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Abstract

Let G = (V; E) be a graph. A set S ⊆V is a dominating set if every vertex of V − S is
adjacent to some vertex in S. The domination number 
(G) of G is the minimum cardinality of
a dominating set of G. A dominating set D is a least dominating set if 
(〈D〉)6
(〈S〉) for any
dominating set S, and 
‘(G) is the minimum cardinality of a least dominating set. Sampathkumar
(Discrete Math. 86 (1990) 137–142) conjectured that 
‘(G)63n=5 for every connected graph on
n¿2 vertices. This conjecture was proven by Favaron (Discrete Math. 150 (1996) 115–122).
We shall characterise graphs G of order n that are edge-minimal with respect to satisfying
G connected and 
‘(G) = 3n=5. Furthermore, we construct a family of graphs G of order n
that are not cycles and are edge-minimal with respect to satisfying G connected, �(G)¿2 and

‘(G) = 3n=5. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Let G = (V; E) be a graph with vertex set V and edge set E, and let v be a ver-
tex in V . The open neighbourhood of v is N (v) = {u∈V | uv∈E} and the closed
neighbourhood of v is N [v] = {v} ∪ N (v). A path (cycle) on n vertices is denoted
by Pn (Cn, respectively). For a subset S of V , the subgraph of G induced by the
vertices in S is denoted by 〈S〉. The minimum (maximum) degree among the vertices
of G is denoted by �(G) (respectively, �(G)). For disjoint subsets A and B of V ,
we de�ne [A; B] to be the set of all edges that join a vertex of A and a vertex of
B. Furthermore, for a∈A, we de�ne the private neighbourhood pn(a; A; B) of a in B
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to be the set of vertices in B that are adjacent to a but to no other vertex of A;
that is, pn(a; A; B) = {b∈B |N (b) ∩ A = {a}}. For other graph theory terminology,
we follow [1].
A set D⊆V is a dominating set if every vertex in V − D is adjacent to a vertex

in D. The domination number of G, denoted by 
(G), is the minimum cardinality of
a dominating set. For disjoint subsets X and Y of V , we say X dominates Y if every
vertex of Y is adjacent to some vertex of X . The concept of domination in graphs, with
its many variations, is now well studied in graph theory. The book by Chartrand and
Lesniak [1] includes a chapter on domination. For a more thorough study of domination
in graphs, see [3,4].
Various authors have investigated upper bounds on the domination number of a

connected graph in terms of the minimum degree and order of the graph. The earliest
such result is due to Ore [6], who showed that if G is a graph of order n with no
isolated vertex, then 
(G)6n=2. McCraig and Shepherd [5] investigated upper bounds
on the domination number of a connected graph with minimum degree at least 2.

Theorem 1 (McCraig and Shepherd [5]). If G is a connected graph of order n with
�(G)¿2; and if G is not one of seven exceptional graphs (one of order 4 and six of
order 7); then 
(G)62n=5.

McCraig and Shepherd [5] also characterised those connected graphs G of order n
which are edge-minimal with respect to the satisfying �(G)¿2 and 
(G)¿2n=5.
Sampathkumar [7] introduced the concept of least domination in graphs. A least

dominating set (l.d.s.) of a graph G is de�ned in [7] as a dominating set D satisfying

(〈D〉)6
(〈S〉) for any dominating set S. The least domination number 
‘(G) is the
minimum cardinality of a least dominating set. We refer to a l.d.s. of G of cardinality

‘(G) as a 
‘-set of G. Least domination in graphs has been studied by among others,
Favaron [2], Sampathkumar [7], and Zverovich [8]. Results on least domination in
graphs can also be found in the two books on domination by Haynes et al. [3,4]. An
application for the concept of a least dominating set includes the following. A desirable
property for a committee from a collection of people might be that every nonmember
know at least one member of the committee, for ease of communication. Furthermore,
among all such committees we may wish to select a subcommittee of smallest size
from the committee with the desirable property that every committee member not on
the subcommittee know at least one member of the subcommittee. A committee with
a smallest such subcommittee is a least dominating set of the acquaintance graph of
the set of people.
The least domination number of a path and a cycle is established in [7].

Proposition 2 (Sampathkumar [7]). For the path Pn and cycle Cn;


‘(Pn) = 
‘(Cn) = n− 2
⌈n
5

⌉
:
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When n ≡ 0 (mod 5), Proposition 2 implies that 
‘(Pn) = 
‘(Cn) = 3n=5. Sampath-
kumar [7] conjectured that the least domination number of a connected nontrivial graph
is at most three-�fths its order. This conjecture was proven by Favaron [2] and inde-
pendently by Zverovich [8].

Theorem 3 (Favaron [2], Zverovich [8]). If G is a graph of order n with no isolated
vertex; then


‘(G)6
3n
5
:

Proposition 2 shows that the bound of Theorem 3 is sharp even if we restrict the
minimum degree to be at least 2. It appears a di�cult problem to characterise connected
graphs of order at least 2 with least domination number three-�fths their order. Hence,
following McCraig and Shepherd [5] and others, we shall restrict our attention to
edge-minimal graphs. More precisely, we will refer to a graph G of order n¿2 that is
edge-minimal with respect to satisfying G connected and 
‘(G)=3n=5 as a 3

5 -minimal
graph. Furthermore, we will refer to G as a 3

5 -minimal 2-graph if G is edge-minimal
with respect to satisfying the following three conditions:

(i) �(G)¿2,
(ii) G is connected, and
(iii) 
‘(G) = 3n=5.

In this paper we study graphs with least domination number three-�fths their order.
We have two aims: �rst to characterise 3

5 -minimal graphs, and second to construct a
family of 3

5 -minimal 2-graphs that are not cycles.

