

Discrete Mathematics 216 (2000) 153-168

www.elsevier.com/locate/disc

n and similar papers at core.ac.uk

provid

Michael A. Henning¹

Faculty of Science/Mathematics and Applied Mathematics, Department of Mathematics and Applied Mathematics, University of Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209 South Africa

Received 11 November 1998; revised 11 May 1999; accepted 24 May 1999

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a dominating set if every vertex of V - S is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set D is a least dominating set if $\gamma(\langle D \rangle) \leq \gamma(\langle S \rangle)$ for any dominating set S, and $\gamma_{\ell}(G)$ is the minimum cardinality of a least dominating set. Sampathkumar (Discrete Math. 86 (1990) 137–142) conjectured that $\gamma_{\ell}(G) \leq 3n/5$ for every connected graph on $n \geq 2$ vertices. This conjecture was proven by Favaron (Discrete Math. 150 (1996) 115–122). We shall characterise graphs G of order n that are edge-minimal with respect to satisfying G connected and $\gamma_{\ell}(G) = 3n/5$. Furthermore, we construct a family of graphs G of order n that are not cycles and are edge-minimal with respect to satisfying G connected, $\delta(G) \geq 2$ and $\gamma_{\ell}(G) = 3n/5$. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set E, and let v be a vertex in V. The open neighbourhood of v is $N(v) = \{u \in V | uv \in E\}$ and the closed neighbourhood of v is $N[v] = \{v\} \cup N(v)$. A path (cycle) on n vertices is denoted by P_n (C_n , respectively). For a subset S of V, the subgraph of G induced by the vertices in S is denoted by $\langle S \rangle$. The minimum (maximum) degree among the vertices of G is denoted by $\delta(G)$ (respectively, $\Delta(G)$). For disjoint subsets A and B of V, we define [A, B] to be the set of all edges that join a vertex of A and a vertex of B. Furthermore, for $a \in A$, we define the private neighbourhood pn(a, A, B) of a in B

E-mail address: henning@math.unp.ac.za (M.A. Henning)

¹Research supported in part by the University of Natal and the South African Foundation for Research Development.

to be the set of vertices in B that are adjacent to a but to no other vertex of A; that is, $pn(a,A,B) = \{b \in B \mid N(b) \cap A = \{a\}\}$. For other graph theory terminology, we follow [1].

A set $D \subseteq V$ is a *dominating set* if every vertex in V - D is adjacent to a vertex in D. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. For disjoint subsets X and Y of V, we say X *dominates* Y if every vertex of Y is adjacent to some vertex of X. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The book by Chartrand and Lesniak [1] includes a chapter on domination. For a more thorough study of domination in graphs, see [3,4].

Various authors have investigated upper bounds on the domination number of a connected graph in terms of the minimum degree and order of the graph. The earliest such result is due to Ore [6], who showed that if G is a graph of order n with no isolated vertex, then $\gamma(G) \leq n/2$. McCraig and Shepherd [5] investigated upper bounds on the domination number of a connected graph with minimum degree at least 2.

Theorem 1 (McCraig and Shepherd [5]). If G is a connected graph of order n with $\delta(G) \ge 2$, and if G is not one of seven exceptional graphs (one of order 4 and six of order 7), then $\gamma(G) \le 2n/5$.

McCraig and Shepherd [5] also characterised those connected graphs G of order n which are edge-minimal with respect to the satisfying $\delta(G) \ge 2$ and $\gamma(G) \ge 2n/5$.

Sampathkumar [7] introduced the concept of least domination in graphs. A *least* dominating set (l.d.s.) of a graph G is defined in [7] as a dominating set D satisfying $\gamma(\langle D \rangle) \leq \gamma(\langle S \rangle)$ for any dominating set S. The *least domination number* $\gamma_{\ell}(G)$ is the minimum cardinality of a least domination in graphs has been studied by among others, Favaron [2], Sampathkumar [7], and Zverovich [8]. Results on least domination in graphs can also be found in the two books on domination by Haynes et al. [3,4]. An application for the concept of a least dominating set includes the following. A desirable property for a committee from a collection of people might be that every nonmember know at least one member of the committee, for ease of communication. Furthermore, among all such committees we may wish to select a subcommittee of smallest size from the committee know at least one member of the subcommittee. A committee with a smallest such subcommittee is a least dominating set of the acquaintance graph of the set of people.

The least domination number of a path and a cycle is established in [7].

Proposition 2 (Sampathkumar [7]). For the path P_n and cycle C_n ,

$$\gamma_{\ell}(P_n) = \gamma_{\ell}(C_n) = n - 2\left\lceil \frac{n}{5} \right\rceil.$$

Theorem 3 (Favaron [2], Zverovich [8]). If G is a graph of order n with no isolated vertex, then

$$\gamma_\ell(G) \leqslant \frac{3n}{5}.$$

Proposition 2 shows that the bound of Theorem 3 is sharp even if we restrict the minimum degree to be at least 2. It appears a difficult problem to characterise connected graphs of order at least 2 with least domination number three-fifths their order. Hence, following McCraig and Shepherd [5] and others, we shall restrict our attention to edge-minimal graphs. More precisely, we will refer to a graph *G* of order $n \ge 2$ that is edge-minimal with respect to satisfying *G* connected and $\gamma_{\ell}(G) = 3n/5$ as a $\frac{3}{5}$ -minimal graph. Furthermore, we will refer to *G* as a $\frac{3}{5}$ -minimal 2-graph if *G* is edge-minimal with respect to satisfying three conditions:

- (i) $\delta(G) \ge 2$,
- (ii) G is connected, and
- (iii) $\gamma_{\ell}(G) = 3n/5$.

In this paper we study graphs with least domination number three-fifths their order. We have two aims: first to characterise $\frac{3}{5}$ -minimal graphs, and second to construct a family of $\frac{3}{5}$ -minimal 2-graphs that are not cycles.

2. A family of $\frac{3}{5}$ -minimal graphs

In order to characterise $\frac{3}{5}$ -minimal graphs, we introduce a family \mathcal{T} of $\frac{3}{5}$ -minimal graphs. Let *F* be a forest that consists of $k \ge 1$ (disjoint) paths P_5 . Colour the end-vertices in *F* with the colour *blue*, colour the vertices adjacent to an end-vertex with the colour *green*, and colour the central vertex of each path with the colour *red*. Hence each vertex in *F* is coloured either blue, green, or red. If $k \ge 2$, then we construct a tree *G* from the forest *F* by adding k - 1 edges such that each added edge joins vertices of the same colour. If k=1, then we let G=F. We refer to the forest *F* as the *underlying forest* of *G*. The collection of all such trees *G* of order 5k we denote by \mathcal{T}_k and the union of all the families \mathcal{T}_k we denote by \mathcal{T} .

Before proceeding further, we introduce some additional notation. Let $G \in \mathscr{T}_k$. We let $\mathscr{H}_G = \{H_1, H_2, \ldots, H_k\}$, where H_1, H_2, \ldots, H_k denote the *k* paths in the underlying forest of *G*. Let D_G denote the set of all green and red vertices in *G*. Then D_G is a dominating set of *G* of cardinality 3k=3n/5. Let R_G denote the set of red vertices in *G*. Then R_G is a dominating set of $\langle D_G \rangle$ of cardinality *k*, and so $\gamma(\langle D_G \rangle) \leq k$.

