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Abstract

Let M be a W∗-algebra and let LS(M) be the algebra of all locally measurable operators affiliated
with M. It is shown that for any self-adjoint element a ∈ LS(M) there exists a self-adjoint element c0
from the center of LS(M), such that for any ε > 0 there exists a unitary element uε from M, satisfying
|[a,uε]| � (1 − ε)|a − c0|. A corollary of this result is that for any derivation δ on M with the range in a
(not necessarily norm-closed) ideal I ⊆ M, the derivation δ is inner, that is δ(·) = δa(·) = [a, ·], and a ∈ I .
Similar results are also obtained for inner derivations on LS(M).
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be a W ∗-algebra and let Z(M) be the center of M. Fix a ∈ M and consider the
inner derivation δa on M generated by the element a, that is δa(·) := [a, ·]. Obviously, δa is a
linear bounded operator on (M,‖ · ‖M), where ‖ · ‖M is a C∗-norm on M. It is well known
(see e.g. [22, Theorem 4.1.6]) that there exists c ∈ Z(M) such that the following estimate holds:
‖δa‖ � ‖a − c‖M. In view of this result, it is natural to ask whether there exists an element
y ∈ M with ‖y‖ � 1 and c ∈ Z(M) such that |[a, y]| � |a − c|?

The following estimate easily follows from the main result of the present article: for every
self-adjoint element a ∈ M there exists an element c ∈ Z(M) and the family {uε}ε>0 of unitary
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operators from M such that ∣∣δa(uε)
∣∣ � (1 − ε)|a − c|, ∀ε > 0. (1)

The estimate above is actually sharp and, with its aid, we shall easily show (see Corollary 3
below) that every derivation δ on M taking its values in a (not necessary closed in the norm
‖ · ‖M) two-sided ideal I ⊂ M has the form δ = δa , where a ∈ I . This result can be further
reformulated in two equivalent forms (Corollaries 4 and 5) yielding generalizations and com-
plements to classical results of J. Calkin [5] and M.J. Hoffman [12] obtained originally for the
special case when M coincides with the algebra B(H) of all bounded linear operators on a
Hilbert space H . It should be pointed out that our approach to the proof of Corollaries 4 and 5 is
based on the estimate (1) and appears to be more direct than those employed in [5] and [12]. In
Section 3 below we present a number of other extensions of results from [5,12], in particular to
ideals of measurable (unbounded) operators, which significantly extend recent results from [1,2]
obtained under an additional assumption that M is of type I .

Further, we recall the following well-known problem, which is also somewhat relevant to our
discussion of derivations taking values in ideals.

Let N be a von Neumann subalgebra of the von Neumann algebra M and let I be an arbitrary
(two-sided) ideal in M. What conditions should be imposed on M, N , I to guarantee that for
every derivation δ : N → I there exists a ∈ I so that the equality δ = δa holds?

Different partial solutions of this problem can be found in [13,17,21]. In the present paper we
present a positive solution in the special case when M is an arbitrary von Neumann algebra and
when N = M. Let us note that if, in addition, we assume that the ideal I is closed with respect
to the norm ‖ · ‖M, then the positive solution can be obtained directly from the Dixmier ap-
proximation theorem (see e.g. [22, Theorem 2.1.16]). However, the latter theorem is inapplicable
when the ideal I is not closed in the C∗-norm on M.

Analogous (but much harder) questions to those discussed above can be also reformulated in a
more general setting of the theory of non-commutative integration initiated by I.E. Segal [25] (for
alternative approach to this theory, see E. Nelson’s paper [20]). In these reformulations (see e.g.
[2,3]), the W ∗-algebra M is replaced with a larger algebra of ‘measurable’ operators affiliated
with M and the ideal I in M is replaced with an ideal of measurable operators. The most
general algebra considered in the theory of non-commutative integration to date is the classical
algebra LS(M) (see [23]) of all locally measurable operators affiliated with M (all necessary
definitions are given in Section 2 below). It is important to emphasize that our methods are totally
different from the methods employed in [5,12,13,17,21,1,2] and are strong enough to enable us
(see Theorem 1 and Corollaries 8, 11 below) to resolve all these questions also in the setting of
the algebra LS(M). A number of such applications to symmetric spaces of measurable operators
(some of them are in spirit of papers [5,12,17,1,2]) are presented in Section 3.

Our main result in this paper is the following theorem.

Theorem 1. Let M be a W ∗-algebra and let a = a∗ ∈ LS(M).

(i) If M is a finite W ∗-algebra or else a purely infinite σ -finite W ∗-algebra, then there exist
c0 = c∗

0 ∈ Z(LS(M)) and u0 = u∗
0 ∈ U(M), such that∣∣[a,u0]

∣∣ = u∗
0|a − c0|u0 + |a − c0|, (2)

where U(M) is the group of all unitary elements in M.
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(ii) There exists c0 = c∗
0 ∈ Z(LS(M)), so that for any ε > 0 there exists uε = u∗

ε ∈ U(M) such
that

∣∣[a,uε]
∣∣ � (1 − ε)|a − c0|. (3)

The main ideas of the proof of Theorem 1 are firstly demonstrated in Section 4 and then
presented in full in Section 5. The proof of Theorem 1 in the special case when M is a factor
can be also found in our earlier paper [3]. We point out that the proof in the general case has
required a significant new technical insight and that our direct approach may be of interest in its
own right (not in the least due to the fact that we do not use any complicated technical devises
such as Boolean-valued analysis and direct integrals).

Remark 2. Observe that the equality (2) trivially yields the estimate (3) even for the case ε = 0.
Nevertheless, the result of Theorem 1(ii) is still sharp. Indeed, if M is an infinite semi-finite
σ -finite factor, then there exists a self-adjoint element a ∈ LS(M) such that for every λ ∈ C and
u ∈ U(M) the inequality |[a,u]| � |a − λ1| fails [3]. Hence, the multiplier (1 − ε) in the part
(ii) of Theorem 1 cannot be omitted.

2. Preliminaries

For details on von Neumann algebra theory, the reader is referred to e.g. [7,16,22] or [28].
General facts concerning measurable operators may be found in [20,25] (see also [29, Chap-
ter IX]). For the convenience of the reader, some of the basic definitions are recalled.

Let M be a von Neumann algebra on a Hilbert space H . The set of all self-adjoint projections
(respectively, all unitary elements) in M is denoted by P(M) (respectively, U(M)). We use the
notation s(x), l(x), r(x), c(x) to denote the support, left support, right support, central support
respectively of an element x ∈ M.

Let p,q ∈ P(M). The projections p and q are said to be equivalent, if there exists a partial
isometry v ∈ M, such that v∗v = p, vv∗ = q . In this case, we write p ∼ q . The fact that the pro-
jections p and q are not equivalent is recorded as p � q . If there exists a projection q1 ∈ P(M)

such that q1 � p, q1 ∼ q , then we write q � p. If q � p and p � q , then we employ the notation
q ≺ p.

A linear operator x : D(x) → H , where the domain D(x) of x is a linear subspace of H , is
said to be affiliated with M if yx ⊆ xy for all y ∈ M′ (which is denoted by xηM). A linear
operator x : D(x) → H is termed measurable with respect to M if x is closed, densely defined,
affiliated with M and there exists a sequence {pn}∞n=1 in P(M) such that pn ↑ 1, pn(H) ⊆ D(x)

and p⊥
n is a finite projection (with respect to M) for all n. It should be noted that the condition

pn(H) ⊆ D(x) implies that xpn ∈ M. The collection of all measurable operators with respect
to M is denoted by S(M), which is a unital ∗-algebra with respect to strong sums and products
(denoted simply by x + y and xy for all x, y ∈ S(M)).

Let a be a self-adjoint operator affiliated with M. We denote its spectral measure by {ea}. It
is known if x is a closed operator in H with the polar decomposition x = u|x| and xηM, then
u ∈ M and e ∈ M for all projections e ∈ {e|x|}. Moreover, x ∈ S(M) if and only if x is closed,
densely defined, affiliated with M and e|x|(λ,∞) is a finite projection for some λ > 0. It follows
immediately that in the case when M is a von Neumann algebra of type III or a type I factor,
we have S(M) = M. For type II von Neumann algebras, this is no longer true.
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An operator x ∈ S(M) is called τ -measurable if there exists a sequence {pn}∞n=1 in P(M)

such that pn ↑ 1, pn(H) ⊆ D(x) and τ(p⊥
n ) < ∞ for all n. The collection S(τ) of all τ -

measurable operators is a unital ∗-subalgebra of S(M) denoted by S(M, τ ). It is well known
that a linear operator x belongs to S(M, τ ) if and only if x ∈ S(M) and there exists λ > 0 such
that τ(e|x|(λ,∞)) < ∞.

A closed operator xηM is called locally measurable if there exists a sequence {zn}∞n=1 of
central projections in M such that zn ↑ 1 and xzn ∈ S(M) for any n ∈ N. The collection of
all locally measurable operators with respect to M is denoted by LS(M), which is a unital
∗-algebra with respect to strong sums and products (denoted simply by x + y and xy for all
x, y ∈ LS(M)).

It follows directly from the definition of local measurability, that every measurable operator c

with respect to Z(M) is a locally measurable operator and so S(Z(M)) ⊂ Z(LS(M)). On the
other hand, if c ∈ Z(LS(M)) and c = v|c| is a polar decomposition for c, then v ∈ Z(M) and
the spectral family e

|c|
λ of |c| belongs to Z(M) as well. This means that |c| ∈ S(Z(M)). Hence,

c = v|c| ∈ S(Z(M)). So, we have

Z
(
LS(M)

) = S
(
Z(M)

)
.

In particular, ∗-algebra Z(LS(M)) is ∗-isomorphic to the commutative ∗-algebra L0(Ω,Σ,μ)

of all measurable complex-valued functions on a measurable space with a locally finite mea-
sure [25].