2. A family of 3
5 -minimal graphs

In order to characterise 3
5 -minimal graphs, we introduce a family T of 3

5 -minimal
graphs. Let F be a forest that consists of k¿1 (disjoint) paths P5. Colour the end-vertices
in F with the colour blue, colour the vertices adjacent to an end-vertex with the colour
green, and colour the central vertex of each path with the colour red. Hence each
vertex in F is coloured either blue, green, or red. If k¿2, then we construct a tree G
from the forest F by adding k − 1 edges such that each added edge joins vertices of
the same colour. If k=1, then we let G=F . We refer to the forest F as the underlying
forest of G. The collection of all such trees G of order 5k we denote by Tk and the
union of all the families Tk we denote by T.
Before proceeding further, we introduce some additional notation. Let G ∈Tk . We

let HG = {H1; H2; : : : ; Hk}, where H1, H2; : : : ; Hk denote the k paths in the underlying
forest of G. Let DG denote the set of all green and red vertices in G. Then DG is a
dominating set of G of cardinality 3k=3n=5. Let RG denote the set of red vertices in G.
Then RG is a dominating set of 〈DG〉 of cardinality k, and so 
(〈DG〉)6k.
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We shall prove:

Theorem 4. If G ∈T; then DG is the unique l.d.s. of G and RG is the unique 
-set
of 〈DG〉.

Proof. We proceed by induction on k¿1. If k = 1, then G is a path P5 and it is
straightforward to verify that the statement of the theorem is true. Suppose the result
is true for all trees in Tk′ where 16k ′¡k. Let G ∈Tk and let F denote the underlying
forest of G. Let S be a 
‘-set of G and let S ′ be a 
-set of 〈S〉. Since 
(〈DG〉)6k,
we know that |S ′|= 
(〈S〉)6k.

Lemma 5. If G contains an edge joining two green vertices; then S=DG and S ′=RG.

Proof. Suppose bb′ ∈E(G), where b and b′ are two green vertices. By construction,
bb′ is a bridge of G and the two components of G−bb′ both belong to T. Let G1 and
G2 be the two components of G− bb′ where G1 contains the vertex b. For i=1; 2, let
Si = S ∩ V (Gi) and let S ′i = S ′ ∩ V (Gi). For i= 1; 2, we may assume Gi has order 5ki.

Claim 6. b; b′ ∈ S.

Proof. If b; b′ 6∈ S, then Si is a dominating set of Gi for i=1; 2. Applying the inductive
hypothesis to Gi, DGi is the unique l.d.s. of Gi. Since Si 6=DGi , 
(〈Si〉)¿ki + 1. Since
b; b′ 6∈ S, 
(〈S〉) = 
(〈S1〉) + 
(〈S2〉). Consequently, 
(〈S〉)¿k1 + k2 + 2 = k + 2, a
contradiction. Hence we may assume that b′ ∈ S.
Suppose b 6∈ S. If 
(〈S2〉)¿k2 + 1, then S1 ∪DG2 is a dominating set of G satisfying


(〈S1 ∪DG2〉) = 
(〈S1〉) + 
(〈DG2〉)¡
(〈S1〉) + 
(〈S2〉) = 
(〈S〉), contradicting the fact
that S is a l.d.s. of G. Hence 
(〈S2〉)6k2. Thus, applying the inductive hypothesis to
G2, S2 = DG2 , 
(〈S2〉) = k2 and S ′2 consists of the red vertices of G2.
If S1 dominates b, then S1 is a dominating set of G1. However b 6∈ S1, and so,

applying the inductive hypothesis to Gi, 
(〈S1〉)¿k1 + 1. Hence 
(〈S〉) = 
(〈S1〉) +

(〈S2〉)¿k1 + k2 + 1 = k + 1, a contradiction. Thus S1 cannot dominate b, i.e., no
neighbour of b in G1 belongs to S1.
Let b∈V (H) where H ∈HG denotes the path a; b; c; d; e. Then a; c 6∈ S1. If b is

adjacent to a green vertex in G1, then there exists two adjacent green vertices that do
not belong to S. As shown earlier, this produces a contradiction. Hence a and c are
the only neighbours of b in G1.
Since S1 must dominate a, and a; b 6∈ S1, a has degree at least 2 in G1, and so k1¿2.

Let Ga be the component of G−ab containing a. By construction, Ga has order 5ka+1
for some ka¿1. Let Sa = S ∩ V (Ga).

Claim 6.1. |Sa|63ka.
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Proof. Since b 6∈ S, Sa is a dominating set of Ga. Since b is dominated by b′ in S,
Sa must be a 
‘-set of Ga, for otherwise we could add the vertices in a 
‘-set of
Ga to the vertices in S − Sa to produce a dominating set S∗ of G satisfying either

(〈S∗〉)¡
(〈S〉) or 
(〈S∗〉) = 
(〈S〉) and |S∗|¡ |S|, contradicting our choice of S.
Hence, by Theorem 3, |Sa|= 
‘(Ga)63(5ka + 1)=5, i.e., |Sa|63ka.

Let Da = DG ∩ V (Ga).

Claim 6.2. 
(〈Sa〉)¿
(〈Da〉) + 1.

Proof. Let G′ be obtained from Ga by attaching a path a; a1; a2; a3; a4 to a. Then
Y = Sa ∪{a2; a3} is a dominating set of G′. By construction, G′ ∈T and G′ has order
less than 5k. Applying the inductive hypothesis to G′, DG′ is the unique 
‘-set of G′.
Note that 
(〈DG′〉) = 
(〈Da〉) + 1 and 
(〈Y 〉) = 
(〈Sa〉) + 1. Furthermore, |Y |= |Sa|+2
while |DG′ | = |Da| + 3. Since Y 6=DG′ , Y cannot be a 
‘-set of G′. Hence either

(〈Y 〉)¿
(〈DG′〉) + 1, in which case 
(〈Sa〉)¿
(〈Da〉) + 1, or 
(〈Y 〉) = 
(〈DG′〉) and
|Y |¿ |DG′ |, in which case 
(〈Sa〉) = 
(〈Da〉) and |Sa|¿|Da| + 2 = 3ka + 2. However,
by Claim 6.1, |Sa|63ka. Consequently, 
(〈Sa〉)¿
(〈Da〉) + 1.

Let Gc be the component of G − bc containing c. By construction, Gc has order
5kc + 3 for some kc¿0. Let Sc = S ∩ V (Gc). Since b; c 6∈ S, b; c 6∈ Sc.

Claim 6.3. |Sc|63kc + 1.

Proof. Since b 6∈ S, Sc is a dominating set of Gc. Since b is dominated by b′ in S,
Sc must be a 
‘-set of Gc. Hence, by Theorem 3, |Sc| = 
‘(Gc)63(5kc + 3)=5, i.e.,
|Sc|63kc + 1.

Let Dc = DG1 − Da.

Claim 6.4. 
(〈Sc〉)¿
(〈Dc〉).