We shall prove:

Theorem 4. If $G \in \mathcal{T}$, then D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$.

Proof. We proceed by induction on $k \ge 1$. If k = 1, then *G* is a path P_5 and it is straightforward to verify that the statement of the theorem is true. Suppose the result is true for all trees in $\mathscr{T}_{k'}$ where $1 \le k' < k$. Let $G \in \mathscr{T}_k$ and let *F* denote the underlying forest of *G*. Let *S* be a γ_ℓ -set of *G* and let *S'* be a γ -set of $\langle S \rangle$. Since $\gamma(\langle D_G \rangle) \le k$, we know that $|S'| = \gamma(\langle S \rangle) \le k$.

Lemma 5. If G contains an edge joining two green vertices, then $S = D_G$ and $S' = R_G$.

Proof. Suppose $bb' \in E(G)$, where *b* and *b'* are two green vertices. By construction, bb' is a bridge of *G* and the two components of G - bb' both belong to \mathscr{T} . Let G_1 and G_2 be the two components of G - bb' where G_1 contains the vertex *b*. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. For i = 1, 2, we may assume G_i has order $5k_i$.

Claim 6. $b, b' \in S$.

Proof. If $b, b' \notin S$, then S_i is a dominating set of G_i for i = 1, 2. Applying the inductive hypothesis to G_i , D_{G_i} is the unique l.d.s. of G_i . Since $S_i \neq D_{G_i}$, $\gamma(\langle S_i \rangle) \ge k_i + 1$. Since $b, b' \notin S$, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle)$. Consequently, $\gamma(\langle S \rangle) \ge k_1 + k_2 + 2 = k + 2$, a contradiction. Hence we may assume that $b' \in S$.

Suppose $b \notin S$. If $\gamma(\langle S_2 \rangle) \ge k_2 + 1$, then $S_1 \cup D_{G_2}$ is a dominating set of *G* satisfying $\gamma(\langle S_1 \cup D_{G_2} \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle D_{G_2} \rangle) < \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) = \gamma(\langle S \rangle)$, contradicting the fact that *S* is a l.d.s. of *G*. Hence $\gamma(\langle S_2 \rangle) \le k_2$. Thus, applying the inductive hypothesis to G_2 , $S_2 = D_{G_2}$, $\gamma(\langle S_2 \rangle) = k_2$ and S'_2 consists of the red vertices of G_2 .

If S_1 dominates b, then S_1 is a dominating set of G_1 . However $b \notin S_1$, and so, applying the inductive hypothesis to G_i , $\gamma(\langle S_1 \rangle) \ge k_1 + 1$. Hence $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Thus S_1 cannot dominate b, i.e., no neighbour of b in G_1 belongs to S_1 .

Let $b \in V(H)$ where $H \in \mathscr{H}_G$ denotes the path a, b, c, d, e. Then $a, c \notin S_1$. If b is adjacent to a green vertex in G_1 , then there exists two adjacent green vertices that do not belong to S. As shown earlier, this produces a contradiction. Hence a and c are the only neighbours of b in G_1 .

Since S_1 must dominate a, and $a, b \notin S_1$, a has degree at least 2 in G_1 , and so $k_1 \ge 2$. Let G_a be the component of G-ab containing a. By construction, G_a has order $5k_a+1$ for some $k_a \ge 1$. Let $S_a = S \cap V(G_a)$.

Claim 6.1. $|S_a| \leq 3k_a$.

Proof. Since $b \notin S$, S_a is a dominating set of G_a . Since *b* is dominated by *b'* in *S*, S_a must be a γ_ℓ -set of G_a , for otherwise we could add the vertices in a γ_ℓ -set of G_a to the vertices in $S - S_a$ to produce a dominating set S^* of *G* satisfying either $\gamma(\langle S^* \rangle) < \gamma(\langle S \rangle)$ or $\gamma(\langle S^* \rangle) = \gamma(\langle S \rangle)$ and $|S^*| < |S|$, contradicting our choice of *S*. Hence, by Theorem 3, $|S_a| = \gamma_\ell(G_a) \leq 3(5k_a + 1)/5$, i.e., $|S_a| \leq 3k_a$. \Box

Let $D_a = D_G \cap V(G_a)$.

Claim 6.2. $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1.$

Proof. Let G' be obtained from G_a by attaching a path a, a_1, a_2, a_3, a_4 to a. Then $Y = S_a \cup \{a_2, a_3\}$ is a dominating set of G'. By construction, $G' \in \mathcal{T}$ and G' has order less than 5k. Applying the inductive hypothesis to G', $D_{G'}$ is the unique γ_ℓ -set of G'. Note that $\gamma(\langle D_{G'} \rangle) = \gamma(\langle D_a \rangle) + 1$ and $\gamma(\langle Y \rangle) = \gamma(\langle S_a \rangle) + 1$. Furthermore, $|Y| = |S_a| + 2$ while $|D_{G'}| = |D_a| + 3$. Since $Y \neq D_{G'}$, Y cannot be a γ_ℓ -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_a \rangle) = \gamma(\langle D_a \rangle)$ and $|S_a| \ge |D_a| + 2 = 3k_a + 2$. However, by Claim 6.1, $|S_a| \le 3k_a$. Consequently, $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1$.

Let G_c be the component of G - bc containing c. By construction, G_c has order $5k_c + 3$ for some $k_c \ge 0$. Let $S_c = S \cap V(G_c)$. Since $b, c \notin S, b, c \notin S_c$.

Claim 6.3. $|S_c| \leq 3k_c + 1$.

Proof. Since $b \notin S$, S_c is a dominating set of G_c . Since b is dominated by b' in S, S_c must be a γ_ℓ -set of G_c . Hence, by Theorem 3, $|S_c| = \gamma_\ell(G_c) \leq 3(5k_c + 3)/5$, i.e., $|S_c| \leq 3k_c + 1$. \Box

Let $D_c = D_{G_1} - D_a$.

Claim 6.4. $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$.

Proof. Let G' be obtained from G_c by attaching a path c, f, g to c. By construction, $G' \in \mathscr{T}$ and G' has order less than 5k. Applying the inductive hypothesis to $G', D_{G'} = D_c$ is the unique γ_ℓ -set of G'. Let $Y = S_c \cup \{g\}$. Then Y is a dominating set of G'. Furthermore, $\gamma(\langle Y \rangle) = \gamma(\langle S_c \rangle) + 1$ and $|Y| = |S_c| + 1$. Since $Y \neq D_{G'}$, Y cannot be a γ_ℓ -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_c \rangle) = \gamma(\langle D_c \rangle) - 1$ and $|S_c| \ge |D_c| = 3k_c + 3$. However, by Claim 6.3, $|S_c| \le 3k_c + 1$. Consequently, $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$.