Suppose now that two von Neumann algebras M and N are ∗-isomorphic. In this case, it
follows from [6] that the algebras LS(M) and LS(N ) of locally measurable operators affiliated
with von Neumann algebras M and N respectively are also ∗-isomorphic. Assuming now that
M is an arbitrary W ∗-algebra and N is a von Neumann algebra ∗-isomorphic with M, we see
that the algebra LS(N ) is uniquely defined up to ∗-isomorphism. In view of this observation, the
algebra LS(M) of all locally measurable operators affiliated with an arbitrary W ∗-algebra M is
well defined.

3. Applications to derivations and essential commutants

Recall that a derivation on a complex algebra A is a linear map δ : A → A such that

δ(xy) = δ(x)y + xδ(y), x, y ∈ A.

If a ∈ A, then the map δa : A → A, given by δa(x) = [a, x], x ∈ A, is a derivation. A derivation of
this form is called inner. In this section we demonstrate a number of corollaries from Theorem 1
to inner derivations on the algebra A (in the setting when A = M or A = LS(M)) taking value
in some two-sided ideal in A.

3.1. Applications to ideals in W ∗-algebras

Our results here extend those in [5,12]. We are also motivated by results in [13,17,21]. For
convenience of the reader, we now quickly list a few important properties of ideals in von Neu-
mann algebras, which play a role in the subsequent exposition. For more detailed account of such
properties, we refer to [16, Section 6.8].
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The set F of all operators with finite range projection in a von Neumann algebra M is a
two-sided ideal in M. Each non-zero two-sided ideal in a factor M contains this ideal [16,
Theorem 6.8.3]. Each finite (respectively, σ -finite type III) factor is simple [16, Corollary 6.8.4]
(respectively, [16, Corollary 6.8.5]). If M is a σ -finite factor of type I∞ or II∞, the norm closure

F of the two-sided ideal F of operators with finite range projection is the only proper, norm-
closed, two-sided ideal [16, Theorem 6.8.7]. Each two-sided ideal in a von Neumann algebra is
self-adjoint [16, Proposition 6.8.9]. On the other hand, every semi-finite non-finite von Neumann
algebra contains infinitely many non-trivial two-sided ideals (see the end of this section).

Corollary 3. Let M be a W ∗-algebra and let I be an ideal in M. Let δ : M → I be a derivation.
Then there exists an element a ∈ I , such that δ = δa = [a, ·].
Proof. Since δ is a derivation on a W ∗-algebra, it is necessarily inner [22, Theorem 4.1.6]. Thus,
there exists an element d ∈ M, such that δ(·) = δd(·) = [d, ·]. It follows from our hypothesis that
[d, M] ⊆ I .

Using [16, Proposition 6.8.9] (or [3, Lemma 7]), we obtain [d∗, M] = −[d, M]∗ ⊆ I ∗ = I

and [dk, M] ⊆ I , k = 1,2, where d = d1 + id2, dk = d∗
k ∈ M, for k = 1,2. It follows now

from Theorem 1, that there exist c1, c2 ∈ Z(M) and u1, u2 ∈ U(M), such that |[dk,uk]| �
1/2|dk − ck| for k = 1,2. Again applying [3, Lemma 7], we obtain dk − ck ∈ I , for k = 1,2.
Setting a := (d1 − c1) + i(d2 − c2), we deduce that a ∈ I and δ = [a, ·]. �

Corollary 3 can be restated as follows.

Corollary 4. Let M be a W ∗-algebra, let I be an ideal in M and let π : M → M/I be a
canonical epimorphism. Then π−1(center(M/I)) = Z(M) + I .

Proof. Let a ∈ π−1(center(M/I)). Then [a, x] = ax − xa ∈ I for any x ∈ M. Therefore the
inner derivation δa satisfies the condition of Corollary 3. Then there exists an element c ∈ Z(M)

such that a + c ∈ I . Therefore a ∈ Z(M) + I , that is π−1(center(M/I)) ⊂ Z(M) + I . The
converse inclusion is trivial. �

In the special case when M = B(H), where H is a separable Hilbert space the result of Corol-
lary 4 coincides with that of [5, Theorem 2.9]. Thus, we can view Corollary 4 as an extension
of the classical Calkin theorem to arbitrary W ∗-algebras. This result has the following “lifting”
interpretation. Let φ be an epimorphism from W ∗-algebra M on an arbitrary algebra A and let
a be an element from the center of the algebra A. Then there exists an element z ∈ Z(M) such
that φ(z) = a.

Let us give another important corollary of Theorem 1 related to the notions of essential com-
mutant and multiplier ideals [12]. To this end, let us fix a W ∗-algebra M and two self-adjoint
ideals I , J in M. We set

I : J = {x ∈ M: xJ ⊂ I }
and

D(J, I) = {
x ∈ M: [x, y] ∈ I, ∀y ∈ J

}
.

Observe that I : J is an ideal in M. In particular, (I : J )∗ = I : J = {x ∈ M: Jx ⊂ I }.
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Corollary 5. For any W ∗-algebra M and any ideals I , J in M we have

D(J, I) = I : J + Z(M).

Proof. Let a ∈ I : J , c ∈ Z(M), b ∈ J . Then [a + c, b] = [a, b] = ab − ba ∈ I − I ⊂ I , that is
a + c ∈ D(J, I). Therefore I : J + Z(M) ⊂ D(J, I).

In order to prove that D(J, I) ⊂ I : J + Z(M), fix an element a ∈ D(J, I). For an arbitrary
x ∈ J , y ∈ M, we have x[a, y] + [a, x]y = xay − xya + axy − xay = [a, xy] ∈ [a,J ] ⊂ I ,
[a, x]y ∈ Iy ⊂ I . Hence, x[a, y] ∈ I . Since x is an arbitrary element from J , we obtain [a, y] ∈
I : J and so [a, M] ⊂ I : J . Now, it follows from Corollary 3 that a + c ∈ I : J for some
c ∈ Z(M). Consequently, a = (a + c) − c ∈ I : J + Z(M). �

In the special case, when M = B(H), the result of Corollary 5 coincides with that of [12,
Theorem 1.1]. The proof given there does not extend to arbitrary von Neumann algebras and is
spelt out only for the case of a separable Hilbert space H (the case of a nonseparable H requires
a substantial effort outlined in [12]). The proof given above works for an arbitrary W ∗-algebra
M and hence for an arbitrary von Neumann algebra represented on an arbitrary Hilbert space.

Classical examples of normed ideals I satisfying the assumptions of Corollary 3 above are
given by symmetric operator ideals [9,10,24,26].

Definition 6. A linear subspace I in the von Neumann algebra M equipped with a norm ‖ · ‖I
is said to be a symmetric operator ideal if

(1) ‖S‖I � ‖S‖ for all S ∈ I ,
(2) ‖S∗‖I = ‖S‖I for all S ∈ I ,
(3) ‖ASB‖I � ‖A‖‖S‖I ‖B‖ for all S ∈ I , A,B ∈ M.

Observe, that every symmetric operator ideal I is a two-sided ideal in M, and therefore by
[7, I.1.6, Proposition 10], it follows from 0 � S � T and T ∈ I that S ∈ I and ‖S‖I � ‖T ‖I .

Corollary 7. Let M be a W ∗-algebra, let I be a symmetric operator ideal in M and let
δ : M → I be a self-adjoint derivation. Then there exists an element a ∈ I , satisfying the in-
equality ‖a‖I � ‖δ‖M→I and such that δ = δa = [a, ·].

Proof. Firstly, we observe that ‖δ‖M→I < ∞. Indeed, we have δ = δa , a ∈ I and therefore
‖δ(x)‖I = ‖ax − xa‖I � ‖ax‖I + ‖xa‖I � 2‖a‖I‖x‖M, that is ‖δ‖M→I � 2‖a‖I < ∞.

Let now δ be a self-adjoint derivation on M, that is δ(·) = δd(·) = [d, ·] for some d ∈ M, such
that [d, x]∗ = [d, x∗] for all x ∈ M. We have x∗d∗ − d∗x∗ = dx∗ − x∗d , that is, x∗(d∗ + d) =
(d∗ + d)x∗ for all x ∈ M. This immediately implies Re(d) ∈ Zh(M) and so, we can safely
assume that δ = δi·d = [i · d, ·], where d is a self-adjoint operator from M. Fix ε > 0 and let
c0 ∈ Zh(M), uε ∈ U(M) be such that

∣∣[d,uε]
∣∣ � (1 − ε)|d − c0|.

The assumption on (I,‖ · ‖) guarantees that (1 − ε)‖d − c0‖I � ‖δ(uε)‖I � ‖δ‖M→I . Since ε

was chosen arbitrarily, we conclude that ‖d − c0‖I � ‖δ‖M→I . Setting a = i(d − c0) completes
the proof. �
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If the von Neumann algebra M is equipped with a faithful normal semi-finite trace τ , then
the set

Lp(M) = {
S ∈ M: τ

(|S|p)
< ∞}

equipped with a standard norm

‖S‖Lp(M) = max
{‖S‖B(H), τ

(|S|p)1/p}
is called Schatten–von Neumann p-class. In the type I setting these are the usual Schatten–
von Neumann ideals of compact operators [9,10,24,26]. The result of Corollary 7 complements
results given in [17, Section 6], where derivations from some subalgebras of M into Schatten–
von Neumann p-classes were studied.

3.2. Applications to ideals in LS(M)

We begin by proving an analogue of Corollary 3 for ideals of (unbounded) locally measurable
operators. The following result significantly strengthens [2, Proposition 6.17] where a similar
assertion was established under additional assumptions that M = L∞(ν) ⊗̄ B(H) (here, L∞(ν)

is an algebra of all bounded measurable functions on a measure space) and A is an absolutely
solid algebra such that M ⊂ A. Similarly, the result below complements the main result of [1],
which considered the case of an arbitrary von Neumann algebra M of type I and algebras A =
S(M, τ ), S(M),LS(M). Our approach here is completely different from techniques used in
[1,2] which crucially exploited structural results describing type I von Neumann algebras.

