Then S| U {a} dominates S;, and so
IST] + 1=2y({(S1) =k + 1, ie., |S||=k. If @ €S, then |S;|=k; + 1, and so |S'| =
IS7] + |S}| =k + 1, a contradiction. Hence a’ € S’. Since a,a’ ¢S’, S/ dominates S; for
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i=1,2, and so |S/|>k; + 1. Thus, |S'| =|S]| + |S5| =k + 2, a contradiction. Hence we
may assume a & S.

Suppose @’ €S. Then S, # Dg, and y((S2))=k2 + 1. If S| does not dominate Gj,
then S; U {a} dominates S;. Since S; U {a} # Dg,, y({(S1))+ 1=7((S1 U{a})) =k +1,
and so y((S1))=k;. On the other hand, if S; dominates G, then y((S;))=k;. In any
event, y((S1))=k;. Hence, since a & S, y((S)) =7((S1)) +y(S:)) =kt + 1=k +1,
a contradiction. Hence a' ¢ S.

Since a,a’ ¢S, S; is a dominating set of G; and S/ dominates S; for i = 1,2. By
induction, |S/|>k; with equality if and only if S; = Dg, and S/ consists of the red
vertices of G;. Since k= |S'|=IS]|+ |S5| =k + ky =k, it follows that S;=Dg,, |S!| =k;
and S/ consists of the red vertices of G; for i =1,2. Thus S = Dg and S’ = Rg. This
completes the proof of Theorem 4. [J

By Theorem 4, Dg is the unique y,-set of G. In particular, y,(G)=|Dg| =3k =3n/5.
Furthermore, G is edge-minimal with respect to satisfying G connected. Hence we have
the following result.

Proposition 8. Each graph in the family 7 is a %—minimal graph.

3. A characterization of g-minimal graphs
We shall prove:
Theorem 9. A graph G is a %-minimal graph if and only if Ge€ T .

The sufficiency of Theorem 9 follows from Proposition 8. To prove the necessity of
Theorem 9, we first present a proof of Theorem 3. The proof follows that of Favaron
[2] and Zverovich [8].

Proof of Theorem 3. Let G=(V,E) be a graph of order » with no isolated vertex. Let
D be a y,-set of G with the minimum number of isolated vertices in (D). Let I be the
set of isolated vertices in (D). Let X be a minimum dominating set of (D —1), and let
Y=D—(IUX). Then pn(x, X, Y)#{ for every x€X. Let X; ={x € X: |pn(x, X, ¥)|=1}
and let X, =X — X.

Claim 10. pn(v,D,V — D)# for every ve D — X,.

Proof. If pn(v,l,V — D) =10 and v/ € N(v), then D' = (D — {v}) U {v'} is a y,-set
of G with fewer isolated vertices in (D’) than in (D), contrary to our choice of
D. Hence pn(v,I,V — D)#( for every vel. Clearly, the minimality of D implies
that pn(y,Y,V — D)#( for every y€ Y. Finally, if x€X; and pn(x,X;,Y) = {y},
then pn(x, X,V — D)#0, for otherwise D — {x} is a dominating set of G and
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y((D—{x}))=|JUX)—{x}U{y}=|IUX]|=y((D)), which contradicts the minimality
of D. [

By Claim 10, |V — D|=|D — X;|, and so n — y,(G)=y,(G) — |Xz|, or, equiva-
lently, y,(G)<(n + |X3])/2. Furthermore, by definition of X5, |Y|>2|X;|. Hence n =
|V —D|+|D| > |D— 3| + |D| =2|D| — [Xa| 2| ¥ | + Yo — || =2/ Y| + [Xo] > 5[Xa , and
so |Xa|<n/5. Thus 7,(G)<(n + |X2|)/2<3n/5. This completes the proof of
Theorem 3. [

We are now in a position to prove the necessity of Theorem 9. We proceed by
induction on the order n = 5k, where £>1 is an integer, of a %—minimal graph. It
is straightforward to check that the only %—minimal graph on five vertices is Ps € 7.
Hence the result is true if £k = 1. Let £>2, and assume the result is true for all
%—minimal graphs of order less than n. Let G =(V,E) be a %-minimal graph of order
n=>5k. If G = P,, then the result follows. So we may assume that G is not a path.
Since C, is not a %—minimal graph, we must have 4(G)=3. In what follows, we shall
use the notation employed in the proof of Theorem 3 presented above.

