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Abstract

Classification analysis of microarray gene expression data has been widely used to uncover biological features and to distinguish

closely related cell types that often appear in the diagnosis of cancer. However, the number of dimensions of gene expression data is

often very high, e.g., in the hundreds or thousands. Accurate and efficient classification of such high-dimensional data remains a

contemporary challenge. In this paper, we propose a comprehensive vertical sample-based KNN/LSVM classification approach with

weights optimized by genetic algorithms for high-dimensional data. Experiments on common gene expression datasets demonstrated

that our approach can achieve high accuracy and efficiency at the same time. The improvement of speed is mainly related to the

vertical data representation, P-tree,1 and its optimized logical algebra. The high accuracy is due to the combination of a KNN

majority voting approach and a local support vector machine approach that makes optimal decisions at the local level. As a result,

our approach could be a powerful tool for high-dimensional gene expression data analysis.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The advent of whole genome-scale microarray gene

expression experiment technologies opens new vistas in

the area of analyzing various phenotype diseases, such

as human cancers [1,2]. Classification approaches for

gene expression data analysis, including classification

decision tree, k-nearest neighbor classifier (KNN) [3],
support vector machine (SVM) [4], neural network [5],

etc., have been recognized as effective methods for dis-

tinguishing closely related cell types that often appear

in the diagnosis of cancer.
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However, classification analysis of microarray gene

expression data often leads to neighborhood searches

in a very high-dimensional data space. The publicly

available datasets currently contain gene expression data

with 5000–1000 genes on less than 100 observations and

both numbers are expected to grow [6]. Classifying such

high-dimensional data remains a contemporary chal-

lenge. In this paper, we propose a rapid and accurate
classification approach, KNN/LSVM, for gene expres-

sion data analysis, which combines the KNN majority

voting approach with local support vector machine ap-

proach to make optimal decisions at the local level.

The most related subset of features is selected by the ge-

netic algorithm using the weighted EIN-ring KNN as

the fit function.

This approach is motivated from the experience of
KDD Cup 2002, where we won an honorable mention

by achieving the best score on broad problem, but not
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as accurate on narrow problem as broad problem [7].

The reason is that the data is high-dimensional and

skew, with 3018 training instance on one class and 38

on the other of the narrow problem, which degrades

the performance of the consensus voting approach.

Using our KNN/LSVM approach with combination of
majority voting and local boundary decision, we can im-

prove the classification accuracy for gene expression

analysis.

This paper is organized as follows. In Section 2, we

first briefly review the recent related works in literature,

and then the basic P-trees and the optimized operations

are described in Section 3. In Section 4, we define a un-

ique equal interval neighborhood rings, EIN-rings, and
then present a new rapid accurate classification ap-

proach for microarray analysis. Finally, an accuracy

and efficiency performance study is reported in Section

5 and we conclude the paper in Section 6.
2. Related works

Many methods have been used in cancer classification

using gene expression, such as artificial neural network

[5], support-vector machines (SVM) [4], k-nearest neigh-

bors [3], and Golub et al. [2] classifier. Golub et al. [2]

first employed a binary-class classifier, which is based

on the consensus voting using correlation coefficients

automatically discovered the distinction between the

acute myeloid leukemia and the acute lymphoblastic leu-
kemia. Furey [4] applied SVM to micoarray data that

consists of both the classification of tissue samples,

and an exploration of the data for mislabeled or ques-

tionable tissue results. Another study of SVM illustrated

the method for predicting functional roles of 2467

uncharacterized genes from yeast Saccharomyces cerevi-

siae on the basis of expression data from DNA micro-

array hybridization experiments [8].
Nearest neighborhood classification approaches, also

referred to as instance-based learning algorithms [9], are

sometimes called ‘‘lazy’’ learning methods because they

delay processing of classification until a new instance re-

quests to be classified [1]. The key advantage of such

learning approaches is that the classification decisions

are made locally and differently for each new instance

to be classified [10]. Cover and Hart [11] first studied
the nearest neighbor approach and proposed the nearest

neighbor classification rules. Wagner et al. studied the

convergence of the nearest neighbor classification ap-

proach [12,13]. The property of constancy and conver-

gence of nearest neighbor density estimates has been

well studied theoretically by Moore, Devroye, and co-

workers [14,15].