Corollary 8. Let M be a W ∗-algebra and let A be a linear subspace in LS(M), such that
A∗ = A, x ∈ A ⇔ |x| ∈ A, 0 � x � y ∈ A ⇒ x ∈ A. Fix a ∈ LS(M) and consider inner deriva-
tion δ = δa on the algebra LS(M) given by δ(x) = [a, x], x ∈ LS(M). If δ(M) ⊆ A, then there
exists an element d ∈ A such that δ(x) = [d, x].

Proof. Let a = a1 + ia2, where a1 = Re(a) and a2 = Im(a). We have 2[a1, x] = [a + a∗, x] =
[a, x] − [a, x∗]∗ = A − A∗ ⊆ A for any x ∈ M. Analogously, [a2, x] ∈ A for any x ∈ M. By
Theorem 1, there is an element ck ∈ Zh(LS(M)) and a unitary element uk ∈ U(M), such that
|[ak,uk]| � 1/2|ak − ck| for k = 1,2. The assumption on A guarantees that ak − ck ∈ A, for
k = 1,2. Setting d = (a1 − c1) + i(a2 − c2), we deduce that d ∈ A and δ = [d, ·]. �

Consider the following classical example (see e.g. [13, Lemmas 3.1 and 3.2]): M = B(H) and
A is the algebra of all compact operators on H . Suppose that an element a = a∗ ∈ M is such
that δa : M → A. Then the result of Corollary 8 asserts that there exists λ ∈ R such that a − λ1
is a compact operator. An important example extending this classical result can be obtained as
follows. Let a semi-finite von Neumann algebra M be equipped with a faithful normal semi-finite
trace τ . Let x ∈ S(M, τ ). The set S0(M, τ ) of all τ -compact operators in LS(M) is defined as
the subset of all x ∈ S(M, τ ) such that limt→∞ μt(x) = 0 (see the definition of the generalized
singular value function μ below). The result of Corollary 8 asserts, in particular, that for any
a ∈ LS(M) such that δa : LS(M) → S0(M, τ ) there exists an element c ∈ LS(Z(M)) such that
a − c ∈ S0(M, τ ).



544 A.F. Ber, F.A. Sukochev / Journal of Functional Analysis 262 (2012) 537–568
Numerous examples of absolutely solid subspaces A in LS(M) satisfying the assumptions of
the preceding corollary are given by M-bimodules of LS(M).

Definition 9. A linear subspace E of LS(M), is called an M-bimodule of local measurable
operators if uxv ∈ E whenever x ∈ E and u,v ∈ M. If an M-bimodule E is equipped with a
(semi-)norm ‖ · ‖E , satisfying

‖uxv‖E � ‖u‖M‖v‖M‖x‖E, x ∈ E, u, v ∈ M, (4)

then E is called a (semi-)normed M-bimodule of local measurable operators.

We omit a straightforward verification of the fact that every M-bimodule of locally measur-
able operators satisfies the assumption of Corollary 8.

The best-known examples of normed M-bimodules of LS(M) are given by the so-called
symmetric operator spaces (see e.g. [8,27,18]). We briefly recall relevant definitions (for more
detailed information we refer to [18] and references therein).

Let L0 be a space of Lebesgue measurable functions either on (0,1) or on (0,∞), or on
N finite almost everywhere (with identification m-a.e.). Here m is a Lebesgue measure or else
counting measure on N. Define S as the subset of L0 which consists of all functions x such that
m({|x| > s}) is finite for some s.

Let E be a Banach space of real-valued Lebesgue measurable functions either on (0,1) or
(0,∞) (with identification m-a.e.) or on N. The space E is said to be absolutely solid if x ∈ E

and |y| � |x|, y ∈ L0 implies that y ∈ E and ‖y‖E � ‖x‖E .
The absolutely solid space E ⊆ S is said to be symmetric if for every x ∈ E and every y the

assumption y∗ = x∗ implies that y ∈ E and ‖y‖E = ‖x‖E (see e.g. [19]).
Here, x∗ denotes the non-increasing right-continuous rearrangement of x given by

x∗(t) = inf
{
s � 0: m

({|x| � s
})

� t
}
.

In the case when x is a sequence we denote by x∗ the usual decreasing rearrangement of the
sequence |x|.

If E = E(0,1) is a symmetric space on (0,1), then

L∞ ⊆ E ⊆ L1.

If E = E(0,∞) is a symmetric space on (0,∞), then

L1 ∩ L∞ ⊆ E ⊆ L1 + L∞.

If E = E(N) is a symmetric space on N, then


1 ⊆ E ⊆ 
∞,

where 
1 and 
∞ are classical spaces of all absolutely summable and bounded sequences respec-
tively.
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Let a semi-finite von Neumann algebra M be equipped with a faithful normal semi-finite
trace τ . Let x ∈ S(M, τ ). The generalized singular value function of x is μ(x) : t → μt(x),
where, for 0 � t < τ(1)

μt (x) = inf
{
s � 0

∣∣ τ
(
e|x|(s,∞)

)
� t

}
.

Consider M = L∞([0,∞)) as an abelian von Neumann algebra acting via multiplication on
the Hilbert space H = L2(0,∞), with the trace given by integration with respect to Lebesgue
measure m. It is easy to see that the set of all τ -measurable operators affiliated with M consists
of all measurable functions on [0,∞) which are bounded except on a set of finite measure, that
is S(M, τ ) = S and that the generalized singular value function μ(f ) is precisely the decreasing
rearrangement f ∗.

If M = B(H) (respectively, 
∞(N)) and τ is the standard trace Tr (respectively, the counting
measure on N), then it is not difficult to see that S(M, τ ) = M. In this case, for x ∈ S(M, τ )

we have

μn(x) = μt(x), t ∈ (n − 1, n], n = 0,1,2, . . . .

For M = B(H) the sequence {μn(T )}∞
n=1

is just the sequence of singular values (sn(T ))∞n=1.

Definition 10. Let E be a linear subset in S(M, τ ) equipped with a norm ‖ · ‖E . We say that E
is a symmetric operator space (on M, or in S(M, τ )) if for any x ∈ E and every y ∈ S(M, τ )

such that μ(y) � μ(x), we have y ∈ E and ‖y‖E � ‖x‖E .

The fact that every symmetric operator space E is (an absolutely solid) M-bimodule of
S(M, τ ) is well known (see e.g. [27,18] and references therein). In the special case, when
M = B(H) and τ is a standard trace Tr, the notion of symmetric operator space introduced
in Definition 10 coincides with the notion of symmetric operator ideal given in Definition 6.

There exists a strong connection between symmetric function and operator spaces recently
exposed in [18] (see earlier results in [24,9,10,26]).

Let E be a symmetric function space on the interval (0,1) (respectively, on the semi-axis or
on N) and let M be a type II1 (respectively, II∞ or type I ) von Neumann algebra. Define

E(M, τ ) := {
S ∈ S(M, τ ): μt(S) ∈ E

}
, ‖S‖E(M,τ ) := ∥∥μt(S)

∥∥
E
.

Main results of [18] assert that (E(M, τ ),‖ ·‖E(M,τ )) is a symmetric operator space. If E = Lp ,
1 � p < ∞, then (E(M, τ ),‖·‖E(M,τ )) coincides with the classical non-commutative Lp-space
associated with the algebra (M, τ ). If M is a semi-finite atomless von Neumann algebra, then
the converse result also holds [27]. That is, if E is a symmetric operator space on M, then

E(0,∞) := {
f ∈ S0

(
(0,∞)

)
: f ∗ = μ(x) for some x ∈ E

}
, ‖f ‖E := ‖x‖E

is a symmetric function space on (0, τ (1)). It is obvious that E = E(M, τ ). Similarly, if E =
E(N) is a symmetric sequence space on N, and the algebra M is a type I factor with standard
trace, then (see [18]) setting

E := {
S ∈ M:

(
sn(S)

)∞ ∈ E
}
, ‖S‖E := ∥∥(

sn(S)
)∞ ∥∥
n=1 n=1 E
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yields a symmetric operator ideal. Conversely, every symmetric operator ideal E in M defines a
unique symmetric sequence space E = E(N) by setting

E := {
a = (an)

∞
n=1 ∈ 
∞: a∗ = (

sn(S)
)∞
n=1 for some S ∈ E

}
, ‖a‖E := ‖S‖E .

We are now fully equipped to provide a full analogue of Corollaries 3 and 7.

Corollary 11. Let M be a semi-finite W ∗-algebra and let E be a symmetric operator space.
Fix a = a∗ ∈ S(M) and consider inner derivation δ = δa on the algebra LS(M) given by
δ(x) = [a, x], x ∈ LS(M). If δ(M) ⊆ E , then there exists d ∈ E satisfying the inequality
‖d‖E � ‖δ‖M→E and such that δ(x) = [d, x].

Proof. The existence of d ∈ E such that δ(x) = [d, x] follows from Corollary 8. Now, if u ∈
U(M), then ‖δ(u)‖E = ‖du − ud‖E � ‖du‖E + ‖ud‖E = 2‖d‖E . Hence, if x ∈ M1 = {x ∈
M: ‖x‖ � 1}, then x = ∑4

i=1 αiui , where ui ∈ U(M) and |αi | � 1 for i = 1,2,3,4, and so
‖δ(x)‖E �

∑4
i=1 ‖δ(αiui)‖E � 8‖d‖E , that is ‖δ‖M→E � 8‖d‖E < ∞.

The final assertion is established exactly as in the proof of Corollary 7. �
An illustration of the result above complementing the example given after Corollary 8, can be

obtained when the space E is given by the norm closure of the subspace L1 ∩ L∞ in the space
L1 + L∞. In this case, the space E = E(M, τ ) can be equivalently described as the set of all
x ∈ L1 + L∞(M, τ ) such that limt→∞ μt(x) = 0. This space is a normed counterpart of the
space S0(M, τ ) of all τ -compact operators in LS(M).

4. The outline of the proof of Theorem 1

The next two examples demonstrate respectively two main ideas behind the proof of Theo-
rem 1. The first example yields the proof for the case when M coincides with algebra Mn(C) of
all n × n complex matrices.