Since y,(G) = 3n/5, all the inequalities in the last paragraph of the proof of
Theorem 3 must be equalities. In particular, |D|=|Y|+ |Xz| (and so /=0 and X =X3),
X ={xeX: |pn(x,X,Y)| =2}, and |pn(y,Y,V — D)| =1 for every y€Y. Let X =
{xl,...,xk}, Y:{yl,...,yk}U{Wl,...,Wk} and Z:{al,...,dk}U{bl,...,bk}:V—D.
Then G has the following structure. For each i =1,...,k, N(xx;)N(V — X) = {y;,wi},
N(yi)NZ={a;}, and N(w;) N Z = {b;}.

For i = 1,...,k, if y;w; is an edge of G, then D — {x;} is a dominating set of G
and y((D — {x;})) = |X — {x;} U {»:}| = |X| = y({(D)), which contradicts the minimal-
ity of D. Hence y;w; cannot be an edge of G. Let H; = ({x;, yi,wi,a;,b;}), and let
He={Hi,...,H}.

Before proceeding further, we prove a few results that will be useful in what follows.

Claim 11. If e€E and e € [X, YU [Y,Z], then e is a bridge of G.

Proof. Suppose G — e is connected. Let S be a y,-set of G — e. Since G — e has no
isolated vertex, Theorem 3 implies that |S|=7y,(G — e)<3n/5. Furthermore, since S is
a dominating set of G, p({D))<y((S)). On the other hand, since e & [X, Y]U[Y,Z], D
is a dominating set of G — e, and so y((S))<y((D)). Consequently, y({S)) =y((D)).
Thus S is a L.d.s. of G, and so 3n/5 = |D| = y,(G)<|S|<3n/5. Hence we must have
|S| = |D| =3n/5. Thus, G — e is a connected graph satisfying y,(G — e) = |S| = 3n/5.
This contradicts the minimality of G. Hence G — e is disconnected. [

By Claim 11, a;b; E(G) for all i =1,...,k. Hence H = Ps for each H € /5.

Claim 12. If there is a vertex in X UY of degree at least 3, then G€ T .
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Proof. Suppose degv >3 for some v € XUY. Suppose v € V(H), where H € #. Since
v has degree 2 in H, v must be adjacent to a vertex u not in H. From the structure of G
we know that either u,v € X or u,v €Y. In any event, degu >3 and uv & [X, Y]U[Y, Z].
By Claim 11, uv is a bridge of G. Thus G — uv contains two components, namely a
component G containing u and a component G, containing v. For i=1,2, let G; have
order n;. Since the vertices of each graph in # all belong to the same component of
G —uv, n; = 0(mod 5). Suppose G; contains k; of the subgraphs of #. Then n; = 5k;.
Furthermore, k = k| + k.

For i =1,2, let D; =D NV(G;). Then |D;| =3k; and y({(D;)) =k;. For i =1,2, let S;
be a y,-set of G;. If p((S1)) < ki, then S; U D, would be a dominating set of G
satisfying y({(S; UD,)) < k=y({D)), contradicting our choice of D. Hence y((S}))=k;.
However, since Dy is a dominating set of Gy and y({D1))=ky, y({(S1))=k. If |S1| < 3k,
then Sy UD, would be a dominating set of G satisfying p({(S;UD,))=k and |S;UD;| <
3k =|D|, contradicting our choice of D. Hence |S;| =3k;. Thus D, is a y,-set of Gj.
Similarly, D, is a y,-set of G,. Thus, for i = 1,2, G; is a connected graph satisfying
v¢,(Gi)=3n;/5. By the inductive hypothesis, G; € 7}, for i=1,2. Furthermore, since D,
is a ys-set of G;, D; = Dg, by Theorem 4. Thus the vertices of X, Y, and Z in G; are
coloured red, green, and blue, respectively. If u,v € X, then u and v are both coloured
red. On the other hand, if u,v €Y, then u# and v are both coloured green. In any event,
G € 7. This completes the proof of Claim 12. [J