Feature selection is one of the crucial steps for a com-
prehensive classifier. Many approaches, such as princi-

pal component analysis, linear discriminant analysis,
projection pursuit, have been proposed to reduce the

dimensions of gene expression data and choose infor-

mative subset [16]. Golub et al. [2] employed a leave-

one-out crossvalidation method to select a subset gene

before classifying acute myeloid leukemia and acute

lymphoblastic leukemia using neighborhood analysis.
Feature selection using genetic algorithms is a multivar-

iate approach, which is capable of selecting a subset of

genes that are uncorrelated with each other. Li and

Ooi both reported that they successfully applied GA

to the gene selection to improve the accuracy of classifi-

cation analysis [3,17].
3. Review of P-tree technology

The P-tree technology was initially developed by the

DataSURG research group in North Dakota State Uni-

versity for spatial data [18,19]. The basic data structure

for this technology is the Peano Count Tree (P-tree). P-

trees are tree-like data structures that store numeric rela-

tional data in compressed format by splitting vertically
each attribute into bits, grouping bits in each bit posi-

tion, and representing each bit group by a P-tree. P-trees

provide a lot of information and are structured to facil-

itate data mining processes. In this section, we briefly re-

view the useful features of P-trees and propose

optimized P-tree logical operations.

3.1. Data representation

We organize the gene expression data as a relational

table with column of genes and row of experiments, phe-

notypes, or cell lines. Instead of using double precision

float numbers with a mantissa and exponent represented

in complement of two, we partition the data space of

gene expression into intervals. This will enable us to

work on a high-dimensional data by approaching the
speed of the binary representation and achieving fine

accuracy.

First, we need to decide the number of intervals and

specify the range of each interval. For example, we

could partition the gene expression data space into 256

intervals along each dimension equally. After that, we

replace each gene value within the interval by a string,

and use strings from 00000000 to 11111111 to represent
the 256 intervals. The length of the bit string is base two

logarithm of the number of intervals. The optimal num-

ber of interval and their ranges depend on the size of

datasets and accuracy requirements, which could be

determined by domain experts or preliminary perfor-

mance experiments.

Suppose a datum with d features (genes), X = (G1,

G2, . . . ,Gd), and the binary representation of jth feature
Gj as bj,mbj,m�1� � �bj,i� � �bj,1bj,0, we decompose each fea-

ture into bit files, one file for each bit position. To build



Fig. 2. Results of predicate trees.

Fig. 3. AND, OR, and NOT operations.
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a P-tree, a bit file is recursively partitioned into halves

and each half into sub-halves until the sub-half is pure

(entirely 1-bits or entirely 0-bits), or the length of sub-

half is less than the minimum bound. The detailed con-

struction of P-trees is illustrated by an example in Fig. 1.

For simplicity, the data with one feature attribute are
shown in Fig. 1A. We represent the attribute as binary

values, e.g., (7)10 = (111)2. Then vertically decompose

them into three separate bit files, one file for each bit posi-

tion, as shown in panel B. The corresponding basic P-

trees, P1, P2, and P3, are constructed from the three bit

vectors correspondingly by recursive partition with mini-

mum bound of length one, which are shown in panels C,

D, and E. As shown in Fig. 1C, the root of P1 tree is 3,
which is the 1-bit count of the entire bit file. The second

level of P1 contains the 1-bit counts of the two halves, 0

and 3. Since the first half is pure, there is no need to par-

tition it. The second half is further partitioned recursively.

AND, OR, and NOT logic operations are the most

frequently used P-tree operations. We use ^, _, and

prime ( 0) to denote P-tree operations AND, OR, and

NOT, respectively. We define a basic predicate tree
called Pure-1 trees (P1-trees) for efficient operation. A

node in a P1-tree is ‘‘1’’ if and only if that sub-half is en-

tirely 1-bit. Fig. 2 shows the P1-trees corresponding to

P1, P2, and P3 in Fig. 1.