Example 12. The assertion of Theorem 1 holds for the case M = Mn(C), n ∈ N.

Proof. Fix a = a∗ ∈ Mn(C) and select a unitary matrix v ∈ Mn(C) such that

v∗av =

∣∣∣∣∣∣∣∣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

∣∣∣∣∣∣∣∣
∈ Mn(C),

where λ1 � λ2 � · · · � λn.
Let the unitary matrix u ∈ Mn(C) be counter-diagonal, that is

u =

∣∣∣∣∣∣∣∣
0 . . . 0 1
0 . . . 1 0
... . .

.
. .

. ...

∣∣∣∣∣∣∣∣
,

1 0 . . . 0
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and observe that

u∗v∗avu =

∣∣∣∣∣∣∣∣
λn 0 . . . 0
0 λn−1 . . . 0
...

...
. . .

...

0 0 . . . λ1

∣∣∣∣∣∣∣∣
.

Therefore,

∣∣[a, vu]∣∣ = ∣∣u∗v∗avu − a
∣∣ =

∣∣∣∣∣∣∣∣
|λn − λ1| 0 . . . 0

0 |λn−1 − λ2| . . . 0
...

...
. . .

...

0 0 . . . |λ1 − λn|

∣∣∣∣∣∣∣∣
.

If n is odd, then for all 1 � k � n we have

|λk − λn+1−k| = |λk − λ0| + |λn+1−k − λ0|

for λ0 = λ(n+1)/2.
If n is even, then for all 1 � k � n we have

|λk − λn+1−k| = |λk − λ0| + |λn+1−k − λ0|

for every λ0 ∈ [λn/2, λn/2+1].
Therefore, for every n ∈ N, we have

∣∣[v∗av,u
]∣∣ = u∗v∗|a − λ01|vu + v∗|a − λ01|v.

Then |[a, vuv∗]| = |(vuv∗)∗a(vuv∗) − a| = v|u∗v∗avu − v∗av|v∗ = v|[v∗av,u]|v∗ =
(vuv∗)∗|a − λ01|(vuv∗) + |a − λ01|, (vuv∗)2 = 1.

This completes the proof of the equality (2). The second assertion of Theorem 1 trivially
follows from the first one (see Remark 2). �

The idea of the proof of the second part of Theorem 1 is demonstrated in Example 12.

Example 13. Let M be a σ -finite factor of type I∞ or II∞. Then M contains a family of
pairwise orthogonal and pairwise equivalent projections {pn}∞n=1, such that

∑∞
n=1 pn = 1. Let

R+ � λn ↓ 0. Set a = ∑∞
n=1 λnpn (this series converges in the strong operator topology). Using

the same arguments as in [3], it is easy to show that there is no λ0 ∈ C and u ∈ U(M) such that
|[a,u]| � |a − λ01|. Nevertheless, the part (ii) of Theorem 1 holds.

Proof. We refer the reader to [3] for the proof of the first assertion and pass to the proof of the
second one.

Fix ε > 0. For every n ∈ N there exist infinitely many m ∈ N such that λm < ελn. Hence,
the set N can be split up into the set of all pairs {nk,mk}∞k=1 such that λmk

< ελnk
. For every

k � 1, select a partial isometry vn m such that v∗
m vn m = pm , vn m v∗

m = pn . Clearly,

k k nk k k k k k k nk k k
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the projections pnk
, pmk

and the partial isometry vnkmk
generate a ∗-subalgebra in M which is

∗-isomorphic to M2(C). Without loss of generality, under this ∗-isomorphism, we equate

pnk
=

∣∣∣∣1 0
0 0

∣∣∣∣ , pmk
=

∣∣∣∣0 0
0 1

∣∣∣∣ , vnkmk
=

∣∣∣∣0 1
0 0

∣∣∣∣ .
Next, consider a W ∗-subalgebra of M generated by the elements pnk

, pmk
, vnkmk

, k � 1 which
we identify with

⊕∞
k=1 M2(C). We have

a =
∞⊕

k=1

∣∣∣∣λnk
0

0 λmk

∣∣∣∣ .
Set

u =
∞⊕

k=1

∣∣∣∣0 1
1 0

∣∣∣∣ .
It clearly follows that

∣∣[u,a]∣∣ =
∞⊕

k=1

∣∣∣∣ |λnk
− λmk

| 0
0 |λnk

− λmk
|
∣∣∣∣ � (1 − ε)

∞⊕
k=1

∣∣∣∣ |λnk
| 0

0 |λmk
|
∣∣∣∣ = (1 − ε)|a|. �

The idea of the proof of Theorem 1 consists in the splitting of the identity in M into the sum of
three pairwise orthogonal central projections p0,p−,p+ with certain properties. For the reduced
algebra Mp0 the method from Example 12 will be applied, and for the reduced algebras Mp−
and Mp+ the method from Example 13 will be adjusted. It is of interest to observe that in the
special case when M is a σ -finite purely infinite W ∗-algebra and a is bounded, the assertion of
Theorem 1 can also be obtained from the Kadison’s result [14]. We quickly outline this approach
here (we indebted to the referee for this observation).

For any self-adjoint element a in a von Neumann algebra M, there exists a central element
c0 in M such that for any central projection z in M the equality

∥∥(a − c0)z
∥∥ = inf‖az − c‖

holds, where the inf is taken over all central elements c [14, Lemma 4]. Without loss of generality,
we may assume that c0 = 0. Then ‖az‖ � ‖az − c‖ for any central projection z and any central
element c.

Let p := s(a+), q := s(a−). We shall show that p ∼ q . By [16, Theorem 6.2.7] and due to the
assumption that M is a σ -finite purely infinite W ∗-algebra, it follows that there exist 3 central
projections e, f , g such that e+f +g = 1, pe = 0, pf ∼ qf , qg = 0. Assuming ag is non-zero,
we would obtain by restricting to Mg that ag is positive, so ‖ag − (‖ag‖/2)g‖ = ‖ag‖/2 <

‖ag‖, which contradicts the preceding inequality. Similarly, we see that ae = 0 and so p ∼ q .
Let v be a partial isometry satisfying vv∗ = p, v∗v = q . Setting u = v + v∗ + (1 − p − q),

we obtain a unitary operator satisfying |[a,u]| = u∗|a|u + |a|, u∗ = u.
It should be emphasized though that such an argument does not hold in the general semi-finite

setting.
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5. The proof of Theorem 1

For better readability, we break the proof into the following series of lemmas.
Until the end of the proof, we fix an arbitrary element a ∈ LSh(M).
For projections p,q ∈ P(M) we assume p ≺≺ q , if pz ≺ qz for every 0 < z � c(p) ∨ c(q),

z ∈ P(Z(M)). Set p �� q , if q ≺≺ p.
We recall the following comparison result:

Theorem 14. (See [16, Theorem 6.2.7].) Let e and f be projections in a von Neumann alge-
bra M. There are unique orthogonal central projections p and q maximal with respect to the
properties qe ∼ qf , and, if p0 is a non-zero central subprojection of p, then p0e ≺ p0f . If r0 is
a non-zero central subprojection of 1 − p − q , then r0f ≺ r0e.

The following form of the preceding theorem will be more convenient for our purposes.

Theorem 15. Let M be a W ∗-algebra and p,q ∈ P(M). Then there exists a unique triple of
pairwise orthogonal projections z−, z0, z+ ∈ P(Z(M)), such that z− + z0 + z+ = 1, z−p ≺≺
z−q , z0p ∼ z0q , z+p �� z+q .

Corollary 16. Let M be a W ∗-algebra and p1,p2, . . . , pn ∈ P(M). Then there exists a family
{zσ }σ∈Sn (here, Sn is the permutation group of n elements) of pairwise orthogonal projections
from P(Z(M)) such that

∑
σ∈Sn

zσ = 1 zσ pσ(1) � zσ pσ(2) � · · · � zσ pσ(n) for every σ ∈ Sn.

Proof. For every pair of projections pi , pj , i < j we denote by z1
ij the largest central projection

such that z1
ijpi � z1

ijpj . Then for z2
ij := 1 − z1

ij we have z2
ijpi �� z2

ijpj . Let B be a Boolean

algebra generated by all central projections z1
ij and z2

ij , 1 � i < j � n. Every atom z ∈ B may
be uniquely written as

z =
n−1∏
i=1

n∏
j=i+1

z
εij

ij , (5)

where εij ∈ {1,2}. Observe that the sum of all elements as in (5) is equal to 1.
Fix an atom z ∈ B and define on the set {1, . . . , n} a (linear) order �z. To this end, we set for

any i, j , i �= j ,

i �z j ⇔ zpi � zpj .

This definition is correct, since we have z � z
εij

ij for i < j or z � z
εji

j i for i > j . So, we have
zpi � zpj or zpi � zpj .

Let {i1, . . . , in} = {1, . . . , n}, i1 �z i2 �z · · · �z in and set σ(k) = ik , σ ∈ Sn. Then z =
zσ . �

Let Λ be a lattice. Subset I ⊂ Λ is called a ∨-ideal (∧-ideal) in Λ if for every s, t ∈ I and
u ∈ Λ, u � s (u � s) we have u ∈ I and s ∨ t ∈ I (s ∧ t ∈ I ) [4].
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Lemma 17. Let ∇ be a complete Boolean algebra, let I be a non-zero ∨-ideal in ∇ . Then there
exists a family {sα}α∈Ω ⊂ I of pairwise disjoint non-zero elements such that

∨
α∈Ω sα = ∨

I .