In what follows, we may assume that each vertex in X U Y has degree 2 in G, for
otherwise G € 7 by Claim 12. Hence for each i =1,...,k, N(x;) = {yi;,wi}, N(3;) =
{a;,x;}, and N(w;)={b;,x;}. By Claim 11, each edge in (Z) is a bridge of G. Thus G
is obtained from k£ >2 (disjoint) paths Ps by adding & — 1 edges that join end-vertices
from different paths (to produce a connected graph), i.e., G €.7. This completes the
proof of Theorem 9. [J

4. A family of %-minimal 2-graphs that are not cycles

Let @5 denote the family of all cycles of length congruent to 0 modulo 5, that is,
%5 ={Cy|n=0(mod5)}.

By Proposition 2, each graph in %5 has least domination number three-fifths its or-
der. Furthermore, each graph in % is clearly edge-minimal with respect to satisfying
minimum degree at least 2. Hence we have the following result.

3.

s-minimal 2-graph.

Proposition 13. Each graph in the family €s is a

In this section our aim is to construct a family of %—minimal 2-graphs, which we call
%*, that is different from the family %s. For this purpose, let F; = (V,E;) be a forest
that consists of £ >3 (disjoint) K3s, i.e., F| = kK,. Colour the vertices in F; with the
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Fig. 1. The construction of the graph G; € 4.

colour blue. We construct a graph F, =(V,E; UE,) from the forest F; by adding a set
E, of edges to F| in such a way that there are no even cycles that alternate in edges of
Ey and E, — E; and such that F, is edge-minimal with respect to satisfying 0(F,)>2
and F, connected. We now construct a graph G from F, by subdividing each edge of
E, three times. Each resulting new vertex that is adjacent to a blue vertex we colour
with the colour green, while each new vertex that is not adjacent to a blue vertex we
colour with the colour red. We let V; denote the set of vertices of G that are coloured
green or red and are incident with a bridge in G. We refer to the forest /| as the
underlying forest of G and the graph F, as the underlying graph of G.

By construction, G is a connected graph with minimum degree at least 2 and of
order n =5k for some k>3. Furthermore, for each edge e of G, G — e is disconnected
or 6(G — e) = 1. The collection of all such graphs G of order 5k we denote by %
and the union of all the families %, we denote by 4. If k =3, then % = {G;}, where
G; is the graph in ¢ with underlying forest | = 3K, and with underlying graph F,
shown in Fig. 1. (The vertices in G; coloured blue, green, and red are labelled B, G,
and R, respectively.)

To construct the family ¢*, let Gy,...,G, be m>1 graphs in 4. Let G* be a
connected graph obtained from the (disjoint) union |Ji_, G; by adding a set of m — 1
edges E* such that each added edge joins vertices of the same colour in (J, Vg,. If
m =1, then G* = G,. Let Ep denote the set of all edges of G* that join two blue
vertices. By construction, G* has order congruent to 0 modulo 5 and is edge-minimal
with respect to satisfying 6(G*)>2 and G* connected. The collection of all such graphs
G* we denote by ¥*.

Before proceeding further, we present some properties of graphs in the family @*.
Let G € 9* have order 5k. Then, by construction, G — E* — Ep consists of &k (vertex
disjoint) Pss which we denote by Hy,H,,...,Hy. Let #¢={H,H,,...,H;}. We refer
to # as the path partition of G. Let Dy denote the set of all green and red vertices
in G. Then D¢ is a dominating set of G of cardinality 3k = 3n/5. Let R; denote the
set of red vertices in G. Then Rg is a dominating set of (Dg) of cardinality &, and so
7({Dg))<k.

We shall prove:

Theorem 14. If G € 4*, then Dg is the unique Ld.s. of G and Rg is the unique y-set
of <D(;>
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Proof. We proceed by induction on £>3. If k = 3, then G is the graph G; of
Fig. 1 and it is straightforward to verify that the statement of the theorem is true.
Suppose the result is true for all graphs in ¥* of order less than 5k. Let G € ¥* have
order 5k. Let S be a y,-set of G and let S’ be a y-set of (S). Since y((Dg)) <k, we
know that |S'| =y((S))<k.