The P-tree logic operations are performed level-by-le-

vel starting from the root level. They are commutative

and distributive, as they are simply pruned bit-by-bit

operations. For instance, ANDing a pure-0 node with
any results in a pure-0 node, ORing a pure-1 node with

any results in a pure-1 node. In Fig. 3, (A) is the result

of P11 ^ P12, (B) is the result of P11 _ P13, and (C) is

the result of NOT P13 (or P103), where P11, P12, and

P13 are shown in Fig. 2.
Fig. 1. Construction of 1-D basic P-trees.
3.2. Optimized range P-tree operations

In this section, we present several original proposi-

tions for optimized range predicate operations using ba-

sic predicate trees to calculate the nearest neighbors.

Range predicate tree, Pxpy, is a basic predicate tree that

satisfies predicate x p y, where y is a boundary value,

and p is a comparison operator, i.e., <, >, P, and 6.
Without loss of generality, we only present the calcula-

tion of range predicate PA>c, PA6c, Pc1<A6c2 and their

proof as follows.

Lemma 1. Let P1, P2 be two basic predicate P-trees, and
P0
1 is the complement P-tree of P1 by complementing each

pure node of P1, then P1 _ ðP0
1 ^ P2Þ ¼ P1 _ P2 and

P1 ^ ðP0
1 _ P2Þ ¼ P1 ^ P2.

Proof.
P1 _ ðP0
1 ^ P2Þ

(According to the distribution property of P-tree

operations)

¼ ðP1 _ P0
1Þ ^ ðP1 _ P2Þ

¼ True ^ ðP 1 _ P 2Þ
¼ P 1 _ P 2

Similarly, P1 ^ ðP0
1 _ P2Þ ¼ P1 ^ P2.
Proposition 1. Let A be jth attribute of data set X, m be

its bit-width, and Pm, Pm�1, . . . ,P0 be the basic P-trees for
the vertical bit files of A. Let c = bm� � �bi� � �b0, where bi is
ith binary bit value of c, and PA>c be the predicate tree for

the predicate A > c, then

PA>c ¼ Pmopm � � �PiopiPi�1 � � � opkþ1Pk; k 6 i 6 m;

where (1) opi is ^ if bi = 1, opi is _ otherwise, (2) k is the

rightmost bit position with value of ‘‘0,’’ i.e., bk = 0,
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bj = 1, "j < k, and (3) the operators are right binding.

Here the right binding means operators are associated

from right to left, e.g., P2 op2 P1 op1 P0 is equivalent

to (P2 op2 (P1 op1 P0)).

Proof (By induction on number of bits).

Base case: without loss of generality, assume b1 = 1,
then need show PA>c = P2 op2 P1 holds. If b2 = 1, obvi-

ously the predicate tree for A > (11)2 is PA>c = P1 ^ P0.

If b2 = 0, the predicate tree for A > (01)2 is

PA>c ¼ P2 _ ðP0
2 ^ P1Þ. According to Lemma 1, we get

PA>c = P2 _ P1 holds.

Inductive step: assume PA>c = Pn opn� � �Pk, we need to

show PA>c = Pn+1opn+1Pn opn� � �Pk holds. Let Pright = Pn

opn� � �Pk, if bn+1 = 1, then obviously PA>c = Pn+1 ^ Pright.
If bn+1 = 0, then PA>c ¼ Pnþ1 _ ðP0

nþ1 ^ PrightÞ. According

to Lemma 1, we get PA>c = Pn+1 _ Pright holds.

Proposition 2. Let A be jth attribute of data set X, m be

its bit-width, and Pm, Pm�1, . . . ,P0 be the basic P-trees for

the vertical bit files of A. Let c = bm� � �bi� � �b0, where bi is
ith binary bit value of c, and PA6c be the predicate tree for

A 6 c, then

PA6c ¼ P0
mopm; . . . ;P

0
iopiP

0
i�1; . . . ; opkþ1P

0
k; k 6 i 6 m;

where (1) opi is ^ if bi = 0, opi is _ otherwise, (2) k is the

rightmost bit position with value of ‘‘0,’’ i.e., bk = 0,

bj = 1, "j < k, and (3) the operators are right binding.