Proof. It follows from Zorn’s lemma that among all families of pairwise disjoint non-zero ele-
ments from I there exists a maximal one with respect to the inclusion. Let {sα}α∈Ω be one of
these maximal families. It is clear that s := ∨

α∈Ω sα �
∨

I = t . Suppose s < t . Then there ex-
ists v ∈ I such that v � s. In this case v ∧ s′ �= 0 (by s′ we denote the complement to s). Then
{v ∧ s′} ∪ {sα}α∈Ω is a family of pairwise disjoint non-zero elements from I . Thus, we have
found a contradiction to the assumption that {sα}α∈Ω is maximal. So, our assumption s < t fails
and we have s = t . �

The algebra (over reals) of all self-adjoint elements from the center of the algebra LS(M) will
be denoted by Zh(LS(M)). The latter algebra is a lattice with respect to the order induced from
LS(M). As we have already explained in Section 2 the ∗-algebra Z(LS(M)) is ∗-isomorphic to
the ∗-algebra L0(Ω,Σ,μ) of all measurable complex-valued functions on a measurable space
with a locally finite measure. This isomorphism yields the assertions of Lemmas 18 and 19
below.

Lemma 18. Let Ω := {cj }j∈J be a family of pairwise disjoint elements from Zh(LS(M)). Then
there exists an element c ∈ Zh(LS(M)) such that cs(cj ) = cj for every j ∈ J .

Lemma 19. A lattice Zh(LS(M)) is conditionally complete.

Lemma 20. Let p,q, r ∈ P(M), p < q , p ≺ r ≺≺ q . Then there exists an element r1 ∈ P(M)

such that r1 ∼ r and p < r1 < q .

Proof. Due to the assumptions, there exists an element p1 ∈ P(M) such that p ∼ p1 < r . Sup-
pose that (r − p1)z � (q − p)z for some 0 �= z ∈ P(Z(M)), z � c(q). Then rz = (r − p1)z +
p1z � (q − p)z + pz = qz. This fact contradicts the assumption r ≺≺ q , which yields the es-
timate rz ≺ qz for every 0 < z � c(q) = c(r) ∨ c(q) (the previous equality follows from the
implication r ≺ q ⇒ c(r) � c(q)). Hence, from Theorem 15 we have that r − p1 ≺ q − p. So,
there exists an element 0 �= p2 ∈ P(M), such that r − p1 ∼ p2 < q − p. Then p < p + p2 < q

and p + p2 ∼ p1 + (r − p1) = r , where the equivalence p + p2 ∼ p1 + (r − p1) is guaranteed
by the implication

p ∼ p1, p2 ∼ r − p1, pp2 = 0, p1(r − p1) = 0 ⇒ p + p2 ∼ p1 + (r − p1).

We are done, by letting r1 := p + p2. �
Lemma 21. Let p be a properly infinite projection in M. Then we have:

(i) If P(M) � q1, . . . , qn, . . . � p, qnqm = 0 for n �= m, then
∨∞

n=1 qn � p.
(ii) If P(M) � q1, . . . , qn ≺≺ p, qiqj = 0 for i �= j , then

∨n
i=1 qi ≺≺ p.

(iii) If p � 1 − p, then p ∼ 1.
(iv) If P(M) � q ≺≺ p, qp = pq , then p(1 − q) ∼ p.
(v) If q ∈ P(M) is a finite projection, P(M) � pn ↑ p and zn ∈ P(Z(M)) are such that

(1 − zn)pn � (1 − zn)q for all n ∈ N, then
∨∞

zn � c(p).
n=1
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(vi) If P(M) � qn ↑ q �� p, zn ∈ P(Z(M)) and (1 − zn)p � (1 − zn)qn for all n ∈ N, then∨∞
n=1 zn � c(p).

Proof. (i) Since p is a properly infinite projection then there are pairwise disjoint projections
p1, . . . , pn, . . . ∈ P(M) such that p = ∨∞

n=1 pn, pn ∼ p for all n ∈ N. Then pn � qn for every
n ∈ N. Hence, p = ∨∞

n=1 pn �
∨∞

n=1 qn.
(ii) It follows from Corollary 16 that there exists a family {zσ }σ∈Sn of pairwise orthogonal

projections in P(Z(M)) such that
∑

σ∈Sn
zσ = c(p), zσ qσ(1) � zσ qσ(2) � · · · � zσ qσ(n) for all

σ ∈ Sn. We shall consider only those elements σ ∈ Sn, for which zσ �= 0. If zσ qσ(n) is a finite
projection, then

∨n
j=1 zσ qσ(j) is also finite and

∨n
j=1 zσ qσ(j) ≺≺ pzσ . Indeed, it follows from

(i) that
∨n

j=1 zσ qσ(j) � pzσ . Moreover, we have pzσ is a properly infinite projection. So, there
does not exist central projection 0 < z � zσ , such that

∨n
j=1 zqσ(j) �= 0 that

∨n
j=1 zqσ(j) ∼ pz

since, in this case, we would have that 0 �= pz is finite. If zσ qσ(n) is a properly infinite projection,
then, according to (i),

∨n
j=1 zσ qσ(j) � zσ qσ(n) ≺≺ pzσ . Hence,

∨n
i=1 qi = ∨n

i=1
∑

σ∈Sn
zσ qi =∑

σ∈Sn

∨n
j=1 zσ qσ(j) ≺≺ ∑

σ∈Sn
pzσ = p.

(iii) Since, 1 = p + (1 − p), the estimate 1 � p follows from (i).
(iv) We have p = qp + (1 − q)p, qp � q ≺≺ p. Suppose (1 − q)pz ≺≺ pz for some 0 �=

z ∈ P(Z(M)). Then, according to (ii), p ≺≺ p, which is false. Hence, (1 − q)p � p. So, since
(1 − q)p � p, we conclude (1 − q)p ∼ p.

(v) Let z0 := ∧∞
n=1(1 − zn). Then, it is clear, z0 � 1 − zn. We shall now use a well-known

implication

e � f, z ∈ P
(
Z(M)

) ⇒ ze � zf. (6)

By the assumption, we have (1−zn)pn � (1−zn)q and therefore, by (6) z0pn = z0(1−zn)pn �
z0(1 − zn)q = z0q for all n ∈ N. Then all projections z0pn are finite and it follows from [28,
Chapter V, Lemma 2.2] that z0p � z0q . In this case z0p is a finite projection. Since p is a
properly infinite projection, we conclude z0p = 0. The latter trivially implies that p(1 − z0) = p

and since c(p) � 1 − z0, we also obtain z0c(p) = 0. So,

(
1 − c(p)

) ∨
∞∨

n=1

zn = (
1 − c(p)

) ∨ (1 − z0) = 1,

in particular,
∨∞

n=1 zn � c(p).
(vi) Let z0 := ∧∞

n=1(1 − zn). Then, from the conditions 1 − zn � z0, (1 − zn)p � (1 − zn)qn

we have z0p � z0qn for all n ∈ N. So, it follows from (i) that z0p = 0 or z0p � z0q1 +∨∞
n=1(z0qn+1 − z0qn) = z0q . However, due to the assumption q �� p, the estimate z0p � z0q

can hold only when z0c(q) = 0. Since c(p) � c(q), we have z0c(p) = 0 in any case. Hence,∨∞
n=1 zn = 1 − z0 � c(p). �
Let c ∈ Zh(LS(M)). We set

ea
z (−∞, c) := s

(
(c − a)+

)
, ea

z (c,+∞) := s
(
(a − c)+

)
,

ea
z (−∞, c] := 1 − ea

z (c,+∞), ea
z [c,+∞) := 1 − ea

z (−∞, c).
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Observe that all the projections defined above belong to a commutative W ∗-subalgebra of M,
generated by Z(M) and spectral projections of the element a. Having this observation in mind,
for any c1, c2 ∈ Zh(LS(M)), such that c1 � c2, we set

ea
z [c1, c2) := ea

z (−∞, c2)e
a
z [c1,+∞), ea

z (c1, c2] := ea
z (−∞, c2]ea

z (c1,+∞),

ea
z [c1, c2] := ea

z (−∞, c2]ea
z [c1,+∞), ea

z (c1, c2) := ea
z (−∞, c2)e

a
z (c1,+∞).

Finally, we set

ea
z {c} = ea

z [c, c].
Observe that our spectral measure is analogous to the construction given in [11, Definition 2.4]

(for the case of unbounded locally measurable self-adjoint operator).

Lemma 22. Fix c ∈ Zh(LS(M)).

(i) If c1, c2 ∈ Zh(LS(M)), c1 � c2 then ea
z (−∞, c1) � ea

z (−∞, c2) and ea
z (c1,+∞) �

ea
z (c2,+∞).

(ii) If z ∈ P(Z(M)) then ea
z (−∞, c)z = ea

z (−∞, cz)z = eaz
z (−∞, cz)z and ea

z (c,+∞)z =
ea
z (cz,+∞)z = eaz

z (cz,+∞)z.
(iii) aea

z (−∞, c] � cea
z (−∞, c].

(iv) aea
z [c,+∞) � cea

z [c,+∞).
(v) aea

z {c} = cea
z {c}.

(vi) If {cα}α∈I ⊂ Zh(LS(M)) and c = ∨
α∈I cα then

∨
α∈I ea

z (−∞, cα) = ea
z (−∞, c).

(vii) If {cα}α∈I ⊂ Zh(LS(M)) and c = ∧
α∈I cα then

∨
α∈I ea

z (cα,+∞) = ea
z (c,+∞).

Proof. (i) Since c1 − a � c2 − a, then s((c1 − a)+) � s((c2 − a)+) and s((a − c1)+) �
s((a − c2)+).

(ii) ea
z (−∞, c)z = s((c − a)+)z = s((cz − a)+)z = s((cz − az)+)z. The second set of equali-

ties is proven in the same way.
(iii) (c −a)ea

z (−∞, c] = (c −a)(1 − ea
z (c,+∞)) = (c −a)+ (a − c)s((a − c)+) = (c −a)+

(a − c)+ = (a − c)− � 0.
The proof of (iv) is the same.
(v) From (iii) and (iv) we have that aea

z {c} � cea
z {c} aea

z {c} � cea
z {c}. Hence, aea

z {c} = cea
z {c}.