Lemma 15. If G contains an edge joining two green vertices, then S=Dg and §'=Rg.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore
omitted. Suppose bb’ € E(G), where b and b’ are two green vertices. By construction,
bb' is a bridge of G and the two components of G — bb’ both belong to ¥*. Let G,
and G, be the two components of G —bb" where Gy contains the vertex b. For i=1,2,
let S; =S NV(G;) and let S =S" N V(G;). For i = 1,2, we may assume G; has order 5k;.

Claim 16. b,b' €S.

Proof. We may assume (as in the proof of Lemma 5) that 5’ € S. Suppose b & S. Then
(as in the proof of Lemma 5) S, =Dg,, 7({S2)) =k and S} consists of the red vertices
of G,. Let b€ V(H) where H € # denotes the path a,b,c,d,e. Then a and c are the
only neighbours of 4 in G| and a,c ¢ S). Let G, be the component of G —ab containing
a. By construction, G, has order 5k, + 1 for some k,>1. Let S, =S N V(G,). Then
S, <3k, Let D, = Dg N V(G,).

Claim 17. y((S,))=7((Dy)) + 1.

Proof. Let G’ be obtained from G, by attaching a path a,a;,a,,a3,a4 to a and then
attaching a 6-cycle as, vy, 02, U3, Vs, U5, a4 to ag. Then Y =S, U {ay,a3,a4,v3} is a dom-
inating set of G’. By construction, G’ € 4* and G’ has order less than 5k. Applying
the inductive hypothesis to G’, D¢ is the unique y,-set of G’. Note that y({Dg/)) =
y({Dg))+2 and y({Y))=7({S;))+ 2. Furthermore, |Y|=|S,|+4 while |Dg:|=|D,| + 6.
Since Y #Dg/, Y cannot be a y,-set of G'. Hence either y((Y))=7({Dg/)) + 1, in
which case y((S,))=7y((D,))+ 1, or y((Y))=7y((Dg)) and |Y| > |Dg|, in which case
9({Sa))=7((Dy,)) and |S,| = |D,| + 3 =3k, + 3. However, as observed earlier, |S,|<3k,.
Consequently, y((S,))=y((D,))+ 1. O

Let G. be the component of G — bc containing c. By construction, G, has order
5k.+ 3 for some k.>1. Let S. =S N V(G.). Then |S.|<3k. + 1. Let D. = D¢, — D,.

Claim 18. 7((S.))>7((D.)).
Proof. Let G’ be obtained from G, by attaching a path ¢,b,a to ¢ and then attach-

ing a 6-cycle a,vy,v,03,04,0s5,a to a. Then ¥ =S.U{a,v3} is a dominating set of G’.
By construction, G’ € 4* and G’ has order less than S5k. Applying the inductive
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hypothesis to G’, Dg: is the unique y,-set of G’. Note that y((Dg:))=7({(D.))+ 1 and
({Y))=7((S¢))+2. Furthermore, |Y|=|S;|+2 while D¢/ |=|D.|+3. Since ¥ # D¢, Y
cannot be a y,-set of G’. Hence either p((Y))=y((Dg)) + 1, in which case y({S.))=>
W((De)), or W((¥))=7({Dg:)) and |¥| > |Dey], in which case 7((S.))=7((Dc))— 1 and
|Sc| =|D.| + 2 = 3k. + 2. However, as observed earlier, |S.| <3k, + 1. Consequently,
7((8e))=7((De)). U

By Claims 17 and 18, y(($1))=7((S2))+7({5:)) = 7((Da))+7((Dc)) + 1=7({Dg, ) ) +
1 =k + 1. Hence, y({(S)) = p({(S1)) + v({S2))=k; + k» + 1 =k + 1, a contradiction.
Hence we must have b € S. This completes the proof of Claim 16. [

By Claim 16, b,b’ € S. Proceeding now as in the proof of Lemma 5, we can show
that S = D¢ and that S’ = Rg. This completes the proof of Lemma 15. [

By Lemma 15, if G contains an edge joining two green vertices, then S = D and
S’ =Rg, i.e., D¢ is the unique l.d.s. of G and Rg is the unique y-set of (Dg). Hence
in what follows, we assume that there is no edge joining two green vertices.