Proof (By induction on number of bits).

Base case: without loss of generality, assume b0 = 0,

then need show PA6c ¼ P0
1op1P

0
0 holds. If b1 = 0, obvi-

ously the predicate tree for A 6 (00)2 is PA6c ¼ P0
1 ^ P0

0.

If b1 = 1, the predicate tree for A 6 (10)2 is

PA6c ¼ P0
1 _ ðP1 ^ P0

0Þ. According to Lemma 1, we get

PA6c ¼ P0
1 _ P0

0 holds.
Inductive step: assume PA6c ¼ P0

nopn � � �P0
k, we need to

show PA6c ¼ P0
nþ1opnþ1P

0
nopn � � �P0

k holds. Let Pright ¼
P0
nopn; . . . ;P

0
k, if bn+1 = 0, then obviously PA6c ¼ P0

nþ1^
Pright. If bn+1 = 1, then PA6c ¼ P0

nþ1_ ðPnþ1 ^ PrightÞ.
According to Lemma 1, we get PA6c ¼ P0

nþ1 _ Pright holds.

Proposition 3. Let A be jth attribute of data set X, PA6c

and PA>c are the predicate tree for A 6 c and A > c,
where c is a boundary value, then PA6c ¼ P0

A>c.

Proof. Obvious true by checking the Proposition 1 and

2 according to ^ = _0
and Pm ¼ ðP0

mÞ
0
.

Proposition 4. Given the same assumption of A and its P-

trees. Suppose m � r + 1 high order bits of bound value c1

and c2 are the same, then we have c1 = bm� � �brb1r�1� � � b11,
c2 = bm� � �brb2r�1� � �b21. Let s1 = b1r�1, . . . ,b11,
s2 = b2r�1, . . . ,b21, and B be the value of low r � 1 bits

of A, then predicate interval tree, Pc1<A6c2, is calculated as
Pc1<A6c2 ¼ gm ^ gm�1 ^ � � � gr ^ PB>s1 ^ PB6s2;

where gi is Pi if bi = 1, gi is P
0
i otherwise. PB>s1 and PB6s2

are calculated according to Propositions 1 and 2,
respectively.

Proof. According to Propositions 1 and 2, we have

PA>c1 = Pmop1m � � � Prop1r P1r�1� � �op1k+1 P1k, PA6c2 ¼
P0
mop2m; . . . ;P

0
rop2rP2

0
r�1; . . . ; op2kþ1P2

0
k, where op1i is if

b1i = 1andop2i is_ if b2i = 1, op1i is_ andop2i is^other-

wise.We observe that if b1i = b2i, op1i and op2i are oppo-

site. This is where we can further optimize. Suppose
bm = 1, then op1m is ^, op2m is _, hence
Pc1<A6c2 ¼ PA>c1 ^ PA6c2

¼ ðPm ^ � � �Prop1rP1r�1 � � � op1kþ1P1kÞ
^ ðP0

m _ � � �P0
rop2rP2

0
r�1 � � � op2kþ1P2

0
kÞ

¼ hassociative properties of ^ and _i
Pm ^ ðP0
m _ P0

m�1 � � �P0
rop2rP2

0
r�1 � � � op2kþ1P2

0
kÞ

^ ðPm�1op1m�1 � � �Prop1rP1r�1 � � � op1kþ1P1kÞ
¼ hApply Lemmaðm� rÞ th timesi
Pm ^ Pm�1 ^ . . .Pr ^ ðP1r�1op1r�1 � � � op1kþ1P1kÞ
^ ðP20r�1op2r�1 . . . op2kþ1P2