Proof. Let G′ be obtained from Gc by attaching a path c; f; g to c. By construction,
G′ ∈T and G′ has order less than 5k. Applying the inductive hypothesis to G′, DG′ =
Dc is the unique 
‘-set of G′. Let Y = Sc ∪ {g}. Then Y is a dominating set of G′.
Furthermore, 
(〈Y 〉) = 
(〈Sc〉) + 1 and |Y | = |Sc| + 1. Since Y 6=DG′ , Y cannot be a

‘-set of G′. Hence either 
(〈Y 〉)¿
(〈DG′〉) + 1, in which case 
(〈Sc〉)¿
(〈Dc〉), or

(〈Y 〉)=
(〈DG′〉) and |Y |¿ |DG′ |, in which case 
(〈Sc〉)=
(〈Dc〉)−1 and |Sc|¿|Dc|=
3kc + 3. However, by Claim 6.3, |Sc|63kc + 1. Consequently, 
(〈Sc〉)¿
(〈Dc〉).

By Claims 6.2 and 6.4, 
(〈S1〉) = 
(〈Sa〉) + 
(〈Sc〉)¿
(〈Da〉) + 
(〈Dc〉) + 1 =

(〈DG1〉) + 1 = k1 + 1. Furthermore, 
(〈S2〉) = k2 as observed earlier. Hence, 
(〈S〉) =
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(〈S1〉)+ 
(〈S2〉)¿k1 + k2 +1= k+1, a contradiction. Hence we must have b∈ S. This
completes the proof of Claim 6.

By Claim 6, b; b′ ∈ S. Thus Si is a dominating set of Gi for i = 1; 2. Applying the
inductive hypothesis to Gi, 
(〈Si〉)¿ki with equality if and only if Si = DGi .
Suppose Si 6=DGi for i = 1; 2. Then 
(〈Si〉)¿ki + 1 for each i. If b; b′ ∈ S ′, then

S ′i dominates Si, whence |S ′i |¿
(〈Si〉)¿ki + 1. But then |S ′| = |S ′1| + |S ′2|¿k + 2, a
contradiction. So we may assume that b 6∈ S ′. Then S ′1 ∪ {b} dominates S1, and so
|S ′1| + 1¿
(〈S1〉)¿k1 + 1, i.e., |S ′1|¿k1. If b′ ∈ S ′, then |S ′2|¿k2 + 1, and so |S ′| =
|S ′1|+ |S ′2|¿k + 1, a contradiction. Hence b′ 6∈ S ′. Since b; b′ 6∈ S ′, S ′i dominates Si for
i= 1; 2, and so |S ′i |¿ki + 1. Thus, |S ′|= |S ′1|+ |S ′2|¿k + 2, a contradiction. Hence we
may assume that S1 = DG1 .
Since S1 = DG1 , 
(〈S1〉) = k1 and the k1 red vertices in G1 form a unique 
-set of

〈S1〉. If S ′1 does not dominate S1, then S ′1 ∪ {b} dominates S1. However, S ′1 ∪ {b} is
not the unique 
-set of 〈S1〉, and so |S ′1|+1¿k1 + 1, i.e., |S ′1|¿k1. On the other hand,
if S ′1 does dominate S1, then |S ′1|¿k1 with equality if and only if S ′1 consists of the
red vertices of G1. In any event, |S ′1|¿k1.
Suppose S2 6=DG2 . Then 
(〈S2〉)¿k2+1. If b′ ∈ S ′, then S ′2 dominates S2 and therefore

|S ′2|¿k2 + 1. But then |S ′| = |S ′1| + |S ′2|¿k1 + k2 + 1 = k + 1, a contradiction. Hence
b′ 6∈ S ′. Suppose S ′2 does not dominate S2. Then b∈ S ′1, and so S ′1 is not the unique

-set of 〈S1〉. Thus |S ′1|¿k1 + 1. Furthermore, S ′2 ∪ {b′} dominates S2. Consequently,
|S ′2|+ 1¿
(〈S2〉)¿k2 + 1, i.e., |S ′2|¿k2. Thus |S ′|= |S ′1|+ |S ′2|¿k1 + k2 + 1 = k + 1, a
contradiction. Hence S ′2 dominates S2, and so |S ′2|¿
(〈S2〉)¿k2 + 1. Thus |S|= |S ′1|+
|S ′2|¿k1 + k2 + 1 = k + 1, a contradiction. Hence S2 = DG2 .
We have now established that S=S1∪S2=DG1 ∪DG2 =DG. Furthermore, 
(〈Si〉)=ki

and the ki red vertices in Gi form a unique 
-set of 〈Si〉. As observed earlier, |S ′i |¿ki
for i=1; 2. If b∈ S ′, then, as observed earlier, |S ′1|¿k1+1, and so |S|=|S ′1|+|S ′2|¿k1+
k2 + 1 = k + 1, a contradiction. Hence b 6∈ S ′. Similarly, b′ 6∈ S ′. Thus S ′i dominates Si
for i = 1; 2. By induction, |S ′i |¿ki with equality if and only if S ′i consists of the red
vertices of Gi. Since k = |S ′|= |S ′1|+ |S ′2|¿k1 + k2 = k, it follows that |S ′i |= ki and S ′i
consists of the red vertices of Gi for i = 1; 2. Thus S ′ = RG. This completes the proof
of Lemma 5.

By Lemma 5, if G contains an edge joining two green vertices, then S = DG and
S ′ = RG, i.e., DG is the unique l.d.s. of G and RG is the unique 
-set of 〈DG〉. Hence
in what follows, we assume that there is no edge joining two green vertices.