(vi) Since, (1−ea
z (−∞, c))(cα −a) � (1−ea

z (−∞, c))(c−a) � 0 then 1−ea
z (−∞, c) � 1−

ea
z (−∞, cα) or ea

z (−∞, cα) � ea
z (−∞, c) for every α ∈ I . Let q = ea

z (−∞, c) − ∨
α∈I ea

z (−∞,

cα). Then (c − a)q � 0. On the other hand, (cα − a)q � 0 for every α ∈ I . Hence, (c − a)q =∨
α∈I (cα − a)q � 0. Then (c − a)q = 0. So, q = 0 since q � s((c − a)+) and q commute with

c − a.
(vii) Since c � cα , then ea

z (cα,+∞) � ea
z (c,+∞) for every α ∈ I (see the beginning of the

proof of (vi)). Let q = ea
z (c,+∞) − ∨

α∈I ea
z (cα,+∞). Then q(a − c) � 0. On the other hand,

q(a − cα) � 0 for every α ∈ I . So, q(a − c) = ∨
α∈I q(a − cα) � 0. Hence, q(a − c) = 0 and

q = 0. �
Lemma 23. There exists an element c ∈ Zh(LS(M)) such that

pea
z (−∞, c) ≺ pea

z (c,+∞), ∀p ∈ P
(
Z(M)

)
, p > 0. (7)
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Proof. Since a ∈ LSh(M), there exists a set of pairwise disjoint projections {pn}∞n=1 from
P(Z(M)) such that

∨∞
n=1 pn = 1 and apn ∈ Sh(M) for every n ∈ N. Without loss of gen-

erality, we may assume a ∈ Sh(M). Indeed, if for every apn, n � 1 there exists an element
c(n) ∈ Zh(LS(Mpn)), satisfying (7), then, by Lemma 18, there exists an element c ∈ Zh(LS(M))

satisfying cpn = c(n)pn, n � 1 and (7). So, we may (and shall) consider only the case a ∈ Sh(M).
The latter assumption guarantees that there exists a scalar λ1 ∈ R such that ea(−∞, λ1) is a finite
projection. Let {λn}∞n=1 ⊂ R, λn ↓ −∞. By the spectral theorem, we have ea(−∞, λn) ↓ 0. For
every n ∈ N set

qn :=
∨{

r ∈ P
(
Z(M)

)
: rea(−∞, λn) � rea(λn,+∞)

}
, q :=

∞∧
n=1

qn.

Fix n and let k tend to infinity. Then qea(−∞, λn+k) � qea(λn+k,+∞) � qea(λn,+∞). Since
all projections qea(−∞, λn+k) are finite and qea(−∞, λn+k) ↓ 0, we have qea(λn,+∞) = 0
for every n ∈ N [2, Lemma 6.11]. On the other hand, ea(λn,+∞) ↑ 1. So, qea(λn,+∞) ↑ q .
Hence, q = 0. Then

∨∞
n=1(1 − qn) = 1.

Let

r1 := 1 − q1, rn+1 :=
n+1∨
k=1

(1 − qk) −
n∨

k=1

(1 − qk), n � 1.

Then projections rn, n � 1 are pairwise disjoint,
∨∞

n=1 rn = 1, rn � 1 − qn for all n ∈ N. It
follows from Lemma 18 that there exists an element c ∈ Zh(LS(M)) such that crn = λnrn.

Let 0 �= p ∈ P(Z(M)). It follows from Theorem 15 that p = e1 + e2, where e1, e2 ∈
P(Z(M)), e1e

a
z (−∞, c) ≺ e1e

a
z (c,+∞), e2e

a
z (−∞, c) � e2e

a
z (c,+∞). In this case, using

Lemma 22(ii), we obtain

e2rne
a(−∞, λn) = e2rne

a(−∞, λnrn) = e2rne
a
z (−∞, crn)

= e2rne
a
z (−∞, c) � e2rne

a
z (c,+∞)

= e2rne
a
z (crn,+∞) = e2rne

a(λnrn,+∞)

= e2rne
a(λn,+∞)

for any n ∈ N. Due to the definition of the projection qn, we obtain e2rn � qn. Hence, e2rn = 0
(since e2rn � rn � 1 − qn) for every n ∈ N. So, e2 = ∨∞

n=1 e2rn = 0. Hence, p = e1 and
pea

z (−∞, c) ≺ pea
z (c,+∞). �

Set

Λ− := {
c ∈ Zh

(
LS(M)

)
: pea

z (−∞, c) ≺ pea
z (c,+∞), ∀p ∈ P

(
Z(M)

)
, p > 0

}
,

Λ+ := {
c ∈ Zh

(
LS(M)

)
: pea

z (−∞, c) � pea
z (c,+∞), ∀p ∈ P

(
Z(M)

)
, p > 0

}
.

It follows from Lemma 23 that Λ− �= ∅. The proof that Λ+ �= ∅ is similar.

Lemma 24. c(ea(c,+∞)) = 1 for every c ∈ Λ− and c(ea(−∞, c)) = 1 for every c ∈ Λ+.
z z
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Proof. Let c ∈ Λ−. Suppose p = 1 − c(ea
z (c,+∞)) > 0. Then 0 = pea

z (c,+∞) � pea
z (−∞,

c) � 0 which means 0 > 0. This contradiction shows p = 0.
The proof of the second part is similar. �

Lemma 25. Λ− is a ∨-ideal and Λ+ is a ∧-ideal in the lattice Zh(LS(M)).

Proof. We will show only that Λ− is a ∨-ideal in Zh(LS(M)). The proof of the second part is
analogous.

Let c1, c2 ∈ Λ−. If c1 � c ∈ Zh(LS(M)) then from Lemma 22(i) and the definition of
Λ− we have pea

z (−∞, c) � pea
z (−∞, c1) ≺ pea

z (c1,+∞) � pea
z (c,+∞) for every 0 �= p ∈

P(Z(M)). So, c ∈ Λ−.
We set q := s((c2 − c1)+) and observe that q ∈ P(Z(M)), and that qc1 � qc2, (1 − q)c1 �

(1−q)c2. Then c1 ∨ c2 = (1−q)c1 +qc2. Let 0 �= p ∈ P(Z(M)). Then, from Lemma 22(ii) we
have pea

z (−∞, c1 ∨ c2) = p(1 − q)ea
z (−∞, c1) + pqea

z (−∞, c2). In this case p(1 − q) = 0 or
p(1 − q)ea

z (−∞, c1) ≺ p(1 − q)ea
z (c1,+∞). So, pq = 0 or pqea

z (−∞, c2) ≺ pqea
z (c2,+∞).

Hence, in both cases we have pea
z (−∞, c1 ∨ c2) = p(1 − q)ea

z (−∞, c1) + pqea
z (−∞, c2) ≺

p(1 − q)ea
z (c1,+∞) + pqea

z (c2,+∞) = pea
z (c1 ∨ c2,+∞). Hence, c1 ∨ c2 ∈ Λ−. �

Lemma 26. Let c1 ∈ Λ−, c2 ∈ Λ+. Then pc1 < pc2 for every 0 �= p ∈ P(Z(M)).

Proof. Suppose a contrary. Then pc1 � pc2 for some 0 �= p ∈ P(Z(M)). In this case,

pea
z (−∞, c1) = pea

z (−∞,pc1)
(
by Lemma 22(ii)

)
� pea

z (−∞,pc2)
(
by Lemma 22(i)

)
= pea

z (−∞, c2)
(
by Lemma 22(i)

)
� pea

z (c2,+∞) (by the definition)

= pea
z (pc2,+∞)

(
by Lemma 22(ii)

)
� pea

z (pc1,+∞)
(
by Lemma 22(i)

)
= pea

z (c1,+∞)
(
by Lemma 22(ii)

)
which is not true since c1 ∈ Λ−. �

Due to Lemmas 19 and 26, we can now set

c0 :=
∨

Λ− ∈ Zh

(
LS(M)

)
and apply again Lemma 26 to infer that c0 � c for any c ∈ Λ+.

Lemma 27. c0 − ε1 ∈ Λ− for every ε > 0.

Proof. Suppose a contrary. Then there exists a projection 0 < p ∈ P(Z(M)) such that
pea

z (−∞, c0 − ε1) � pea
z (c0 − ε1,+∞). Choose an arbitrary element c ∈ Λ−. We shall show

that pc � p(c0 − ε1). If it is not the case, then P(Z(M)) � q := s((p(c0 − ε1) − pc)−) > 0,
q � p i qc � q(c0 − ε1). Then
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qea
z (−∞, c0 − ε1) = qea

z

(−∞, q(c0 − ε1)
) (

by Lemma 22(ii)
)

� qea
z (−∞, qc)

(
by Lemma 22(i)

)
= qea

z (−∞, c)
(
by Lemma 22(ii)

)
≺ qea

z (c,+∞) (by the definition)

= qea
z (qc,+∞)

(
by Lemma 22(ii)

)
� qea

z

(
q(c0 − ε1),+∞) (

by Lemma 22(i)
)

= qea
z (c0 − ε1,+∞)

(
by Lemma 22(ii)

)
.

On the other hand, qea
z (−∞, c0 −ε1) � qea

z (c0 −ε1,+∞), since pea
z (−∞, c0 −ε1) � pea

z (c0 −
ε1,+∞) P (Z(M)) � q � p. However the inequalities qea

z (−∞, c0 − ε1) ≺ qea
z (c0 − ε1,+∞)

and qea
z (−∞, c0 − ε1) � qea

z (c0 − ε1,+∞) cannot hold simultaneously. Hence, q = 0 and so
pc � p(c0 − ε1). The latter implies (p(c0 − ε1) − pc)− = 0, that is pc0 � p(c0 − ε1), since
c0 = ∨

Λ−. Hence, p = 0. However, this contradicts with the choice of p > 0. �
Lemma 28. The inequality pea

z (−∞, c0 + ε1) � pea
z (c0 + ε1,+∞) holds for all ε > 0 and

0 �= p ∈ P(Z(M)).