By Claims 6.2 and 6.4, $\gamma(\langle S_1 \rangle) = \gamma(\langle S_a \rangle) + \gamma(\langle S_c \rangle) \ge \gamma(\langle D_a \rangle) + \gamma(\langle D_c \rangle) + 1 = \gamma(\langle D_{G_1} \rangle) + 1 = k_1 + 1$. Furthermore, $\gamma(\langle S_2 \rangle) = k_2$ as observed earlier. Hence, $\gamma(\langle S \rangle) = k_1 + 1$.

 $\gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Hence we must have $b \in S$. This completes the proof of Claim 6. \Box

By Claim 6, $b, b' \in S$. Thus S_i is a dominating set of G_i for i = 1, 2. Applying the inductive hypothesis to G_i , $\gamma(\langle S_i \rangle) \ge k_i$ with equality if and only if $S_i = D_{G_i}$.

Suppose $S_i \neq D_{G_i}$ for i = 1, 2. Then $\gamma(\langle S_i \rangle) \geq k_i + 1$ for each i. If $b, b' \in S'$, then S'_i dominates S_i , whence $|S'_i| \geq \gamma(\langle S_i \rangle) \geq k_i + 1$. But then $|S'| = |S'_1| + |S'_2| \geq k + 2$, a contradiction. So we may assume that $b \notin S'$. Then $S'_1 \cup \{b\}$ dominates S_1 , and so $|S'_1| + 1 \geq \gamma(\langle S_1 \rangle) \geq k_1 + 1$, i.e., $|S'_1| \geq k_1$. If $b' \in S'$, then $|S'_2| \geq k_2 + 1$, and so $|S'_1| = |S'_1| + |S'_2| \geq k + 1$, a contradiction. Hence $b' \notin S'$. Since $b, b' \notin S'$, S'_i dominates S_i for i = 1, 2, and so $|S'_i| \geq k_i + 1$. Thus, $|S'| = |S'_1| + |S'_2| \geq k + 2$, a contradiction. Hence we may assume that $S_1 = D_{G_1}$.

Since $S_1 = D_{G_1}$, $\gamma(\langle S_1 \rangle) = k_1$ and the k_1 red vertices in G_1 form a unique γ -set of $\langle S_1 \rangle$. If S'_1 does not dominate S_1 , then $S'_1 \cup \{b\}$ dominates S_1 . However, $S'_1 \cup \{b\}$ is not the unique γ -set of $\langle S_1 \rangle$, and so $|S'_1| + 1 \ge k_1 + 1$, i.e., $|S'_1| \ge k_1$. On the other hand, if S'_1 does dominate S_1 , then $|S'_1| \ge k_1$ with equality if and only if S'_1 consists of the red vertices of G_1 . In any event, $|S'_1| \ge k_1$.

Suppose $S_2 \neq D_{G_2}$. Then $\gamma(\langle S_2 \rangle) \geq k_2 + 1$. If $b' \in S'$, then S'_2 dominates S_2 and therefore $|S'_2| \geq k_2 + 1$. But then $|S'| = |S'_1| + |S'_2| \geq k_1 + k_2 + 1 = k + 1$, a contradiction. Hence $b' \notin S'$. Suppose S'_2 does not dominate S_2 . Then $b \in S'_1$, and so S'_1 is not the unique γ -set of $\langle S_1 \rangle$. Thus $|S'_1| \geq k_1 + 1$. Furthermore, $S'_2 \cup \{b'\}$ dominates S_2 . Consequently, $|S'_2| + 1 \geq \gamma(\langle S_2 \rangle) \geq k_2 + 1$, i.e., $|S'_2| \geq k_2$. Thus $|S'| = |S'_1| + |S'_2| \geq k_1 + k_2 + 1 = k + 1$, a contradiction. Hence S'_2 dominates S_2 , and so $|S'_2| \geq \gamma(\langle S_2 \rangle) \geq k_2 + 1$. Thus $|S| = |S'_1| + |S'_2| \geq k_1 + k_2 + 1 = k + 1$, a contradiction. Hence $S_2 = D_{G_2}$.

We have now established that $S = S_1 \cup S_2 = D_{G_1} \cup D_{G_2} = D_G$. Furthermore, $\gamma(\langle S_i \rangle) = k_i$ and the k_i red vertices in G_i form a unique γ -set of $\langle S_i \rangle$. As observed earlier, $|S'_i| \ge k_i$ for i=1,2. If $b \in S'$, then, as observed earlier, $|S'_1| \ge k_1+1$, and so $|S| = |S'_1| + |S'_2| \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Hence $b \notin S'$. Similarly, $b' \notin S'$. Thus S'_i dominates S_i for i=1,2. By induction, $|S'_i| \ge k_i$ with equality if and only if S'_i consists of the red vertices of G_i . Since $k = |S'| = |S'_1| + |S'_2| \ge k_1 + k_2 = k$, it follows that $|S'_i| = k_i$ and S'_i consists of the red vertices of G_i for i=1,2. Thus $S' = R_G$. This completes the proof of Lemma 5. \Box

By Lemma 5, if G contains an edge joining two green vertices, then $S = D_G$ and $S' = R_G$, i.e., D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$. Hence in what follows, we assume that there is no edge joining two green vertices.

Lemma 7. If G contains an edge joining two red vertices, then $S = D_G$ and $S' = R_G$.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore omitted. Suppose $cc' \in E(G)$, where *c* and *c'* are two red vertices. By construction, cc' is a bridge of *G* and the two components of G - cc' both belong to \mathcal{T} . Let G_1 and

 G_2 be the two components of G - cc' where G_1 contains the vertex c. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. For i = 1, 2, we may assume G_i has order $5k_i$.

As in the proof of Claim 6, at least one of c or c' belongs to S. We may assume $c' \in S$. Suppose $c \notin S$. Then (as in the proof of Claim 6) $S_2 = D_{G_2}$ and $\gamma(\langle S_2 \rangle) = k_2$. Furthermore no neighbour of c in G_1 belongs to S_1 . Let $c \in V(H)$ where $H \in \mathscr{H}_G$ denotes the path a, b, c, d, e. Then $b, d \notin S_1$. If c is adjacent to a red vertex in G_1 , then there exists two adjacent red vertices that do not belong to S. This, however, produces a contradiction. Hence b and d are the only neighbours of c in G_1 .

Let G_b be the component of G - bc containing b. By construction, G_b has order $5k_b + 2$ for some $k_b \ge 0$. Let $S_b = S \cap V(G_b)$ and let $D_b = (D_G \cap V(G_b)) \cup \{c, d\}$. Then $|S_b| \le 3k_b + 1$ while $|D_b| = 3k_b + 3$. Let G' be obtained from G_b by attaching a path b, c, d, e to b. Then $Y = S_b \cup \{d\}$ is a dominating set of G'. By construction, $G' \in \mathcal{T}$ and G' has order less than 5k. Applying the inductive hypothesis to G', $D_{G'} = D_b$ is the unique γ_ℓ -set of G'. Note that $\gamma(\langle Y \rangle) = \gamma(\langle S_b \rangle) + 1$ while $|Y| = |S_b| + 1$. Since $Y \neq D_{G'}$, Y cannot be a γ_ℓ -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_b \rangle) \ge \gamma(\langle D_b \rangle)$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_b \rangle) = \gamma(\langle D_b \rangle) = 3k_b + 3$. However, as observed earlier, $|S_b| \le 3k_b + 1$. Consequently, $\gamma(\langle S_b \rangle) \ge \gamma(\langle D_b \rangle)$.