0
kÞ

¼ hProposition 1 and Proposition 2i

Pm ^ Pm�1 ^ � � �Pr ^ PB>s1 ^ PB6s2

Similarly, we can approve the case when bm = 0
Pc1<A6c2 ¼ PA>c1 ^ PA6c2

¼ ðPm _ � � �Prop1rP1r�1 � � � op1kþ1P1kÞ
^ ðP0

m ^ � � �P0
rop2rP2

0
r�1 � � � op2kþ1P2

0
kÞ

¼ hApply Lemmaðm� rÞ th timesi
P0
m ^ P0

m�1 ^ � � �P0
r ^ ðP1r�1op1r�1 � � � op1kþ1P1kÞ

^ ðP20r�1op2r�1 � � � op2kþ1P2
0
kÞ

¼ hProposition 1 and Proposition 2i
P0
m ^ P0

m�1 ^ � � �P0
r ^ PB>s1 ^ PB6s2

Hold.
4. The EIN-ring KNN/LSVM classification

One of the key advantages of nearest neighbor ap-

proaches is that it estimates the density function for each

target instance object locally and differently instead of

estimating once for the entire instance space [10]. In this

section, we present a comprehensive vertical sampled-

based KNN/LSVM classification approach. We first
develop an efficient neighborhood search technique using

equal interval neighborhood ring (EIN-ring) in Section

4.1, and then propose an efficient weighted EIN-ring
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KNNclassification approach and exploit it as the fit func-

tion for genetic algorithms to select the most related sub-

set of features in Section 4.2. Finally, we propose a local

boundary-based classification approach, local support

vector machine to improve the classification accuracy in

Section 4.3.

4.1. EIN-ring neighborhood search

We exploit nearest neighborhood classifier as the fit

function of genetic algorithms to select the most related

subset of genes for high-dimensional gene expression

data. Due to the extensive computational requirement

of genetic algorithms, it is crucial to improve the efficiency
of the evaluation of fit function, which is the major com-

putational cost of genetic algorithms. In this section, we

develop a novel efficient neighborhood search technique

using P-trees, called EIN-ring approach.

Definition 1. The neighborhood ring of data instance c

with radii r1 and r2 is defined as the set R (c, r1, r2) =

{x 2 X|r1 < |c � x| 6 r2}, where |c � x| is the distance

between x and c.

Definition 2. The equal interval neighborhood ring of

data instance c with radii r and fixed interval k is defined

as the neighborhood ring R (c, r, r + k) = {x 2 X|r <
|c � x| 6 r + k}, where |c � x| is the distance between x

and c. For r = kk, k = 1, 2, . . ., the ring is called the kth

EIN-ring. Fig. 4 shows 2-d EIN-rings with k = 1, 2, and 3.
Fig. 4. Diagram of EIN-rings.

Fig. 5. Calculation of data points w
The interval k could be a fixed equal interval or geo-

metric interval with a fixed factor. Note that the geomet-

ric interval with a factor of two turns out to be a special

metric, called HOBbit metric [18], which can be calcu-

lated extremely fast using P-trees. The interval can be

adaptively adjusted with respect to the sparseness of
the dataset. The calculation of neighbors within EIN-

ring R (c, r, r + l) is as follows.

Let Pr, kbe theP-tree representing data instanceswithin

EIN-ring R (c, r, r + k). Note that Pr, k is just the predicate

tree corresponding to the predicate c � r � k < X 6 c � r

or c + r < X 6 c + r + k. We first calculate the data in-

stances within neighborhood ring R (c, 0, r) and

R (c, 0, r + k) by Pc�r<X6c+r and P0
c�r�k<X6xþcþrþk, respec-

tively. Pc�r�k<X6c+r+k is shown as the shadow area of

(A), and P0
c�r<X6cþr is the shadow area of (B) in Fig. 5.