Lemma 7. If G contains an edge joining two red vertices; then S=DG and S ′=RG.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore
omitted. Suppose cc′ ∈E(G), where c and c′ are two red vertices. By construction, cc′
is a bridge of G and the two components of G − cc′ both belong to T. Let G1 and
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G2 be the two components of G− cc′ where G1 contains the vertex c. For i=1; 2, let
Si = S ∩ V (Gi) and let S ′i = S ′ ∩ V (Gi). For i= 1; 2, we may assume Gi has order 5ki.
As in the proof of Claim 6, at least one of c or c′ belongs to S. We may assume

c′ ∈ S. Suppose c 6∈ S. Then (as in the proof of Claim 6) S2 = DG2 and 
(〈S2〉) = k2.
Furthermore no neighbour of c in G1 belongs to S1. Let c∈V (H) where H ∈HG

denotes the path a; b; c; d; e. Then b; d 6∈ S1. If c is adjacent to a red vertex in G1, then
there exists two adjacent red vertices that do not belong to S. This, however, produces
a contradiction. Hence b and d are the only neighbours of c in G1.
Let Gb be the component of G − bc containing b. By construction, Gb has order

5kb+2 for some kb¿0. Let Sb= S ∩V (Gb) and let Db= (DG ∩V (Gb))∪{c; d}. Then
|Sb|63kb + 1 while |Db| = 3kb + 3. Let G′ be obtained from Gb by attaching a path
b; c; d; e to b. Then Y = Sb ∪ {d} is a dominating set of G′. By construction, G′ ∈T

and G′ has order less than 5k. Applying the inductive hypothesis to G′, DG′ = Db is
the unique 
‘-set of G′. Note that 
(〈Y 〉) = 
(〈Sb〉) + 1 while |Y | = |Sb| + 1. Since
Y 6=DG′ , Y cannot be a 
‘-set of G′. Hence either 
(〈Y 〉)¿
(〈DG′〉) + 1, in which
case 
(〈Sb〉)¿
(〈Db〉), or 
(〈Y 〉) = 
(〈DG′〉) and |Y |¿ |DG′ |, in which case 
(〈Sb〉) =

(〈Db〉) − 1 and |Sb|¿|Db| = 3kb + 3. However, as observed earlier, |Sb|63kb + 1.
Consequently, 
(〈Sb〉)¿
(〈Db〉).
Let Gd be the component of G − cd containing d. By construction, Gd has order

5kd+2 for some kd¿0. Let Sd= S ∩V (Gd) and let Dd=(DG ∩V (Gd))∪{b; c}. Then

(〈Sd〉)¿
(〈Dd〉).
Now 
(〈S1〉)=
(〈Sb〉)+
(〈Sd〉)¿
(〈Db〉)+
(〈Dd〉)=
(〈DG1〉)+1=k1+1. Furthermore,


(〈S2〉)= k2 as observed earlier. Hence, 
(〈S〉)= 
(〈S1〉)+ 
(〈S2〉)¿k1 + k2 +1= k+1,
a contradiction. Hence we must have c∈ S.
Since c; c′ ∈ S, Si is a dominating set of Gi for i = 1; 2. Continuing now as in the

last four paragraphs of the proof of Lemma 5 (with ‘b’ and ‘b′’ replaced by ‘c’ and
‘c′’), respectively, we can show that S =DG and S ′=RG. This completes the proof of
Lemma 7.

By Lemma 7, if G contains an edge joining two red vertices, then DG is the unique
l.d.s. of G and RG is the unique 
-set of 〈DG〉. Hence in what follows, we assume
that there is no edge joining two red vertices. Thus all k − 1¿1 edges added to the
underlying forest of G to construct G join blue vertices.
Suppose a and a′ are two adjacent blue vertices of G. Let G1 and G2 be the two

components of G− aa′ where G1 contains the vertex a. For i=1; 2, let Si= S ∩V (Gi)
and let S ′i = S

′ ∩V (Gi). By construction, each of G1 and G2 belong to T. For i=1; 2,
we may assume Gi ∈Tki . Applying the inductive hypothesis to Gi, DGi is the unique
l.d.s. of Gi and the red vertices in Gi form a unique 
-set of 〈DGi〉 for i = 1; 2.
Suppose a; a′ ∈ S. Then Si 6=DGi and 
(〈Si〉)¿ki + 1 for i = 1; 2. If a; a′ ∈ S ′, then

S ′i dominates Si, whence |S ′i |¿
(〈Si〉)¿ki + 1. But then |S ′| = |S ′1| + |S ′2|¿k + 2, a
contradiction. So we may assume that a 6∈ S ′. Then S ′1 ∪ {a} dominates S1, and so
|S ′1| + 1¿
(〈S1〉)¿k1 + 1, i.e., |S ′1|¿k1. If a′ ∈ S ′, then |S ′2|¿k2 + 1, and so |S ′| =
|S ′1|+ |S ′2|¿k + 1, a contradiction. Hence a′ 6∈ S ′. Since a; a′ 6∈ S ′, S ′i dominates Si for
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i= 1; 2, and so |S ′i |¿ki + 1. Thus, |S ′|= |S ′1|+ |S ′2|¿k + 2, a contradiction. Hence we
may assume a 6∈ S.
Suppose a′ ∈ S. Then S2 6=DG2 and 
(〈S2〉)¿k2 + 1. If S1 does not dominate G1,

then S1 ∪{a} dominates S1. Since S1 ∪{a} 6=DG1 , 
(〈S1〉)+ 1= 
(〈S1 ∪{a}〉)¿k1 + 1,
and so 
(〈S1〉)¿k1. On the other hand, if S1 dominates G1, then 
(〈S1〉)¿k1. In any
event, 
(〈S1〉)¿k1. Hence, since a 6∈ S, 
(〈S〉)= 
(〈S1〉)+ 
(〈S2〉)¿k1 + k2 + 1= k +1,
a contradiction. Hence a′ 6∈ S.
Since a; a′ 6∈ S, Si is a dominating set of Gi and S ′i dominates Si for i = 1; 2. By

induction, |S ′i |¿ki with equality if and only if Si = DGi and S ′i consists of the red
vertices of Gi. Since k¿|S ′|= |S ′1|+ |S ′2|¿k1 + k2 = k, it follows that Si=DGi , |S ′i |= ki
and S ′i consists of the red vertices of Gi for i = 1; 2. Thus S = DG and S

′ = RG. This
completes the proof of Theorem 4.

By Theorem 4, DG is the unique 
‘-set of G. In particular, 
‘(G)= |DG|=3k=3n=5.
Furthermore, G is edge-minimal with respect to satisfying G connected. Hence we have
the following result.

Proposition 8. Each graph in the family T is a 3
5 -minimal graph.

3. A characterization of 3
5 -minimal graphs

We shall prove:

Theorem 9. A graph G is a 3
5 -minimal graph if and only if G ∈T.

The su�ciency of Theorem 9 follows from Proposition 8. To prove the necessity of
Theorem 9, we �rst present a proof of Theorem 3. The proof follows that of Favaron
[2] and Zverovich [8].