Let G_d be the component of G - cd containing d. By construction, G_d has order $5k_d + 2$ for some $k_d \ge 0$. Let $S_d = S \cap V(G_d)$ and let $D_d = (D_G \cap V(G_d)) \cup \{b, c\}$. Then $\gamma(\langle S_d \rangle) \ge \gamma(\langle D_d \rangle)$.

Now $\gamma(\langle S_1 \rangle) = \gamma(\langle S_b \rangle) + \gamma(\langle S_d \rangle) \ge \gamma(\langle D_b \rangle) + \gamma(\langle D_d \rangle) = \gamma(\langle D_{G_1} \rangle) + 1 = k_1 + 1$. Furthermore, $\gamma(\langle S_2 \rangle) = k_2$ as observed earlier. Hence, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Hence we must have $c \in S$.

Since $c, c' \in S$, S_i is a dominating set of G_i for i = 1, 2. Continuing now as in the last four paragraphs of the proof of Lemma 5 (with 'b' and 'b'' replaced by 'c' and 'c''), respectively, we can show that $S = D_G$ and $S' = R_G$. This completes the proof of Lemma 7. \Box

By Lemma 7, if G contains an edge joining two red vertices, then D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$. Hence in what follows, we assume that there is no edge joining two red vertices. Thus all $k - 1 \ge 1$ edges added to the underlying forest of G to construct G join blue vertices.

Suppose *a* and *a'* are two adjacent blue vertices of *G*. Let G_1 and G_2 be the two components of G - aa' where G_1 contains the vertex *a*. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. By construction, each of G_1 and G_2 belong to \mathscr{T} . For i = 1, 2, we may assume $G_i \in \mathscr{T}_{k_i}$. Applying the inductive hypothesis to G_i , D_{G_i} is the unique l.d.s. of G_i and the red vertices in G_i form a unique γ -set of $\langle D_{G_i} \rangle$ for i = 1, 2.

Suppose $a, a' \in S$. Then $S_i \neq D_{G_i}$ and $\gamma(\langle S_i \rangle) \ge k_i + 1$ for i = 1, 2. If $a, a' \in S'$, then S'_i dominates S_i , whence $|S'_i| \ge \gamma(\langle S_i \rangle) \ge k_i + 1$. But then $|S'| = |S'_1| + |S'_2| \ge k + 2$, a contradiction. So we may assume that $a \notin S'$. Then $S'_1 \cup \{a\}$ dominates S_1 , and so $|S'_1| + 1 \ge \gamma(\langle S_1 \rangle) \ge k_1 + 1$, i.e., $|S'_1| \ge k_1$. If $a' \in S'$, then $|S'_2| \ge k_2 + 1$, and so $|S'| = |S'_1| + |S'_2| \ge k + 1$, a contradiction. Hence $a' \notin S'$. Since $a, a' \notin S'$, S'_i dominates S_i for

i = 1, 2, and so $|S'_i| \ge k_i + 1$. Thus, $|S'| = |S'_1| + |S'_2| \ge k + 2$, a contradiction. Hence we may assume $a \notin S$.

Suppose $a' \in S$. Then $S_2 \neq D_{G_2}$ and $\gamma(\langle S_2 \rangle) \geq k_2 + 1$. If S_1 does not dominate G_1 , then $S_1 \cup \{a\}$ dominates S_1 . Since $S_1 \cup \{a\} \neq D_{G_1}$, $\gamma(\langle S_1 \rangle) + 1 = \gamma(\langle S_1 \cup \{a\} \rangle) \geq k_1 + 1$, and so $\gamma(\langle S_1 \rangle) \geq k_1$. On the other hand, if S_1 dominates G_1 , then $\gamma(\langle S_1 \rangle) \geq k_1$. In any event, $\gamma(\langle S_1 \rangle) \geq k_1$. Hence, since $a \notin S$, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \geq k_1 + k_2 + 1 = k + 1$, a contradiction. Hence $a' \notin S$.

Since $a, a' \notin S$, S_i is a dominating set of G_i and S'_i dominates S_i for i = 1, 2. By induction, $|S'_i| \ge k_i$ with equality if and only if $S_i = D_{G_i}$ and S'_i consists of the red vertices of G_i . Since $k \ge |S'| = |S'_1| + |S'_2| \ge k_1 + k_2 = k$, it follows that $S_i = D_{G_i}$, $|S'_i| = k_i$ and S'_i consists of the red vertices of G_i for i = 1, 2. Thus $S = D_G$ and $S' = R_G$. This completes the proof of Theorem 4. \Box

By Theorem 4, D_G is the unique γ_ℓ -set of G. In particular, $\gamma_\ell(G) = |D_G| = 3k = 3n/5$. Furthermore, G is edge-minimal with respect to satisfying G connected. Hence we have the following result.

Proposition 8. Each graph in the family \mathcal{T} is a $\frac{3}{5}$ -minimal graph.

3. A characterization of $\frac{3}{5}$ -minimal graphs

We shall prove:

Theorem 9. A graph G is a $\frac{3}{5}$ -minimal graph if and only if $G \in \mathcal{T}$.

The sufficiency of Theorem 9 follows from Proposition 8. To prove the necessity of Theorem 9, we first present a proof of Theorem 3. The proof follows that of Favaron [2] and Zverovich [8].

Proof of Theorem 3. Let G = (V, E) be a graph of order *n* with no isolated vertex. Let *D* be a γ_{ℓ} -set of *G* with the minimum number of isolated vertices in $\langle D \rangle$. Let *I* be the set of isolated vertices in $\langle D \rangle$. Let *X* be a minimum dominating set of $\langle D - I \rangle$, and let $Y = D - (I \cup X)$. Then $pn(x, X, Y) \neq \emptyset$ for every $x \in X$. Let $X_1 = \{x \in X : |pn(x, X, Y)| = 1\}$ and let $X_2 = X - X_1$.

Claim 10. $pn(v, D, V - D) \neq \emptyset$ for every $v \in D - X_2$.