The data instances within the EIN-ring R (c, r, r + k) are
those in R (c, 0, r +k) but not in R (c, 0, r). Therefore, Pr, k

is calculated by the following formula:

Pr;k ¼ Pc�r�k<X6cþrþk ^ P0
c�r<X6cþr; ð1Þ
4.2. Weighted EIN-ring KNN classification approach

The KNN classification approach is based on the

assumption that an unclassified target instance is similar

to the instances that are nearby in the feature space. The

weighted EIN-ring KNN classification has two major

steps. First, the k nearest neighbors are selected from

the training data instances within successive EIN-rings

for an unclassified target instance. Second, the unclassi-

fied target instance is assigned to thewinning class accord-
ing to the weighted majority vote. The weights of feature

dimensions are optimized by a genetic algorithm with

EIN-ring KNN as the fitness function. The genetic algo-

rithm is a classical global and nonlinear optimization

method that is derided by analogy to evolution and natu-

ral genetics [20]. If the weight of one feature dimension is

zero, it means that feature is not selected for classification

vote, otherwise selected. The value of the weight indicates
how important the corresponding feature is in the classi-

fication vote. The classification process of weighted

EIN-ring KNN approach is illustrated in Fig. 6.
ithin EIN-ring R (x, r, r + k).



Fig. 6. Diagram of weighted EIN-ring KNN approach with k = 3.

Fig. 7. Histogram within neighborhood rings.
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In Fig. 6A, data instance x is the target instance to be

classified between two classes, A and B, by means of

weighted EIN-ring KNN with k = 3. The relative simi-

larity among the data instances is calculated based on

weighted distance in which different genes have different
discriminant importance for classification. Panel B

shows two extreme genes, the most relevant and the least

relevant gene, and panel C shows weights assigned to

genes. Within the first ring, we only got one nearest

neighbor, less than three. Then we calculate the next

successive neighborhood ring and get four neighbor in-

stances. Since the total number of neighbors are greater

than three, we then stop calculating neighborhood rings
and check the voting score. Because of three instances of

class A and one instance of class B, we then assign in-

stance x to class A according to majority rule.

The parameter of k is selected by checking the vote

score of each neighborhood ring following a simple

‘‘early’’ stop rule, i.e., stopping the neighborhood calcu-

lation as soon as the neighborhood ring becomes indeci-

siveness or dominating class within the neighborhood
ring changes. A neighborhood ring is called decisive if

one class instance within the ring dominates. Fig. 7 illus-

trates a decisive ring and an indecisive ring among the

two-dimensional EIN-rings.
The decisiveness within a neighborhood ring is mea-

sured by the vote score, which is calculated by the height
of the winner bin minus the others and then divided by

the sum of heights of all histogram bins. For a dataset

with a number of C classes, we first create a mask P-tree

for the ith class, PCi, in which a ‘‘1’’ value indicates that

the corresponding data instance has the ith class label

and a ‘‘0’’ value indicates otherwise. The data instances

with ith class label within kth EIN-ring,

R (x,kk, (k + 1)k), is calculated as

PNr;i ¼ Pr;k ^ PCi; ð2Þ
where r = kk. Pr, k is calculated according to Eq. (1). Let

rc() be the root count function that returns the number

of ones in a P-tree, then the vote score within the kth

EIN-ring, R (x,kk, (k + 1)k), is calculated using P-tree as

VSr;i ¼
rcðPNr;iÞ
rcðPr;kÞ

: ð3Þ

The weights of feature dimensions are implemented

by creating a weight string through which the P-trees

that participate in the vote score calculation are selected.
The weight string has a length of d*mi, where d is the

number of dimensions and mi is the coding string length

for ith dimension. The ‘‘1’’ in the weight string means

the corresponding P-tree will participate in vote score

calculation, and ‘‘0’’ otherwise. By adjusting the number

of P-trees that participate in voting using genetic algo-

rithms, the weight string plays the role of weighting

and selecting each feature dimension.
The process of optimizing weights using genetic algo-

rithms is described as follows. Initially a population of

weight strings is randomly generated, and classification

error using weighted EIN-ring KNN is calculated

through a k-fold crossvalidation, i.e., randomly dividing

the dataset into k groups, taking turns to choose one

group as the test data and the rest as training data,

and calculating the average classification error. The
weight strings that have small classification errors are

chosen to reproduce by exchanging partial bits between

each two weight strings with a small probability Pc and

mutation, i.e., reverse some bits of a weight string ran-

domly with probability Pm. The offspring weight strings

are evaluated again, and reproduces the next generation

until meeting stop condition, e.g., the maximum number
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of generations or minimum improvement between con-

secutive generations. The best weight string with small-

est classification error is selected as the final weight

string.