Proof of Theorem 3. Let G=(V; E) be a graph of order n with no isolated vertex. Let
D be a 
‘-set of G with the minimum number of isolated vertices in 〈D〉. Let I be the
set of isolated vertices in 〈D〉. Let X be a minimum dominating set of 〈D− I〉, and let
Y=D−(I∪X ). Then pn(x; X; Y ) 6= ∅ for every x∈X . Let X1={x∈X : |pn(x; X; Y )|=1}
and let X2 = X − X1.

Claim 10. pn(v; D; V − D) 6= ∅ for every v∈D − X2.

Proof. If pn(v; I; V − D) = ∅ and v′ ∈N (v), then D′ = (D − {v}) ∪ {v′} is a 
‘-set
of G with fewer isolated vertices in 〈D′〉 than in 〈D〉, contrary to our choice of
D. Hence pn(v; I; V − D) 6= ∅ for every v∈ I . Clearly, the minimality of D implies
that pn(y; Y; V − D) 6= ∅ for every y∈Y . Finally, if x∈X1 and pn(x; X1; Y ) = {y},
then pn(x; X1; V − D) 6= ∅, for otherwise D − {x} is a dominating set of G and
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(〈D−{x}〉)= |(I ∪X )−{x}∪{y}|= |I ∪X |=
(〈D〉), which contradicts the minimality
of D.

By Claim 10, |V − D|¿|D − X2|, and so n − 
‘(G)¿
‘(G) − |X2|, or, equiva-
lently, 
‘(G)6(n + |X2|)=2. Furthermore, by de�nition of X2, |Y |¿2|X2|. Hence n =
|V−D|+ |D|¿|D−X2|+ |D|=2|D|−|X2|¿2(|Y |+ |X2|)−|X2|=2|Y |+ |X2|¿5|X2|, and
so |X2|6n=5. Thus 
‘(G)6(n + |X2|)=263n=5. This completes the proof of
Theorem 3.

We are now in a position to prove the necessity of Theorem 9. We proceed by
induction on the order n = 5k, where k¿1 is an integer, of a 3

5 -minimal graph. It
is straightforward to check that the only 3

5 -minimal graph on �ve vertices is P5 ∈T.
Hence the result is true if k = 1. Let k¿2, and assume the result is true for all
3
5 -minimal graphs of order less than n. Let G = (V; E) be a

3
5 -minimal graph of order

n = 5k. If G ∼= Pn, then the result follows. So we may assume that G is not a path.
Since Cn is not a 3

5 -minimal graph, we must have �(G)¿3. In what follows, we shall
use the notation employed in the proof of Theorem 3 presented above.
Since 
‘(G) = 3n=5, all the inequalities in the last paragraph of the proof of

Theorem 3 must be equalities. In particular, |D|= |Y |+ |X2| (and so I =∅ and X =X2),
X = {x∈X : |pn(x; X; Y )| = 2}, and |pn(y; Y; V − D)| = 1 for every y∈Y . Let X =
{x1; : : : ; xk}, Y ={y1; : : : ; yk}∪{w1; : : : ; wk} and Z={a1; : : : ; ak}∪{b1; : : : ; bk}=V −D.
Then G has the following structure. For each i = 1; : : : ; k, N (xi) ∩ (V − X ) = {yi; wi},
N (yi) ∩ Z = {ai}, and N (wi) ∩ Z = {bi}.
For i = 1; : : : ; k, if yiwi is an edge of G, then D − {xi} is a dominating set of G

and 
(〈D − {xi}〉) = |X − {xi} ∪ {yi}|= |X |= 
(〈D〉), which contradicts the minimal-
ity of D. Hence yiwi cannot be an edge of G. Let Hi = 〈{xi; yi; wi; ai; bi}〉, and let
HG = {H1; : : : ; Hk}.
Before proceeding further, we prove a few results that will be useful in what follows.

Claim 11. If e∈E and e 6∈ [X; Y ] ∪ [Y; Z]; then e is a bridge of G.

Proof. Suppose G − e is connected. Let S be a 
‘-set of G − e. Since G − e has no
isolated vertex, Theorem 3 implies that |S|= 
‘(G− e)63n=5. Furthermore, since S is
a dominating set of G; 
(〈D〉)6
(〈S〉). On the other hand, since e 6∈ [X; Y ]∪ [Y; Z]; D
is a dominating set of G − e, and so 
(〈S〉)6
(〈D〉). Consequently, 
(〈S〉) = 
(〈D〉).
Thus S is a l.d.s. of G, and so 3n=5 = |D|= 
‘(G)6|S|63n=5. Hence we must have
|S|= |D|= 3n=5. Thus, G − e is a connected graph satisfying 
‘(G − e) = |S|= 3n=5.
This contradicts the minimality of G. Hence G − e is disconnected.

By Claim 11, aibi 6∈E(G) for all i = 1; : : : ; k. Hence H ∼= P5 for each H ∈HG.

Claim 12. If there is a vertex in X ∪ Y of degree at least 3; then G ∈T.
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Proof. Suppose deg v¿3 for some v∈X ∪Y . Suppose v∈V (H), where H ∈HG. Since
v has degree 2 in H , v must be adjacent to a vertex u not in H . From the structure of G
we know that either u; v∈X or u; v∈Y . In any event, deg u¿3 and uv 6∈ [X; Y ]∪ [Y; Z].
By Claim 11, uv is a bridge of G. Thus G − uv contains two components, namely a
component G1 containing u and a component G2 containing v. For i=1; 2, let Gi have
order ni. Since the vertices of each graph in HG all belong to the same component of
G−uv, ni ≡ 0 (mod 5). Suppose Gi contains ki of the subgraphs of HG. Then ni=5ki.
Furthermore, k = k1 + k2.
For i=1; 2, let Di =D∩V (Gi). Then |Di|=3ki and 
(〈Di〉) = ki. For i=1; 2, let Si

be a 
‘-set of Gi. If 
(〈S1〉)¡k1, then S1 ∪ D2 would be a dominating set of G
satisfying 
(〈S1∪D2〉)¡k=
(〈D〉), contradicting our choice of D. Hence 
(〈S1〉)¿k1.
However, since D1 is a dominating set of G1 and 
(〈D1〉)=k1, 
(〈S1〉)=k1. If |S1|¡ 3k1,
then S1∪D2 would be a dominating set of G satisfying 
(〈S1∪D2〉)=k and |S1∪D2|¡
3k = |D|, contradicting our choice of D. Hence |S1|= 3k1. Thus D1 is a 
‘-set of G1.
Similarly, D2 is a 
‘-set of G2. Thus, for i = 1; 2, Gi is a connected graph satisfying

‘(Gi)=3ni=5. By the inductive hypothesis, Gi ∈Tki for i=1; 2. Furthermore, since Di
is a 
‘-set of Gi, Di =DGi by Theorem 4. Thus the vertices of X , Y , and Z in Gi are
coloured red, green, and blue, respectively. If u; v∈X , then u and v are both coloured
red. On the other hand, if u; v∈Y , then u and v are both coloured green. In any event,
G ∈T. This completes the proof of Claim 12.