Proof. If $pn(v, I, V - D) = \emptyset$ and $v' \in N(v)$, then $D' = (D - \{v\}) \cup \{v'\}$ is a γ_{ℓ} -set of *G* with fewer isolated vertices in $\langle D' \rangle$ than in $\langle D \rangle$, contrary to our choice of *D*. Hence $pn(v, I, V - D) \neq \emptyset$ for every $v \in I$. Clearly, the minimality of *D* implies that $pn(y, Y, V - D) \neq \emptyset$ for every $y \in Y$. Finally, if $x \in X_1$ and $pn(x, X_1, Y) = \{y\}$, then $pn(x, X_1, V - D) \neq \emptyset$, for otherwise $D - \{x\}$ is a dominating set of *G* and

 $\gamma(\langle D - \{x\}\rangle) = |(I \cup X) - \{x\} \cup \{y\}| = |I \cup X| = \gamma(\langle D \rangle)$, which contradicts the minimality of *D*. \Box

By Claim 10, $|V - D| \ge |D - X_2|$, and so $n - \gamma_{\ell}(G) \ge \gamma_{\ell}(G) - |X_2|$, or, equivalently, $\gamma_{\ell}(G) \le (n + |X_2|)/2$. Furthermore, by definition of X_2 , $|Y| \ge 2|X_2|$. Hence $n = |V - D| + |D| \ge |D - X_2| + |D| = 2|D| - |X_2| \ge 2(|Y| + |X_2|) - |X_2| = 2|Y| + |X_2| \ge 5|X_2|$, and so $|X_2| \le n/5$. Thus $\gamma_{\ell}(G) \le (n + |X_2|)/2 \le 3n/5$. This completes the proof of Theorem 3. \Box

We are now in a position to prove the necessity of Theorem 9. We proceed by induction on the order n = 5k, where $k \ge 1$ is an integer, of a $\frac{3}{5}$ -minimal graph. It is straightforward to check that the only $\frac{3}{5}$ -minimal graph on five vertices is $P_5 \in \mathcal{T}$. Hence the result is true if k = 1. Let $k \ge 2$, and assume the result is true for all $\frac{3}{5}$ -minimal graphs of order less than n. Let G = (V, E) be a $\frac{3}{5}$ -minimal graph of order n = 5k. If $G \cong P_n$, then the result follows. So we may assume that G is not a path. Since C_n is not a $\frac{3}{5}$ -minimal graph, we must have $\Delta(G) \ge 3$. In what follows, we shall use the notation employed in the proof of Theorem 3 presented above.

Since $\gamma_{\ell}(G) = 3n/5$, all the inequalities in the last paragraph of the proof of Theorem 3 must be equalities. In particular, $|D| = |Y| + |X_2|$ (and so $I = \emptyset$ and $X = X_2$), $X = \{x \in X : |pn(x, X, Y)| = 2\}$, and |pn(y, Y, V - D)| = 1 for every $y \in Y$. Let $X = \{x_1, \ldots, x_k\}$, $Y = \{y_1, \ldots, y_k\} \cup \{w_1, \ldots, w_k\}$ and $Z = \{a_1, \ldots, a_k\} \cup \{b_1, \ldots, b_k\} = V - D$. Then *G* has the following structure. For each $i = 1, \ldots, k$, $N(x_i) \cap (V - X) = \{y_i, w_i\}$, $N(y_i) \cap Z = \{a_i\}$, and $N(w_i) \cap Z = \{b_i\}$.

For i = 1, ..., k, if $y_i w_i$ is an edge of G, then $D - \{x_i\}$ is a dominating set of Gand $\gamma(\langle D - \{x_i\}\rangle) = |X - \{x_i\} \cup \{y_i\}| = |X| = \gamma(\langle D \rangle)$, which contradicts the minimality of D. Hence $y_i w_i$ cannot be an edge of G. Let $H_i = \langle \{x_i, y_i, w_i, a_i, b_i\} \rangle$, and let $\mathscr{H}_G = \{H_1, ..., H_k\}$.

Before proceeding further, we prove a few results that will be useful in what follows.

Claim 11. If $e \in E$ and $e \notin [X, Y] \cup [Y, Z]$, then e is a bridge of G.

Proof. Suppose G - e is connected. Let S be a γ_{ℓ} -set of G - e. Since G - e has no isolated vertex, Theorem 3 implies that $|S| = \gamma_{\ell}(G - e) \leq 3n/5$. Furthermore, since S is a dominating set of G, $\gamma(\langle D \rangle) \leq \gamma(\langle S \rangle)$. On the other hand, since $e \notin [X, Y] \cup [Y, Z]$, D is a dominating set of G - e, and so $\gamma(\langle S \rangle) \leq \gamma(\langle D \rangle)$. Consequently, $\gamma(\langle S \rangle) = \gamma(\langle D \rangle)$. Thus S is a l.d.s. of G, and so $3n/5 = |D| = \gamma_{\ell}(G) \leq |S| \leq 3n/5$. Hence we must have |S| = |D| = 3n/5. Thus, G - e is a connected graph satisfying $\gamma_{\ell}(G - e) = |S| = 3n/5$. This contradicts the minimality of G. Hence G - e is disconnected. \Box

By Claim 11, $a_i b_i \notin E(G)$ for all i = 1, ..., k. Hence $H \cong P_5$ for each $H \in \mathscr{H}_G$.

Claim 12. If there is a vertex in $X \cup Y$ of degree at least 3, then $G \in \mathcal{T}$.

Proof. Suppose deg $v \ge 3$ for some $v \in X \cup Y$. Suppose $v \in V(H)$, where $H \in \mathcal{H}_G$. Since v has degree 2 in H, v must be adjacent to a vertex u not in H. From the structure of G we know that either $u, v \in X$ or $u, v \in Y$. In any event, deg $u \ge 3$ and $uv \notin [X, Y] \cup [Y, Z]$. By Claim 11, uv is a bridge of G. Thus G - uv contains two components, namely a component G_1 containing u and a component G_2 containing v. For i = 1, 2, let G_i have order n_i . Since the vertices of each graph in \mathcal{H}_G all belong to the same component of G - uv, $n_i \equiv 0 \pmod{5}$. Suppose G_i contains k_i of the subgraphs of \mathcal{H}_G . Then $n_i = 5k_i$. Furthermore, $k = k_1 + k_2$.

For i = 1, 2, let $D_i = D \cap V(G_i)$. Then $|D_i| = 3k_i$ and $\gamma(\langle D_i \rangle) = k_i$. For i = 1, 2, let S_i be a γ_ℓ -set of G_i . If $\gamma(\langle S_1 \rangle) < k_1$, then $S_1 \cup D_2$ would be a dominating set of Gsatisfying $\gamma(\langle S_1 \cup D_2 \rangle) < k = \gamma(\langle D \rangle)$, contradicting our choice of D. Hence $\gamma(\langle S_1 \rangle) \ge k_1$. However, since D_1 is a dominating set of G_1 and $\gamma(\langle D_1 \rangle) = k_1, \gamma(\langle S_1 \rangle) = k_1$. If $|S_1| < 3k_1$, then $S_1 \cup D_2$ would be a dominating set of G satisfying $\gamma(\langle S_1 \cup D_2 \rangle) = k$ and $|S_1 \cup D_2| < 3k = |D|$, contradicting our choice of D. Hence $|S_1| = 3k_1$. Thus D_1 is a γ_ℓ -set of G_1 . Similarly, D_2 is a γ_ℓ -set of G_2 . Thus, for $i = 1, 2, G_i$ is a connected graph satisfying $\gamma_\ell(G_i) = 3n_i/5$. By the inductive hypothesis, $G_i \in \mathcal{T}_{k_i}$ for i = 1, 2. Furthermore, since D_i is a γ_ℓ -set of G_i , $D_i = D_{G_i}$ by Theorem 4. Thus the vertices of X, Y, and Z in G_i are coloured red, green, and blue, respectively. If $u, v \in X$, then u and v are both coloured red. On the other hand, if $u, v \in Y$, then u and v are both coloured green. In any event, $G \in \mathcal{T}$. This completes the proof of Claim 12. \Box