Proof. Suppose a contrary. Then by Theorem 15 there exists a projection 0 < p ∈ P(Z(M)),
such that for every q ∈ P(Z(M)), 0 < q � p the inequality qea

z (−∞, c0 + ε1) ≺ qea
z (c0 +

ε1,+∞) holds. Let c ∈ Λ−. Put c1 = c(1 − p) + (c0 + ε1)p. Then c1 ∈ Λ−. Hence, there
exists a projection 0 < r ∈ P(Z(M)) such that rea

z (−∞, c1) � rea
z (c1,+∞). Thus, r(1 −

p)ea
z (−∞, c) � r(1 − p)ea

z (c,+∞) and, therefore, r(1 − p) = 0. Also, rpea
z (−∞, c0 + ε1) �

rpea
z (c0 + ε1,+∞) and, therefore, rp = 0. It follows that r = r(1 − p) + rp = 0. Hence,

c1 ∈ Λ−. However, c1 � c0. This contradicts to the definition of c0. �
Let us consider the set

P0 := {
p ∈ P

(
Z(M)

)
: ∃cp ∈ Zh

(
LS(M)

)
, qp, rp ∈ P(M):

qp, rp � pea
z {cp}, qprp = 0, pea

z (−∞, cp) + qp ∼ pea
z (cp,+∞) + rp

}
and set

p0 :=
∨

P0.

Lemma 29. P0 is a ∨-ideal in the Boolean algebra P(Zh(M)) and p0 ∈ P0, that is P0 =
p0P(Zh(M)).

Proof. Let p ∈ P0, p > e ∈ P(Zh(M)) and let cp , qp , rp be exactly the same like in the defini-
tion of P0. Then by letting qe := qpe, re := rpe, ce := cp one can see that these projections
satisfy the condition in the definition of P0. Indeed, we have qere = eqprpe = 0, qe,pe �
epea

z {cp} = eea
z {ce}, eea

z (−∞, ce) + qe = e(pea
z (−∞, cp) + qp) ∼ e(pea

z (cp,+∞) + rp) =
eea(ce,+∞) + re . Hence, e ∈ P0.
z
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Let e1, e2 ∈ P0, e1e2 = 0. Due to the definition of P0, we know of the existence of
qei

, rei
∈ P(M), cei

∈ Zh(LS(M)) such that qei
, rei

� eie
a
z {cei

}, qei
rei

= 0, eie
a
z (−∞, cei

) +
qei

∼ eie
a
z (cei

,+∞) + rei
i = 1,2. Let ce1+e2 = ce1e1 + ce2e2. Then ce1+e2ei = ciei , i = 1,2.

So, we have qe1 + qe2, re1 + re2 � (e1 + e2)e
a
z {ce1+e2}, (qe1 + qe2)(re1 + re2) = 0, (e1 +

e2)e
a
z (−∞, ce1+e2) + (qe1 + qe2) ∼ (e1 + e2)e

a
z (ce1+e2 ,+∞) + (re1 + re2). So, e1 + e2 ∈ P0.

Let now e1, e2 ∈ P0. Then e1 ∨ e2 = e1 + e2(1 − e1) ∈ P0, since e1[e2(1 − e1)] = 0 and
e2(1 − e1) ∈ P0. Hence, P0 is a ∨-ideal in the Boolean algebra P(Zh(M)).

It follows from Lemma 17 that there exists a family {ei}i∈I of pairwise disjoint projections
from P0 such that

∨
i∈I ei = p0. Since, ei ∈ P0, there are elements cei

, qei
, rei

. It follows from
Lemma 18 that there exists cp0 ∈ Zh(LS(M)) such that cp0s(cei

) = cei
for every i ∈ I . Let

qp0 = ∨
i∈I qei

, rp0 = ∨
i∈I rei

. From the definition of projections qp0 , rp0 above, we have

qp0 , rp0 �
∨
i∈I

eie
a
z {cei

} = p0e
a
z {cp0}.

Furthermore, since eiej = 0 for all i �= j , we also have qei
qej

= qei
rej

= 0 and therefore

qp0rp0 =
∨
i∈I

qei

∨
i∈I

rei
=

∨
i∈I

qei
rei

= 0.

Thus, we have

p0e
a
z (−∞, cp0) + qp0 =

∨
i∈I

[
eie

a
z (−∞, cei

) + qei

]

∼
∨
i∈I

[
eie

a
z (cei

,+∞) + rei

] = p0e
a
z (cp0 ,+∞) + rp0 ,

in other words, p0 ∈ P0. �
Lemma 30. Suppose p0 = 1. Then there exists an element u ∈ U(M) such that |[a,u]| = u∗|a −
c|u + |a − c|, u2 = 1, where c = cp0 ∈ Zh(LS(M)) is from the definition of the set P0 for the
element p0.

Proof. Set p = qp0 , q = rp0 and r := 1 − (ea
z (−∞, c) + p + ea

z (c,+∞) + q). Then p,q, r �
ea
z {c} and so ap = cp, aq = cq , ar = cr . We claim that there exists a self-adjoint unitary element

u such that u(ea
z (−∞, c) + p) = (ea

z (c,+∞) + q)u, ur = r . Indeed, since ea
z (−∞, c) + p ∼

ea
z (c,+∞) + q , there exists a partial isometry v such that v∗v = ea

z (−∞, c) + p, vv∗ =
ea
z (c,+∞) + q . Set u := v + v∗ + r . We have u∗u = ea

z (−∞, c) + p + ea
z (c,+∞) + q + r = 1,

uu∗ = ea
z (c,+∞)+q +ea

z (−∞, c)+p+ r = 1, u∗ = v∗ +v+ r = u. This establishes the claim.
It now remains to verify that (2) holds.

To this end, first of all observe that the operators a and u∗au commute with the projections
ea
z (−∞, c) + p, ea

z (c,+∞) + q and r . This observation guarantees that

(
u∗au − a

)(
ea
z (−∞, c) + p

) = ∣∣u∗au − a
∣∣(ea

z (−∞, c) + p
)
,(

a − u∗au
)(

ea
z (c,+∞) + q

) = ∣∣u∗au − a
∣∣(ea

z (c,+∞) + q
)
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and so

∣∣u∗au − a
∣∣(ea

z (−∞, c) + p
) = u∗a

(
ea
z (c,+∞) + q

)
u − a

(
ea
z (−∞, c) + p

)
= u∗a

(
ea
z (c,+∞) + q

)
u − cu∗(ea

z (c,+∞) + q
)
u

+ c
(
ea
z (−∞, c) + p

) − a
(
ea
z (−∞, c) + p

)
= u∗∣∣a(

ea
z (c,+∞) + q

) − c
(
ea
z (c,+∞) + q

)∣∣u
+ ∣∣c(ea

z (−∞, c) + p
) − a

(
ea
z (−∞, c) + p

)∣∣
= u∗|a − c|u(

ea
z (−∞, c) + p

) + |a − c|(ea
z (−∞, c) + p

)
.

Similarly,

∣∣u∗au − a
∣∣(ea

z (c,+∞) + q
) = −u∗a

(
ea
z (−∞, c) + p

)
u + a

(
ea
z (c,+∞) + q

)
= −(

u∗a
(
ea
z (−∞, c) + p

)
u − cu∗(ea

z (−∞, c) + p
)
u
)

− c
(
ea
z (c,+∞) + q

) + a
(
ea
z (c,+∞) + q

)
= u∗|a − c|u(

ea
z (c,+∞) + q

) + |a − c|(ea
z (c,+∞) + q

)
.

Finally, (u∗au − a)r = cr − cr = 0, that is, |u∗au − a|r = 0. We now obtain (2) as follows

∣∣u∗au − a
∣∣ = ∣∣u∗au − a

∣∣[(ea
z (−∞, c) + p

) + (
ea
z (c,+∞) + q

) + r
]

= ∣∣u∗au − a
∣∣(ea

z (−∞, c) + p
) + ∣∣u∗au − a

∣∣(ea
z (c,+∞) + q

) + ∣∣u∗au − a
∣∣r

= (
u∗|a − c|u + |a − c|)[(ea

z (−∞, c) + p
) + (

ea
z (c,+∞) + q

) + r
]

= u∗|a − c|u + |a − c|. �
It follows from Lemma 30 that if p0 = 1, then the part (i) of Theorem 1 holds.

Lemma 31. Let p ∈ P(Z(M)) be a finite projection. Then p � p0.

Proof. The case p = 0 is trivial. So, we assume p > 0. The algebra Mp has a faithful nor-
mal center-valued trace τ such that τ(p) = p [16]. Then τ(pea

z (−∞, c)) < τ(pea
z (c,+∞))

for every c ∈ Λ−. Since τ is normal, using Lemma 22(vi), (vii) we have τ(pea
z (−∞, c0)) =

τ(pea
z (−∞,

∨
Λ−)) = τ(

∨
pea

z (−∞,Λ−)) = ∨
τ(pea

z (−∞,Λ−)) �
∨

τ(pea
z (Λ−,+∞)) =

τ(
∨

pea
z (Λ−,+∞)) = τ(pea

z (
∨

Λ−,+∞)) = τ(pea
z (c0,+∞)) � τ(pea

z [c0,+∞)). Hence,
τ(pea

z (−∞, c0)) � τ(p)/2 = p/2. The same arguments with help of Lemma 28 yield
τ(pea

z (c0 + ε1,+∞)) � τ(p)/2 = p/2 for every ε > 0. Since ea
z (c0,+∞) = ∨

ε>0 ea
z (c0 +

ε1,+∞), we have

τ
(
pea

z (c0,+∞)
)
� p/2.
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By Theorem 15, there exist projections p1,p2 ∈ P(Z(M)), such that

p1p2 = 0, p1 + p2 = p,

p1e
a
z (−∞, c0) � p1e

a
z (c0,+∞), p2e

a
z (−∞, c0) � p2e

a
z (c0,+∞).

Applying then the inequality above, we have

p1 � 2τ
(
p1e

a
z (c0,+∞)

)
= τ

(
p1e

a
z (c0,+∞)

) + τ
(
p1e

a
z (−∞, c0)

) + (
τ
(
p1e

a
z (c0,+∞)

) − τ
(
p1e

a
z (−∞, c0)

))
,

and, immediately,

τ
(
p1e

a
z (c0,+∞)

) − τ
(
p1e

a
z (−∞, c0)

)
� τ

(
p1

(
1 − ea

z (−∞, c0) − ea
z (c0,+∞)

))
= τ

(
p1e

a
z {c0}

)
.