In what follows, we may assume that each vertex in X ∪ Y has degree 2 in G, for
otherwise G ∈T by Claim 12. Hence for each i = 1; : : : ; k, N (xi) = {yi; wi}, N (yi) =
{ai; xi}, and N (wi)={bi; xi}. By Claim 11, each edge in 〈Z〉 is a bridge of G. Thus G
is obtained from k¿2 (disjoint) paths P5 by adding k − 1 edges that join end-vertices
from di�erent paths (to produce a connected graph), i.e., G ∈T. This completes the
proof of Theorem 9.

4. A family of 3
5 -minimal 2-graphs that are not cycles

Let C5 denote the family of all cycles of length congruent to 0 modulo 5, that is,

C5 = {Cn | n ≡ 0 (mod 5)}:
By Proposition 2, each graph in C5 has least domination number three-�fths its or-
der. Furthermore, each graph in C5 is clearly edge-minimal with respect to satisfying
minimum degree at least 2. Hence we have the following result.

Proposition 13. Each graph in the family C5 is a 3
5 -minimal 2-graph.

In this section our aim is to construct a family of 35 -minimal 2-graphs, which we call
G∗, that is di�erent from the family C5. For this purpose, let F1 = (V; E1) be a forest
that consists of k¿3 (disjoint) K2s, i.e., F1 ∼= kK2. Colour the vertices in F1 with the
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Fig. 1. The construction of the graph G3 ∈G.

colour blue. We construct a graph F2 = (V; E1 ∪E2) from the forest F1 by adding a set
E2 of edges to F1 in such a way that there are no even cycles that alternate in edges of
E1 and E2 − E1 and such that F2 is edge-minimal with respect to satisfying �(F2)¿2
and F2 connected. We now construct a graph G from F2 by subdividing each edge of
E1 three times. Each resulting new vertex that is adjacent to a blue vertex we colour
with the colour green, while each new vertex that is not adjacent to a blue vertex we
colour with the colour red. We let VG denote the set of vertices of G that are coloured
green or red and are incident with a bridge in G. We refer to the forest F1 as the
underlying forest of G and the graph F2 as the underlying graph of G.
By construction, G is a connected graph with minimum degree at least 2 and of

order n=5k for some k¿3. Furthermore, for each edge e of G, G− e is disconnected
or �(G − e) = 1. The collection of all such graphs G of order 5k we denote by Gk
and the union of all the families Gk we denote by G. If k = 3, then Gk = {G3}, where
G3 is the graph in G with underlying forest F1 ∼= 3K2 and with underlying graph F2
shown in Fig. 1. (The vertices in G3 coloured blue, green, and red are labelled B, G,
and R, respectively.)
To construct the family G∗, let G1; : : : ; Gm be m¿1 graphs in G. Let G∗ be a

connected graph obtained from the (disjoint) union
⋃m
i=1 Gi by adding a set of m− 1

edges E∗ such that each added edge joins vertices of the same colour in
⋃m
i=1 VGi . If

m = 1, then G∗ = G1. Let EB denote the set of all edges of G∗ that join two blue
vertices. By construction, G∗ has order congruent to 0 modulo 5 and is edge-minimal
with respect to satisfying �(G∗)¿2 and G∗ connected. The collection of all such graphs
G∗ we denote by G∗.
Before proceeding further, we present some properties of graphs in the family G∗.

Let G ∈G∗ have order 5k. Then, by construction, G − E∗ − EB consists of k (vertex
disjoint) P5 s which we denote by H1; H2; : : : ; Hk . Let HG={H1; H2; : : : ; Hk}. We refer
to HG as the path partition of G. Let DG denote the set of all green and red vertices
in G. Then DG is a dominating set of G of cardinality 3k = 3n=5. Let RG denote the
set of red vertices in G. Then RG is a dominating set of 〈DG〉 of cardinality k, and so

(〈DG〉)6k.
We shall prove:

Theorem 14. If G ∈G∗; then DG is the unique l.d.s. of G and RG is the unique 
-set
of 〈DG〉.
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Proof. We proceed by induction on k¿3. If k = 3; then G is the graph G3 of
Fig. 1 and it is straightforward to verify that the statement of the theorem is true.
Suppose the result is true for all graphs in G∗ of order less than 5k. Let G ∈G∗ have
order 5k. Let S be a 
‘-set of G and let S ′ be a 
-set of 〈S〉. Since 
(〈DG〉)6k, we
know that |S ′|= 
(〈S〉)6k.

Lemma 15. If G contains an edge joining two green vertices; then S=DG and S ′=RG.

Proof. The proof is similar to that of Lemma 5 and some of the details are therefore
omitted. Suppose bb′ ∈E(G), where b and b′ are two green vertices. By construction,
bb′ is a bridge of G and the two components of G − bb′ both belong to G∗. Let G1
and G2 be the two components of G−bb′ where G1 contains the vertex b. For i=1; 2,
let Si = S ∩ V (Gi) and let S ′i = S ′ ∩ V (Gi). For i=1; 2, we may assume Gi has order 5ki.

Claim 16. b; b′ ∈ S.

Proof. We may assume (as in the proof of Lemma 5) that b′ ∈ S. Suppose b 6∈ S. Then
(as in the proof of Lemma 5) S2 =DG2 , 
(〈S2〉)=k2 and S ′2 consists of the red vertices
of G2. Let b∈V (H) where H ∈HG denotes the path a; b; c; d; e. Then a and c are the
only neighbours of b in G1 and a; c 6∈ S1. Let Ga be the component of G−ab containing
a. By construction, Ga has order 5ka + 1 for some ka¿1. Let Sa = S ∩ V (Ga). Then
|Sa|63ka. Let Da = DG ∩ V (Ga).