One simple way of selection of the dimensions is to

select the first d-dimension with largest weight. An alter-
native way is to transform the neighborhood data in-

stances into d-dimensional space using Schoenberg

method [20]. The advantage of the latter approach is

that all the dimension information of the data are trans-

formed into d-dimension through the weighted distance

metric. Briefly, start with the distance matrix D = [dij]

(ith row and jth column of D) of the target data and

its neighbors, and calculate the eigenvector of a symmet-
ric metric B = HAH, where A = [aij],aij = �dij

2/2, and H

is same size diagonal metric with (11/k+1) on diagonal

and (1/k+1) off diagonal. The values in first dth eigen-

vectors with the largest eigenvalue is the new coordinate

of target data and its corresponding neighbors.

4.3. On improving accuracy—LSVM approach

As mentioned earlier, our KNN/LSVM approach is

motivated from the lesson of KDD Cup 2002. What

we learned from task2 of KDD Cup 2002 is that

KNN voting approach does not work well for narrow

problem, so we developed a local proximal support vec-

tor machine (LSVM) to improve the classification accu-

racy. Instead of solving global classification boundary

using nonlinear programming approach [21,22], the
LSVM fits the classification boundary using piecewise

segment hyperplanes based on local support vectors,

as illustrated in Fig. 8.

In Fig. 8, there are two classes, A and B. The x is an

unclassified instance, and S1, S2, S3, and S4 are the four

nearest neighbors to the data instance x, which are used

to form the local support vectors and to estimate the

class boundary around the unclassified data instance x.
The line through two data points M1 and M2 within

the line segments S1S2 and S3S4 is the estimation of

class boundary for the case of two dimensions.
Fig. 8. Local support vectors approach.
The LSVM approach has two major steps. The first

step is to find support vector pairs and to calculate the

EIN-ring membership of them. The EIN-ring approach

is used to find support vector pairs around the data in-

stance x. The support vector pair is a pair of data instance

that aremutual nearest neighborwith different class label.
Specifically, a pair of data instance xi,xj 2 X, i „ j, is the

support vector pair, denoted as SVP(xi,xj), if and only

if d(xi,xj) 6 d(xk,xl) xk,xl 2 X and xk 2 c1, xl 2 c2.

Given the radius of the neighborhood, we define the

EIN-ring memberships of a data x as the weighted sum-

mation of vote score VSr,i, where the VSr,j is the ratio of

the number of neighbors with the ith class label to the

total number of neighbors. The EIN-ring memberships
within neighborhood r is calculated as follows:

Mr;i ¼
Xr

r¼1

wr � VSr;i; ð4Þ

where VSr,i is calculated according to Eq. (3), r is the ra-

dius of the neighborhood, and wr is the weight of the kth

EIN-ring, wr ¼ 1� k k
r, r = kk. There are many other ker-

nel functions that can be used toweight the shape of local-

ity, such as linear kernel, polynomial kernel, RBF-kernel.

The second step is to fit hyperplane and assign a class

label to the target data instance. The hyperplane spans

over the data points between each SVP. We define these

data point as boundary sentry (BS). The boundary sen-

try between support vector pair (xi, xj), denoted as BSi,j,

is calculated as

BSi;j ¼ kxi þ ð1� kÞxj; ð5Þ
where k = Mr,j/(Mr,i + Mr,j), Mr,i and Mr,j are calcu-

lated according to Eq. (4). Given a test data instance x

with d dimension, the boundary hyperplane is deter-

mined by d boundary sentries. For example, if d = 2,

the boundary is a line and we need two boundary sen-

tries. Similarly, if d = 3, we need three boundary sentries
to determine the boundary plane.

After fitting the class boundary with piecewise hyper-

plane, we check if the data instance of support vectors

have the same class on the same side of class boundary.

If not, we replace the misleading support vector with the

next nearest one and check the class boundary untill the

data instance of support vectors have the same class on

the same side of class boundary. Finally, we determine
the class label of x based on its relative location to the

boundary hyperplane.
5. Performance study

We compared our EIN-ring KNN/LSVM classifica-

tion approach with Fisher�s linear discriminant analysis
(FLDA) [21] and Golub�s weighted voting method [2].