In what follows, we may assume that each vertex in $X \cup Y$ has degree 2 in G, for otherwise $G \in \mathcal{T}$ by Claim 12. Hence for each i = 1, ..., k, $N(x_i) = \{y_i, w_i\}$, $N(y_i) = \{a_i, x_i\}$, and $N(w_i) = \{b_i, x_i\}$. By Claim 11, each edge in $\langle Z \rangle$ is a bridge of G. Thus G is obtained from $k \ge 2$ (disjoint) paths P_5 by adding k - 1 edges that join end-vertices from different paths (to produce a connected graph), i.e., $G \in \mathcal{T}$. This completes the proof of Theorem 9. \Box

4. A family of $\frac{3}{5}$ -minimal 2-graphs that are not cycles

Let \mathscr{C}_5 denote the family of all cycles of length congruent to 0 modulo 5, that is,

$$\mathscr{C}_5 = \{C_n \mid n \equiv 0 \pmod{5}\}.$$

By Proposition 2, each graph in \mathscr{C}_5 has least domination number three-fifths its order. Furthermore, each graph in \mathscr{C}_5 is clearly edge-minimal with respect to satisfying minimum degree at least 2. Hence we have the following result.

Proposition 13. Each graph in the family \mathscr{C}_5 is a $\frac{3}{5}$ -minimal 2-graph.

In this section our aim is to construct a family of $\frac{3}{5}$ -minimal 2-graphs, which we call \mathscr{G}^* , that is different from the family \mathscr{C}_5 . For this purpose, let $F_1 = (V, E_1)$ be a forest that consists of $k \ge 3$ (disjoint) K_2 s, i.e., $F_1 \cong kK_2$. Colour the vertices in F_1 with the

Fig. 1. The construction of the graph $G_3 \in \mathscr{G}$.

colour *blue*. We construct a graph $F_2 = (V, E_1 \cup E_2)$ from the forest F_1 by adding a set E_2 of edges to F_1 in such a way that there are no even cycles that alternate in edges of E_1 and $E_2 - E_1$ and such that F_2 is edge-minimal with respect to satisfying $\delta(F_2) \ge 2$ and F_2 connected. We now construct a graph G from F_2 by subdividing each edge of E_1 three times. Each resulting new vertex that is adjacent to a blue vertex we colour with the colour *green*, while each new vertex that is not adjacent to a blue vertex we colour difference of G that are coloured green or red and are incident with a bridge in G. We refer to the forest F_1 as the *underlying forest* of G and the graph F_2 as the *underlying graph* of G.

By construction, *G* is a connected graph with minimum degree at least 2 and of order n = 5k for some $k \ge 3$. Furthermore, for each edge *e* of *G*, G - e is disconnected or $\delta(G - e) = 1$. The collection of all such graphs *G* of order 5k we denote by \mathscr{G}_k and the union of all the families \mathscr{G}_k we denote by \mathscr{G} . If k = 3, then $\mathscr{G}_k = \{G_3\}$, where G_3 is the graph in \mathscr{G} with underlying forest $F_1 \cong 3K_2$ and with underlying graph F_2 shown in Fig. 1. (The vertices in G_3 coloured blue, green, and red are labelled *B*, *G*, and *R*, respectively.)

To construct the family \mathscr{G}^* , let G_1, \ldots, G_m be $m \ge 1$ graphs in \mathscr{G} . Let G^* be a connected graph obtained from the (disjoint) union $\bigcup_{i=1}^m G_i$ by adding a set of m-1 edges E^* such that each added edge joins vertices of the same colour in $\bigcup_{i=1}^m V_{G_i}$. If m = 1, then $G^* = G_1$. Let E_B denote the set of all edges of G^* that join two blue vertices. By construction, G^* has order congruent to 0 modulo 5 and is edge-minimal with respect to satisfying $\delta(G^*) \ge 2$ and G^* connected. The collection of all such graphs G^* we denote by \mathscr{G}^* .

Before proceeding further, we present some properties of graphs in the family \mathscr{G}^* . Let $G \in \mathscr{G}^*$ have order 5k. Then, by construction, $G - E^* - E_B$ consists of k (vertex disjoint) P_5 s which we denote by H_1, H_2, \ldots, H_k . Let $\mathscr{H}_G = \{H_1, H_2, \ldots, H_k\}$. We refer to \mathscr{H}_G as the path partition of G. Let D_G denote the set of all green and red vertices in G. Then D_G is a dominating set of G of cardinality 3k = 3n/5. Let R_G denote the set of red vertices in G. Then R_G is a dominating set of $\langle D_G \rangle$ of cardinality k, and so $\gamma(\langle D_G \rangle) \leq k$.

We shall prove:

Theorem 14. If $G \in \mathscr{G}^*$, then D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$.

Proof. We proceed by induction on $k \ge 3$. If k = 3, then G is the graph G_3 of Fig. 1 and it is straightforward to verify that the statement of the theorem is true. Suppose the result is true for all graphs in \mathscr{G}^* of order less than 5k. Let $G \in \mathscr{G}^*$ have order 5k. Let S be a γ_ℓ -set of G and let S' be a γ -set of $\langle S \rangle$. Since $\gamma(\langle D_G \rangle) \le k$, we know that $|S'| = \gamma(\langle S \rangle) \le k$.

Lemma 15. If G contains an edge joining two green vertices, then $S=D_G$ and $S'=R_G$.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore omitted. Suppose $bb' \in E(G)$, where *b* and *b'* are two green vertices. By construction, bb' is a bridge of *G* and the two components of G - bb' both belong to \mathscr{G}^* . Let G_1 and G_2 be the two components of G - bb' where G_1 contains the vertex *b*. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. For i = 1, 2, we may assume G_i has order $5k_i$.

Claim 16. $b, b' \in S$.

Proof. We may assume (as in the proof of Lemma 5) that $b' \in S$. Suppose $b \notin S$. Then (as in the proof of Lemma 5) $S_2 = D_{G_2}$, $\gamma(\langle S_2 \rangle) = k_2$ and S'_2 consists of the red vertices of G_2 . Let $b \in V(H)$ where $H \in \mathscr{H}_G$ denotes the path a, b, c, d, e. Then a and c are the only neighbours of b in G_1 and $a, c \notin S_1$. Let G_a be the component of G-ab containing a. By construction, G_a has order $5k_a + 1$ for some $k_a \ge 1$. Let $S_a = S \cap V(G_a)$. Then $|S_a| \le 3k_a$. Let $D_a = D_G \cap V(G_a)$.