Claim 17. 
(〈Sa〉)¿
(〈Da〉) + 1.

Proof. Let G′ be obtained from Ga by attaching a path a; a1; a2; a3; a4 to a and then
attaching a 6-cycle a4; v1; v2; v3; v4; v5; a4 to a4. Then Y = Sa ∪ {a2; a3; a4; v3} is a dom-
inating set of G′. By construction, G′ ∈G∗ and G′ has order less than 5k. Applying
the inductive hypothesis to G′, DG′ is the unique 
‘-set of G′. Note that 
(〈DG′〉) =

(〈Da〉)+2 and 
(〈Y 〉)=
(〈Sa〉)+2. Furthermore, |Y |= |Sa|+4 while |DG′ |= |Da|+6.
Since Y 6=DG′ , Y cannot be a 
‘-set of G′. Hence either 
(〈Y 〉)¿
(〈DG′〉) + 1, in
which case 
(〈Sa〉)¿
(〈Da〉)+ 1, or 
(〈Y 〉)= 
(〈DG′〉) and |Y |¿ |DG′ |, in which case

(〈Sa〉)=
(〈Da〉) and |Sa|¿|Da|+3=3ka+3. However, as observed earlier, |Sa|63ka.
Consequently, 
(〈Sa〉)¿
(〈Da〉) + 1.

Let Gc be the component of G − bc containing c. By construction, Gc has order
5kc + 3 for some kc¿1. Let Sc = S ∩ V (Gc). Then |Sc|63kc + 1. Let Dc = DG1 − Da.

Claim 18. 
(〈Sc〉)¿
(〈Dc〉).

Proof. Let G′ be obtained from Gc by attaching a path c; b; a to c and then attach-
ing a 6-cycle a; v1; v2; v3; v4; v5; a to a. Then Y = Sc ∪ {a; v3} is a dominating set of G′.
By construction, G′ ∈G∗ and G′ has order less than 5k. Applying the inductive



M.A. Henning /Discrete Mathematics 216 (2000) 153–168 165

hypothesis to G′, DG′ is the unique 
‘-set of G′. Note that 
(〈DG′〉)= 
(〈Dc〉)+1 and

(〈Y 〉)=
(〈Sc〉)+2. Furthermore, |Y |=|Sc|+2 while |DG′ |=|Dc|+3. Since Y 6=DG′ , Y
cannot be a 
‘-set of G′. Hence either 
(〈Y 〉)¿
(〈DG′〉) + 1, in which case 
(〈Sc〉)¿

(〈Dc〉), or 
(〈Y 〉)=
(〈DG′〉) and |Y |¿ |DG′ |, in which case 
(〈Sc〉)=
(〈Dc〉)−1 and
|Sc|¿|Dc| + 2 = 3kc + 2. However, as observed earlier, |Sc|63kc + 1. Consequently,

(〈Sc〉)¿
(〈Dc〉).

By Claims 17 and 18, 
(〈S1〉)=
(〈Sa〉)+
(〈Sc〉)¿
(〈Da〉)+
(〈Dc〉)+1=
(〈DG1〉)+
1 = k1 + 1. Hence, 
(〈S〉) = 
(〈S1〉) + 
(〈S2〉)¿k1 + k2 + 1 = k + 1, a contradiction.
Hence we must have b∈ S. This completes the proof of Claim 16.

By Claim 16, b; b′ ∈ S. Proceeding now as in the proof of Lemma 5, we can show
that S = DG and that S ′ = RG. This completes the proof of Lemma 15.

By Lemma 15, if G contains an edge joining two green vertices, then S = DG and
S ′ = RG, i.e., DG is the unique l.d.s. of G and RG is the unique 
-set of 〈DG〉. Hence
in what follows, we assume that there is no edge joining two green vertices.

Lemma 19. If G contains an edge joining two red vertices; then S=DG and S ′=RG.

Proof. The proof is similar to that of Lemma 7 and some of the details are therefore
omitted. Suppose cc′ ∈E(G), where c and c′ are two red vertices. By construction, cc′
is a bridge of G and the two components of G − cc′ both belong to G∗. Let G1 and
G2 be the two components of G− cc′ where G1 contains the vertex c. For i=1; 2, let
Si = S ∩ V (Gi) and let S ′i = S ′ ∩ V (Gi). For i= 1; 2, we may assume Gi has order 5ki.
We may assume c′ ∈ S. Suppose c 6∈ S. Then S2 =DG2 and 
(〈S2〉)= k2. Let c∈V (H),
where H ∈HG denotes the path a; b; c; d; e. Then b and d are the only neighbours of
c in G1 and b; d 6∈ S1.
Let Gb be the component of G − bc containing b. By construction, Gb has order

5kb+2 for some kb¿1. Let Sb= S ∩V (Gb) and let Db= (DG ∩V (Gb))∪{c; d}. Then
|Sb|63kb + 1 while |Db| = 3kb + 3. Let G′ be obtained from Gb by attaching a path
b; c; d; e to b and then attaching a 6-cycle e; v1; v2; v3; v4; v5; e to e. Then Y=Sb∪{d; e; v3}
is a dominating set of G′. By construction, G′ ∈G∗ and G′ has order less than 5k.
Applying the inductive hypothesis to G′, DG′ is the unique 
‘-set of G′. Note that

(〈DG′〉)=
(〈Db〉)+1 and 
(〈Y 〉)=
(〈Sb〉)+2. Furthermore, |Y |=|Sb|+3 while |DG′ |=
|Db|+3. Since Y 6=DG′ , Y cannot be a 
‘-set of G′. Hence either 
(〈Y 〉)¿
(〈DG′〉)+1,
in which case 
(〈Sb〉)¿
(〈Db〉), or 
(〈Y 〉) = 
(〈DG′〉) and |Y |¿ |DG′ |, in which case

(〈Sb〉) = 
(〈Db〉) − 1 and |Sb|¿|Db| + 1 = 3kb + 4. However, as observed earlier,
|Sb|63kb + 1. Consequently, 
(〈Sb〉)¿
(〈Db〉).
Let Gd be the component of G − cd containing d. By construction, Gd has order

5kd+2 for some kd¿1. Let Sd= S ∩V (Gd) and let Dd=(DG ∩V (Gd))∪{b; c}. Then

(〈Sd〉)¿
(〈Dd〉).
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Now 
(〈S1〉)=
(〈Sb〉)+
(〈Sd〉)¿
(〈Db〉)+
(〈Dd〉)=
(〈DG1〉)+1=k1+1. Furthermore,

(〈S2〉)= k2 as observed earlier. Hence, 
(〈S〉)= 
(〈S1〉)+ 
(〈S2〉)¿k1 + k2 +1= k+1,
a contradiction. Hence we must have c∈ S.
Proceeding now as in the proof of Lemma 7, we can show that S = DG and that

S ′ = RG. This completes the proof of Lemma 19.