The two test datasets we selected are Leukemia dataset



Fig. 10. Precision strength measurements on DB1 and DB2 with 2, 5,

and 10% noises.
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and Lymphoma dataset, denoted as DB1 and DB2,

respectively, which were prepared in the same fashion

as described in paper [6]. The accuracy is measured by

precision, which is calculated for every class c as TP/

(TP + FP), where TP (true positives) is the number of

test instances that are correctly classified as c and FP
(false positives) is the number of test instances that

should be classified as c but not. The precision compar-

ison with FLDA and Golub�s weighted KNN approach

is based on the precision report on DB1 in paper [6]. The

efficiency is compared between our algorithm by P-tree

data representation and using double precision numbers

(DPN) in our algorithm.

We implemented KNN/LSVM approach in the C
language and run on a 1 GHz Pentium PC machine with

1GB main memory, and Debian Linux 4.0. In this

experiment, we chose uniform crossover, stochastic uni-

versal sampling selection, leave-one-out crossvalidation,

Pc = 0.5, Pm = 0.05, k = 5 and GA population size of

200, strength length of 8 based on preliminary experi-

ment. Termination condition is always checked after

selection, mutation, and re-evaluation, which is set to
1000 maximum runs and minimum difference of fitness

value E = 0.01 between two generations.

The precision comparison with FLDA and Golub�s
KNN on DB1 is plotted in the upper panel of Fig. 9.

The overall run time of KNN/LSVM and the same ap-

proach using DPN is shown in the lower panel of Fig.

9. In general, the nearest neighbor and KNN/LSVM

had the higher precision strength than FLDA. The pos-
sible reason for the poor performance of FLDA is that it

is a ‘‘global’’ approach that is not well suited to high-di-

mensional skew data, while nearest neighbor and our
Fig. 9. Comparison of accuracy and run time.
approach methods make optimal decision at local level.

Compared to the precision of FLDA and Golub�s KNN

approach on DB2, KNN/LSVM achieved relatively
higher precision than FLDA and comparable precision

to Golub�s KNN. As for efficiency, it is clear that P-

tree-based KNN/LSVM is significant faster than the

same approach without using P-trees. Drastic speed

improvement of KNN with P-trees is observed when

the size of the data is very large, as shown in the case

of 5000 · 20,000 matrix size in [18].

We tested the sensitivity of our algorithm under vari-
ous noise environments by adding 2, 5, and 10% uniform

random noise to DB1 and DB2. The comparison of pre-

cision measurements of KNN/LSVM under different

noise is plotted in Fig. 10. Comparing to the case without

noise, the average precision measurement of KNN/

LSVM under 2 and 5% noise change slightly, while the

average precision measurement of KNN/LSVM ap-

proach under 10% noises decreases dramatically. The
range of precision measurement spreads slightly under

2 and 5% noises, and more widely under 10% noises.

The result indicates that KNN/LSVM is robust under

small and moderate noise, which inherits fromKNN vot-

ing scheme and the LSVM. The robustness capability of

KNN/LSVM to high-dimensional noises is a highly

desirable characteristic for gene expression data analysis.
6. Conclusion

In this paper, we have proposed a comprehensive

vertical sample-based classification approach, KNN/
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LSVM, characterized by P-tree, combination of major-

ity voting and boundary approach, and weights optimi-

zation using the genetic algorithm. Experiments with

public microarray data demonstrated that our approach

can achieve high accuracy and efficiency, hence could be

a powerful tool for gene expression data analysis.
In addition to improved performance, our approach

also showed strong robustness to noises in high-dimen-

sional data. The reason for that is mainly related to

the property of KNN majority voting scheme, which is

highly desirable for gene expression analysis.

In the future, we will apply this approach to large-

scale time series gene expression data, where the efficient

and scalable analysis approach is in demand. We will
also investigate the influence of the partition on the bal-

ance of accuracy and computation efficiency.
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