Lemma 19. If G contains an edge joining two red vertices, then S= D¢ and S’ =Rg.

Proof. The proof is similar to that of Lemma 7 and some of the details are therefore
omitted. Suppose cc’ € E(G), where ¢ and ¢’ are two red vertices. By construction, cc’
is a bridge of G and the two components of G — cc’ both belong to 4*. Let G; and
G, be the two components of G — cc’ where G| contains the vertex ¢. For i =1,2, let
S;=SNV(G;) and let S! =8"NV(G;). For i = 1,2, we may assume G; has order 5k;.
We may assume ¢’ € S. Suppose ¢ € S. Then S, =Dg, and y({S2))=k,. Let c€ V(H),
where H € #; denotes the path a,b,c,d,e. Then b and d are the only neighbours of
cin Gy and b,d ¢ 8.

Let G, be the component of G — bc containing b. By construction, G, has order
5ky + 2 for some kp>1. Let S, =SNV(Gp) and let D, =(Dg N V(Gp))U{c,d}. Then
|Sp| <3kp + 1 while |Dy| =3k, + 3. Let G’ be obtained from G, by attaching a path
b,c,d, e to b and then attaching a 6-cycle e, vy, vy, U3, 04, 05, e to e. Then Y=S,U{d,e,v3}
is a dominating set of G’. By construction, G’ € 4* and G’ has order less than 5k.
Applying the inductive hypothesis to G’, D¢/ is the unique y,-set of G’. Note that
J((Dar))=7((Dy))+1 and 7((¥))=7((S,))+2. Furthermore, | Y| =|S,|+3 while [Dg:| =
|Dp|+3. Since Y # D¢, Y cannot be a y,-set of G’. Hence either y((Y))=y({Dg'))+1,
in which case p({Sy))=7y((Dp)), or y({Y)) =y((D¢’)) and |¥Y| > |D¢|, in which case
P((Sp)) = y({(Dp)) — 1 and |Sp|=|Ds| + 1 = 3k, + 4. However, as observed earlier,
|Sp| <3kp + 1. Consequently, y({Sp))=7({Dp)).

Let G; be the component of G — ¢d containing d. By construction, G; has order
5ky+2 for some k;>=1. Let S;,=SNV(Gy) and let Dy =(Dg NV (Gy))U{b,c}. Then
7({Sa)) = y((Da)).
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Now 7((S1))=7((Ss))+2((Sa)) = 7({De))+7({Da))=7({De;,) )+ 1=ki +1. Furthermore,
7({S2)) =k, as observed earlier. Hence, y((S))=7((S1)) +y((S2) =k +kr + 1=k +1,
a contradiction. Hence we must have c € S.

Proceeding now as in the proof of Lemma 7, we can show that S = Dg and that
S’ = Rg. This completes the proof of Lemma 19. [

By Lemma 19, if G contains an edge joining two red vertices, then D¢ is the unique
l.d.s. of G and Rg is the unique y-set of (Dg). Hence in what follows, we assume
that there is no edge joining two red vertices. Thus G € % € 4. If G contains a bridge
joining two blue vertices, then, proceeding as in the last four paragraphs of the proof
of Theorem 4, we can show that S =D and that S’ =R;. Hence we assume that there
is no bridge in G joining two blue vertices. Thus G is obtained from a path a,b,c,d, e
by attaching at least one cycle of length at least 6 and congruent to 1 modulo 5 to
each of a and e (by attaching a cycle to a vertex v we mean adding a (disjoint) cycle
to the graph and identifying one of its vertices with v). We may assume dega>dege.
Since k>4, at least one cycle in G has length at least 11 or at least two cycles are
attached to a. Let C be a cycle attached to a. Let a’ be a neighbour of a on C. Suppose
a € V(H) where H € #; denotes the path &',b’,c’,d’,¢e’.

Claim 20. If C is a 6-cycle, then S = Dg and S’ = Rg.