By Lemma 19, if G contains an edge joining two red vertices, then DG is the unique
l.d.s. of G and RG is the unique 
-set of 〈DG〉. Hence in what follows, we assume
that there is no edge joining two red vertices. Thus G ∈Gk ∈G. If G contains a bridge
joining two blue vertices, then, proceeding as in the last four paragraphs of the proof
of Theorem 4, we can show that S=DG and that S ′=RG. Hence we assume that there
is no bridge in G joining two blue vertices. Thus G is obtained from a path a; b; c; d; e
by attaching at least one cycle of length at least 6 and congruent to 1 modulo 5 to
each of a and e (by attaching a cycle to a vertex v we mean adding a (disjoint) cycle
to the graph and identifying one of its vertices with v). We may assume deg a¿deg e.
Since k¿4, at least one cycle in G has length at least 11 or at least two cycles are
attached to a. Let C be a cycle attached to a. Let a′ be a neighbour of a on C. Suppose
a′ ∈V (H) where H ∈HG denotes the path a′; b′; c′; d′; e′.

Claim 20. If C is a 6-cycle; then S = DG and S ′ = RG.

Proof. Since C is a 6-cycle, ae′ ∈E(G). Let G1 and G2 be the two components of
G − {aa′; ae′} where G1 contains the vertex a. For i= 1; 2, let Si = S ∩ V (Gi) and let
S ′i = S

′ ∩ V (Gi). By construction, G1 belongs to Gk−1.
Suppose S1 is not a dominating set of G1. Then S1 does not contain a nor any

neighbour of a. However, S1 ∪ {a} is a dominating set of G1. Since S1 ∪ {a} 6=DG1 ,

(〈S1〉) + 1 = 
(〈S1 ∪ {a}〉)¿k, and so 
(〈S1〉)¿k − 1. Since a is not dominated by
S1, S2 must be a dominating set of the 6-cycle a; a′; b′; c′; d′; e′; a, and so 
(〈S2〉)¿2.
Thus, 
(〈S〉) = 
(〈S1〉) + 
(〈S2〉)¿k +1, a contradiction. Hence S1 is a dominating set
of G1.
Applying the inductive hypothesis to G1, 
(〈S1〉)¿k − 1 with equality if and only

if S1 = DG1 and S
′
1 consists of the red vertices of G1. Since k¿|S ′|¿|S ′1| + 1¿k, it

follows that S1=DG1 , |S ′1|=k−1 and S ′1 consists of the red vertices of G1. Furthermore,
S2 = {b′; c′; d′} and S ′2 = {c′}. Thus S =DG and S ′ = RG. This completes the proof of
the claim.

Claim 21. If C has length greater than 6; then S = DG and S ′ = RG.

Proof. Let a′′ be the blue vertex that is adjacent to e′ on C. By assumption, C has
length at least 11. Let G1 be the graph obtained from G − V (H) by adding the edge
aa′′. By construction, G1 belongs to Gk−1. Let S1 =S ∩V (G1) and let S ′1 =S ′∩V (G1).
Further, let S2 = S ∩ V (H).
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Suppose S1 is not a dominating set of G1. Then a; a′′ 6∈ S1 and at least one of a
and a′′ is not dominated by S1. However, S1 ∪ {a} is a dominating set of G1. Since
S1 ∪ {a} 6=DG1 , 
(〈S1〉) + 1 = 
(〈S1 ∪ {a}〉)¿k, and so 
(〈S1〉)¿k − 1. If a is not
dominated by S1, then S2 must be a dominating set of the path a; a′; b′; c′; d′; e′. On the
other hand, if a′′ is not dominated by S1, then S2 must be a dominating set of the path
a′; b′; c′; d′; e′; a′′. In any event, 
(〈S2〉)¿2. Thus, 
(〈S〉) = 
(〈S1〉) + 
(〈S2〉)¿k + 1,
a contradiction. Hence S1 must be a dominating set of G1.
Applying the inductive hypothesis to G1, 
(〈S1〉)¿k − 1 with equality if and only

if S1 = DG1 and S
′
1 consists of the red vertices of G1. Since k¿|S ′|¿|S ′1| + 1¿k, it

follows that S1=DG1 , |S ′1|=k−1 and S ′1 consists of the red vertices of G1. Furthermore,
S2 ={b′; c′; d′} and S ′−S ′1 ={c′}. Thus S=DG and S ′=RG. This completes the proof
of the claim.

By Claims 20 and 21, S = DG and S ′ = RG. This completes the proof of
Theorem 14.

By Theorem 14, DG is the unique 
‘-set of G. In particular, 
‘(G)=|DG|=3k=3n=5.
Furthermore, G is edge-minimal with respect to satisfying �(G)¿2 and G connected.
Hence we have the following result.

Proposition 22. Each graph in the family G∗ is a 3
5 -minimal 2-graph.

5. Comments

If G ∈C5 ∪ G∗, then, by Propositions 13 and 22, G is a 3
5 -minimal 2-graph. The

converse is not true. There are 3
5 -minimal 2-graphs that do not belong to the families

C5 or G∗. For example, the graph G shown in Fig. 2 is a 3
5 -minimal 2-graph that

does not belong to C5 ∪ G∗. Notice, however, that the graph G is obtained from two

Fig. 2. A 3
5 -minimal 2-graph not in C5 ∪ G∗.
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graphs in G∗ by adding an edge joining two red vertices. It is possible to construct a
3
5 -minimal 2-graph from the (disjoint) union of m¿2 graphs in G∗ (that satisfy certain
special properties) by adding a set of m − 1 edges such that each added edge joins
two red vertices or two green vertices at least one of which belongs to a cycle in G∗.
However, we have yet to settle which red or green vertices may be used when adding
these m− 1 edges. It remains an open problem to characterize 3

5 -minimal 2-graphs.
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