Claim 17. $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1.$

Proof. Let G' be obtained from G_a by attaching a path a, a_1, a_2, a_3, a_4 to a and then attaching a 6-cycle $a_4, v_1, v_2, v_3, v_4, v_5, a_4$ to a_4 . Then $Y = S_a \cup \{a_2, a_3, a_4, v_3\}$ is a dominating set of G'. By construction, $G' \in \mathscr{G}^*$ and G' has order less than 5k. Applying the inductive hypothesis to G', $D_{G'}$ is the unique γ_ℓ -set of G'. Note that $\gamma(\langle D_{G'} \rangle) = \gamma(\langle D_a \rangle) + 2$ and $\gamma(\langle Y \rangle) = \gamma(\langle S_a \rangle) + 2$. Furthermore, $|Y| = |S_a| + 4$ while $|D_{G'}| = |D_a| + 6$. Since $Y \neq D_{G'}$, Y cannot be a γ_ℓ -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_a \rangle) \ge \gamma(\langle D_a \rangle) + 1$. \Box

Let G_c be the component of G - bc containing c. By construction, G_c has order $5k_c + 3$ for some $k_c \ge 1$. Let $S_c = S \cap V(G_c)$. Then $|S_c| \le 3k_c + 1$. Let $D_c = D_{G_1} - D_a$.

Claim 18. $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$.

Proof. Let G' be obtained from G_c by attaching a path c, b, a to c and then attaching a 6-cycle $a, v_1, v_2, v_3, v_4, v_5, a$ to a. Then $Y = S_c \cup \{a, v_3\}$ is a dominating set of G'. By construction, $G' \in \mathscr{G}^*$ and G' has order less than 5k. Applying the inductive

hypothesis to G', $D_{G'}$ is the unique γ_{ℓ} -set of G'. Note that $\gamma(\langle D_{G'} \rangle) = \gamma(\langle D_c \rangle) + 1$ and $\gamma(\langle Y \rangle) = \gamma(\langle S_c \rangle) + 2$. Furthermore, $|Y| = |S_c| + 2$ while $|D_{G'}| = |D_c| + 3$. Since $Y \neq D_{G'}$, Y cannot be a γ_{ℓ} -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_c \rangle) = \gamma(\langle D_c \rangle) - 1$ and $|S_c| \ge |D_c| + 2 = 3k_c + 2$. However, as observed earlier, $|S_c| \le 3k_c + 1$. Consequently, $\gamma(\langle S_c \rangle) \ge \gamma(\langle D_c \rangle)$. \Box

By Claims 17 and 18, $\gamma(\langle S_1 \rangle) = \gamma(\langle S_a \rangle) + \gamma(\langle S_c \rangle) \ge \gamma(\langle D_a \rangle) + \gamma(\langle D_c \rangle) + 1 = \gamma(\langle D_{G_1} \rangle) + 1 = k_1 + 1$. Hence, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Hence we must have $b \in S$. This completes the proof of Claim 16. \Box

By Claim 16, $b, b' \in S$. Proceeding now as in the proof of Lemma 5, we can show that $S = D_G$ and that $S' = R_G$. This completes the proof of Lemma 15. \Box

By Lemma 15, if G contains an edge joining two green vertices, then $S = D_G$ and $S' = R_G$, i.e., D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$. Hence in what follows, we assume that there is no edge joining two green vertices.

Lemma 19. If G contains an edge joining two red vertices, then $S = D_G$ and $S' = R_G$.

Proof. The proof is similar to that of Lemma 7 and some of the details are therefore omitted. Suppose $cc' \in E(G)$, where *c* and *c'* are two red vertices. By construction, *cc'* is a bridge of *G* and the two components of G - cc' both belong to \mathscr{G}^* . Let G_1 and G_2 be the two components of G - cc' where G_1 contains the vertex *c*. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. For i = 1, 2, we may assume G_i has order $5k_i$. We may assume $c' \in S$. Suppose $c \notin S$. Then $S_2 = D_{G_2}$ and $\gamma(\langle S_2 \rangle) = k_2$. Let $c \in V(H)$, where $H \in \mathscr{H}_G$ denotes the path a, b, c, d, e. Then *b* and *d* are the only neighbours of *c* in G_1 and $b, d \notin S_1$.

Let G_b be the component of G - bc containing b. By construction, G_b has order $5k_b + 2$ for some $k_b \ge 1$. Let $S_b = S \cap V(G_b)$ and let $D_b = (D_G \cap V(G_b)) \cup \{c, d\}$. Then $|S_b| \le 3k_b + 1$ while $|D_b| = 3k_b + 3$. Let G' be obtained from G_b by attaching a path b, c, d, e to b and then attaching a 6-cycle $e, v_1, v_2, v_3, v_4, v_5, e$ to e. Then $Y = S_b \cup \{d, e, v_3\}$ is a dominating set of G'. By construction, $G' \in \mathscr{G}^*$ and G' has order less than 5k. Applying the inductive hypothesis to $G', D_{G'}$ is the unique γ_ℓ -set of G'. Note that $\gamma(\langle D_{G'} \rangle) = \gamma(\langle D_b \rangle) + 1$ and $\gamma(\langle Y \rangle) = \gamma(\langle S_b \rangle) + 2$. Furthermore, $|Y| = |S_b| + 3$ while $|D_{G'}| = |D_b| + 3$. Since $Y \neq D_{G'}$, Y cannot be a γ_ℓ -set of G'. Hence either $\gamma(\langle Y \rangle) \ge \gamma(\langle D_{G'} \rangle) + 1$, in which case $\gamma(\langle S_b \rangle) \ge \gamma(\langle D_b \rangle)$, or $\gamma(\langle Y \rangle) = \gamma(\langle D_{G'} \rangle)$ and $|Y| > |D_{G'}|$, in which case $\gamma(\langle S_b \rangle) = \gamma(\langle D_b \rangle) - 1$ and $|S_b| \ge |D_b| + 1 = 3k_b + 4$. However, as observed earlier, $|S_b| \le 3k_b + 1$. Consequently, $\gamma(\langle S_b \rangle) \ge \gamma(\langle D_b \rangle)$.

Let G_d be the component of G - cd containing d. By construction, G_d has order $5k_d + 2$ for some $k_d \ge 1$. Let $S_d = S \cap V(G_d)$ and let $D_d = (D_G \cap V(G_d)) \cup \{b, c\}$. Then $\gamma(\langle S_d \rangle) \ge \gamma(\langle D_d \rangle)$.

Now $\gamma(\langle S_1 \rangle) = \gamma(\langle S_b \rangle) + \gamma(\langle S_d \rangle) \ge \gamma(\langle D_b \rangle) + \gamma(\langle D_d \rangle) = \gamma(\langle D_{G_1} \rangle) + 1 = k_1 + 1$. Furthermore, $\gamma(\langle S_2 \rangle) = k_2$ as observed earlier. Hence, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k_1 + k_2 + 1 = k + 1$, a contradiction. Hence we must have $c \in S$.

Proceeding now as in the proof of Lemma 7, we can show that $S = D_G$ and that $S' = R_G$. This completes the proof of Lemma 19. \Box

By Lemma 19, if G contains an edge joining two red vertices, then D_G is the unique l.d.s. of G and R_G is the unique γ -set of $\langle D_G \rangle$. Hence in what follows, we assume that there is no edge joining two red vertices. Thus $G \in \mathscr{G}_k \in \mathscr{G}$. If G contains a bridge joining two blue vertices, then, proceeding as in the last four paragraphs of the proof of Theorem 4, we can show that $S = D_G$ and that $S' = R_G$. Hence we assume that there is no bridge in G joining two blue vertices. Thus G is obtained from a path a, b, c, d, eby attaching at least one cycle of length at least 6 and congruent to 1 modulo 5 to each of a and e (by attaching a cycle to a vertex v we mean adding a (disjoint) cycle to the graph and identifying one of its vertices with v). We may assume deg $a \ge \deg e$. Since $k \ge 4$, at least one cycle in G has length at least 11 or at least two cycles are attached to a. Let C be a cycle attached to a. Let a' be a neighbour of a on C. Suppose $a' \in V(H)$ where $H \in \mathscr{H}_G$ denotes the path a', b', c', d', e'.