Proof. Since C is a 6-cycle, ae’ € E(G). Let G; and G, be the two components of
G — {ad’,ae’} where G contains the vertex a. For i =1,2, let S; =S8N V(G;) and let
S! =8N V(G;). By construction, G; belongs to % _;.

Suppose S is not a dominating set of G;. Then S; does not contain ¢ nor any
neighbour of a. However, S; U {a} is a dominating set of G;. Since S; U {a} # Dg,,
P((S1)) + 1 =9((S1 U {a}))=k, and so p({Si))=k — 1. Since a is not dominated by
Sy, S, must be a dominating set of the 6-cycle a,a’,b’,c',d’,e’,a, and so y((S;))=2.
Thus, p({(S))=7({S1))+ ({(S2)) =k + 1, a contradiction. Hence S; is a dominating set
of Gl.

Applying the inductive hypothesis to Gy, p((S1))=k — 1 with equality if and only
if S| = Dg, and S; consists of the red vertices of G;. Since k=|S'|=|S|| + 1 =k, it
follows that S;=Dg,, |S{|=k—1 and S| consists of the red vertices of G,. Furthermore,
Sy ={b,c',d'} and S; ={c'}. Thus S =D and S’ = Rg. This completes the proof of
the claim. [J

Claim 21. If C has length greater than 6, then S = Dg and S’ = Rg.

Proof. Let ¢’ be the blue vertex that is adjacent to ¢’ on C. By assumption, C has
length at least 11. Let G| be the graph obtained from G — V(H) by adding the edge
aa”. By construction, Gy belongs to %_;. Let S} =SNV(G;) and let S{=S"NV(G)).
Further, let S, =SNV(H).
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Suppose S; is not a dominating set of G;. Then a,a”’ €S and at least one of a
and a” is not dominated by S;. However, S; U {a} is a dominating set of G,. Since
Sy UA{a}l#Dg,, y((S1)) + 1 =S U {a}))=k, and so yp({(S;))=k — 1. If a is not
dominated by S}, then S, must be a dominating set of the path a,a’,b’,c’,d’,e’. On the
other hand, if a” is not dominated by S, then S, must be a dominating set of the path
a,b',cd,d'e,a”. In any event, p((S;))=2. Thus, ({S)) = y((S1)) + y({S2))=k + 1,
a contradiction. Hence S; must be a dominating set of Gj.

Applying the inductive hypothesis to Gy, p((S1))=k — 1| with equality if and only
if S; =Dg, and S| consists of the red vertices of Gj. Since k>|S'|>|S|| + 1>k, it
follows that S;=Dg,, |S{|=k—1 and S} consists of the red vertices of G,. Furthermore,
Sy={b,c',d'} and S’" — S| ={c'}. Thus S=Dg and S’ =R¢. This completes the proof
of the claim. [

By Claims 20 and 21, S = Dg and S’ = Rs. This completes the proof of
Theorem 14. [

By Theorem 14, Dg is the unique y,-set of G. In particular, y,(G)=|Dg|=3k=3n/5.
Furthermore, G is edge-minimal with respect to satisfying 6(G)>=2 and G connected.
Hence we have the following result.

Proposition 22. Each graph in the family G* is a %-minimal 2-graph.

5. Comments

If Ge%s U %", then, by Propositions 13 and 22, G is a %—minimal 2-graph. The
converse is not true. There are %-minimal 2-graphs that do not belong to the families
%s or ¥*. For example, the graph G shown in Fig. 2 is a %-minimal 2-graph that

does not belong to %s U %*. Notice, however, that the graph G is obtained from two

[ BN J
*—o
[ I J

Fig. 2. A %—minimal 2-graph not in s U 4*.
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graphs in %* by adding an edge joining two red vertices. It is possible to construct a

%—minimal 2-graph from the (disjoint) union of m =2 graphs in ¥* (that satisfy certain

special properties) by adding a set of m — 1 edges such that each added edge joins
two red vertices or two green vertices at least one of which belongs to a cycle in ¥*.
However, we have yet to settle which red or green vertices may be used when adding
these m — 1 edges. It remains an open problem to characterize %-minimal 2-graphs.
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