Claim 20. If C is a 6-cycle, then $S = D_G$ and $S' = R_G$.

Proof. Since C is a 6-cycle, $ae' \in E(G)$. Let G_1 and G_2 be the two components of $G - \{aa', ae'\}$ where G_1 contains the vertex a. For i = 1, 2, let $S_i = S \cap V(G_i)$ and let $S'_i = S' \cap V(G_i)$. By construction, G_1 belongs to \mathscr{G}_{k-1} .

Suppose S_1 is not a dominating set of G_1 . Then S_1 does not contain a nor any neighbour of a. However, $S_1 \cup \{a\}$ is a dominating set of G_1 . Since $S_1 \cup \{a\} \neq D_{G_1}$, $\gamma(\langle S_1 \rangle) + 1 = \gamma(\langle S_1 \cup \{a\} \rangle) \geq k$, and so $\gamma(\langle S_1 \rangle) \geq k - 1$. Since a is not dominated by S_1 , S_2 must be a dominating set of the 6-cycle a, a', b', c', d', e', a, and so $\gamma(\langle S_2 \rangle) \geq 2$. Thus, $\gamma(\langle S \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \geq k + 1$, a contradiction. Hence S_1 is a dominating set of G_1 .

Applying the inductive hypothesis to G_1 , $\gamma(\langle S_1 \rangle) \ge k - 1$ with equality if and only if $S_1 = D_{G_1}$ and S'_1 consists of the red vertices of G_1 . Since $k \ge |S'| \ge |S'_1| + 1 \ge k$, it follows that $S_1 = D_{G_1}$, $|S'_1| = k - 1$ and S'_1 consists of the red vertices of G_1 . Furthermore, $S_2 = \{b', c', d'\}$ and $S'_2 = \{c'\}$. Thus $S = D_G$ and $S' = R_G$. This completes the proof of the claim. \Box

Claim 21. If C has length greater than 6, then $S = D_G$ and $S' = R_G$.

Proof. Let a'' be the blue vertex that is adjacent to e' on C. By assumption, C has length at least 11. Let G_1 be the graph obtained from G - V(H) by adding the edge aa''. By construction, G_1 belongs to \mathscr{G}_{k-1} . Let $S_1 = S \cap V(G_1)$ and let $S'_1 = S' \cap V(G_1)$. Further, let $S_2 = S \cap V(H)$.

Suppose S_1 is not a dominating set of G_1 . Then $a, a'' \notin S_1$ and at least one of aand a'' is not dominated by S_1 . However, $S_1 \cup \{a\}$ is a dominating set of G_1 . Since $S_1 \cup \{a\} \neq D_{G_1}, \gamma(\langle S_1 \rangle) + 1 = \gamma(\langle S_1 \cup \{a\} \rangle) \ge k$, and so $\gamma(\langle S_1 \rangle) \ge k - 1$. If a is not dominated by S_1 , then S_2 must be a dominating set of the path a, a', b', c', d', e'. On the other hand, if a'' is not dominated by S_1 , then S_2 must be a dominating set of the path a', b', c', d', e', a''. In any event, $\gamma(\langle S_2 \rangle) \ge 2$. Thus, $\gamma(\langle S_1 \rangle) = \gamma(\langle S_1 \rangle) + \gamma(\langle S_2 \rangle) \ge k + 1$, a contradiction. Hence S_1 must be a dominating set of G_1 .

Applying the inductive hypothesis to G_1 , $\gamma(\langle S_1 \rangle) \ge k - 1$ with equality if and only if $S_1 = D_{G_1}$ and S'_1 consists of the red vertices of G_1 . Since $k \ge |S'| \ge |S'_1| + 1 \ge k$, it follows that $S_1 = D_{G_1}$, $|S'_1| = k - 1$ and S'_1 consists of the red vertices of G_1 . Furthermore, $S_2 = \{b', c', d'\}$ and $S' - S'_1 = \{c'\}$. Thus $S = D_G$ and $S' = R_G$. This completes the proof of the claim. \Box

By Claims 20 and 21, $S = D_G$ and $S' = R_G$. This completes the proof of Theorem 14. \Box

By Theorem 14, D_G is the unique γ_ℓ -set of G. In particular, $\gamma_\ell(G) = |D_G| = 3k = 3n/5$. Furthermore, G is edge-minimal with respect to satisfying $\delta(G) \ge 2$ and G connected. Hence we have the following result.

Proposition 22. Each graph in the family \mathscr{G}^* is a $\frac{3}{5}$ -minimal 2-graph.

5. Comments

If $G \in \mathscr{C}_5 \cup \mathscr{G}^*$, then, by Propositions 13 and 22, *G* is a $\frac{3}{5}$ -minimal 2-graph. The converse is not true. There are $\frac{3}{5}$ -minimal 2-graphs that do not belong to the families \mathscr{C}_5 or \mathscr{G}^* . For example, the graph *G* shown in Fig. 2 is a $\frac{3}{5}$ -minimal 2-graph that does not belong to $\mathscr{C}_5 \cup \mathscr{G}^*$. Notice, however, that the graph *G* is obtained from two

Fig. 2. A $\frac{3}{5}$ -minimal 2-graph not in $\mathscr{C}_5 \cup \mathscr{G}^*$.

graphs in \mathscr{G}^* by adding an edge joining two red vertices. It is possible to construct a $\frac{3}{5}$ -minimal 2-graph from the (disjoint) union of $m \ge 2$ graphs in \mathscr{G}^* (that satisfy certain special properties) by adding a set of m-1 edges such that each added edge joins two red vertices or two green vertices at least one of which belongs to a cycle in \mathscr{G}^* . However, we have yet to settle which red or green vertices may be used when adding these m-1 edges. It remains an open problem to characterize $\frac{3}{5}$ -minimal 2-graphs.

Acknowledgements

I thank the Lord, the Maker of heaven and earth, for the privilege to enjoy and discover some of the mathematics that in His infinite wisdom He has so wonderfully created.

References

- [1] G. Chartrand, L. Lesniak, Graphs & Digraphs, 3rd Edition, Chapman & Hall, London, 1996.
- [2] O. Favaron, Least domination in a graph, Discrete Math. 150 (1996) 115-122.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [5] W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762.
- [6] O. Ore, Theory of graphs. Amer. Math. Soc. Transl. 38 (Amer. Math. Soc., Providence, RI) (1962) 206-212.
- [7] E. Sampathkumar, The least point covering and domination numbers of a graph, Discrete Math. 86 (1990) 137–142.
- [8] I.E. Zverovich, Proof of a conjecture in domination theory, Discrete Math. 184 (1998) 297-298.