Hence,

p1e
a
z (−∞, c0) � p1e

a
z (c0,+∞) � p1e

a
z (−∞, c0) + p1e

a
z {c0}.

Hence, it follows from Lemma 20 that there exists a projection P(M) � p11 � p1e
a
z {c0} such

that p11 + p1e
a
z (−∞, c0) ∼ p1e

a
z (c0,+∞).

Analogous arguments show that there exists a projection P(M) � p21 � p2e
a
z {c0}, such that

p2e
a
z (−∞, c0) ∼ p2e

a
z (c0,+∞) + p21.

Since, p1 + p2 = p p1p2 = 0 we have p11 + pea
z (−∞, c0) ∼ pea

z (c0,+∞) + p21. Hence,
p ∈ P0. �

In the proof of the following lemma we shall frequently use a well-known fact that c(q)z =
c(qz), ∀q ∈ P(M), ∀z ∈ P(Z(M)) [15, Proposition 5.5.3].

Lemma 32. Let p ∈ P(Z(M)) and let Mp be a σ -finite purely infinite W ∗-subalgebra in M.
Then p � p0.

Proof. Consider the projection p1 := p(1 − p0). Let c ∈ Λ−, that is ea
z (−∞, c) ≺≺ ea

z (c,+∞).
We shall show p1e

a
z (−∞, c) = 0. If this is not the case then for z = c(p1e

a
z (−∞, c)) �= 0

we would have c(p1e
a
z (−∞, c)) = z = zp1 = c(p1e

a
z (c,+∞)), that is p1e

a
z (−∞, c) ∼

p1e
a
z (c,+∞) [15, Corollary 6.3.5]. This however contradicts with the assumption c ∈ Λ−.

Hence, p1e
a
z (−∞, c) = 0. Therefore, p1e

a
z (−∞, c0) = ∨

c∈Λ− p1e
a
z (−∞, c) = 0.

Let ε > 0, c = c0 + ε1. From Lemma 28, we have p1e
a
z (−∞, c) �� p1e

a
z (c,+∞) (if

P(Z(M)) � q � p1 and qea
z (−∞, c) ∼ qea

z (c,+∞) then q ∈ P0. Hence, q = 0). Arguing as
above, we obtain p1e

a
z (c,+∞) = 0. Thus, p1e

a
z (c0,+∞) = ∨

ε>0 p1e
a
z (c0 + ε1,+∞) = 0.

We have thus obtained, that p1e
a
z (−∞, c0) = 0 = p1e

a
z (c0,+∞). This means, that p1 � p0,

that is p1 = 0. Hence p � p0. �
Let q ∈ P(Z(M)) and suppose

qea
z (−∞, c0] = qea

z (−∞, c0) + qea
z {c0} ∼ qea

z (c0,+∞).
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Then setting cq := c0, qq := qea
z {c0}, rq := 0 we see that q ∈ P0 and therefore q � p0. So, there

exist projections p+ p− ∈ P(Z(M)) (which may be null projections), such that

p− + p+ = 1 − p0, p−p+ = 0,

and

p+ea
z (−∞, c0] �� p+ea

z (c0,+∞), p−ea
z (−∞, c0] ≺≺ p−ea

z (c0,+∞).

By Lemma 31, the following implications hold p− �= 0 (respectively, p+ �= 0) ⇒ p−M (respec-
tively, p+M) is a properly infinite W ∗-algebra.

Lemma 33. For every q ∈ P(Z(M)), 0 < q � p+, we have qea
z (−∞, c0) � qea

z [c0,+∞).

Proof. Firstly, we show that p+ea
z (−∞, c0) � p+ea

z (c0,+∞). If this fails then there exists an
element 0 �= q ∈ P(Z(Mp+)) such that

qea
z (−∞, c0) ≺ qea

z (c0,+∞).

On the other hand, we have

qea
z (−∞, c0] �� qea

z (c0,+∞).

Indeed, to see the preceding estimate, let 0 < r � q . Then we have r � p+ = p+ea
z (−∞, c0] ∨

p+ea
z (c0,+∞), and it follows from the definition of the symbol “��” that rea

z (−∞, c0] �
rea

z (c0,+∞). By Lemma 20, we have that qea
z (c0,+∞) ∼ qea

z (−∞, c0) + r , where r ∈
P(Z(M)q) and r < qea

z {c0}. In this case, setting cq := c0, qq := r , rq := 0 we obtain q ∈ P0
and so q � p0. Thus, q � p0p+ = 0. This contradiction shows that

p+ea
z (−∞, c0) � p+ea

z (c0,+∞). (8)

Let us now consider projections p+ea
z (−∞, c0) and p+ea

z [c0,+∞) in the algebra p+M.
In the notation of Theorem 15 applied to the algebra p+M, we intend to prove that z− =
z0 = 0 and so z+ = p+. Suppose that there exists 0 < r � p+, r ∈ P(Z(M)) such that
rea

z (−∞, c0) ∼ rea
z [c0,+∞) = rea

z {c0} + rea
z (c0,+∞). Then r � p0 and therefore r �

p+p0 = 0. This shows that z0 = 0. Next, we shall show the equality z− = 0. Supposing
that z− > 0, we have z−ea

z (−∞, c0) ≺ z−ea
z [c0,+∞). Then z−ea

z [c0,+∞) = p1 + p2, where
p1,p2 ∈ P(M), p1p2 = 0, p1 ∼ z−ea

z (−∞, c0). From p+ea
z (−∞, c0) � p+ea

z (c0,+∞) it fol-
lows that z−ea

z (−∞, c0) � z−ea
z (c0,+∞). Then, by Lemma 20, we know that there exists some

q ∈ P(Mz−), such that z−ea
z (−∞, c0) ∼ z−ea

z (c0,+∞)+q and q < ea
z {c0}z−. Hence, z− ∈ P0,

i.e. z− � p0. Therefore, z−p+ = 0 and z− = 0. This contradiction completes the proof. �
Lemma 34. qea

z (c0, c0 + ε1] � qea
z (−∞, c0] + qea

z (c0 + ε1,+∞) for every ε > 0 and every
q ∈ P(Z(M)), 0 < q � p−.

Proof. Suppose, there exists 0 < p ∈ P(Z(Mp−)) such that pea
z (c0, c0 +ε1] � pea

z (−∞, c0]+
pea(c0 + ε1,+∞). By the assumption the projection p− �= 0 and hence it is properly infinite
z
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(see the implication preceding Lemma 33) and since p � p−, we conclude that p is also
properly infinite. Due to Lemma 21(iii), we have pea

z (−∞, c0] + pea
z (c0 + ε1,+∞) ∼ p. How-

ever, pea
z (−∞, c0] ≺≺ pea

z (c0,+∞). Hence, pea
z (−∞, c0] ≺≺ p, and by Lemma 21(ii) we

have pea
z (c0 + ε1,+∞) ∼ p (indeed, otherwise, we would have had pea

z (−∞, c0] + pea
z (c0 +

ε1,+∞) ≺ p). Next, it follows from Lemma 27 that pea
z (−∞, c0 + ε1) � pea

z (c0 + ε1,+∞),
that is pea

z (−∞, c0 +ε1) ∼ p ∼ pea
z (c0 +ε1,+∞). Then p � p0. Which is a contradiction with

the assumption 0 < p � p−. �
In the case when p+ = 1, it follows from Lemma 33 that c0 ∈ Λ+ and therefore in this case∨
Λ− = c0 = ∧

Λ+, where the first equality is simply the definition of c0. Let us explain the
second equality. By Lemma 26, we have c1 < c2 for every c1 ∈ Λ−, c2 ∈ Λ+. Therefore, c0 � c2
for any c2 ∈ Λ+. However, c0 ∈ Λ+, and hence c0 = ∧

Λ+.
In the case when p− = 1, appealing to the definitions of p− and Λ− we have c0 ∈ Λ−.

Moreover, in this case we have by Lemma 34 that ea
z (c0 + 2ε1,+∞) � ea

z (c0 + ε1,+∞) ≺≺
ea
z (c0, c0 + ε1] � ea

z (c0, c0 + 2ε1) � ea
z (−∞, c0 + 2ε1), that is c0 + 2ε1 ∈ Λ+ for every ε > 0.

Then it follows from Lemma 22(v) that in the case p− = 1, we have
∨

Λ− = c0 = ∧
Λ+ as

well. Indeed, c0 = ∧
ε>0(c0 + ε1) �

∧
Λ+ � c0.

Hence, the cases p+ = 1 and p− = 1 are symmetric, that is, the second case may be ob-
tained from the first case using the substitution a → −a and c0 → −c0. Hence, in the sequel we
will consider only the case p− = 1. In this case, the algebra M is properly infinite, since the
projection p− is properly infinite. It follows from Lemma 34 that in this case

qea
z (c0, c0 + ε1] � qea

z (−∞, c0] + qea
z (c0 + ε1,+∞) (9)

for every ε > 0 and every 0 < q ∈ P(Z(M)).
The following lemma extends the result of [3, Lemma 4].

Lemma 35. Let p,q ∈ P(M), p � q and let one of the following hold:

(i) q is a finite projection and there exists a non-decreasing sequence {pn} of finite projections
in M such that pn ↑ p and apn = pna for every n ∈ N;

(ii) q is a properly infinite projection and ap = pa ∈ M.

Then there exists a projection q1 � p in M such that q1 ∼ q and aq1 = q1a.

Proof. Assume (i) holds.
Set A1 := {b ∈ M: ba = ab} (that is, A1 is the commutant of the family of all spectral

projections of a). Since, pn ↑ p and apn = pna for every n ∈ N, we have ap = pa. Let A :=
pA1. Then A is W ∗-subalgebra in M with identity p.

First of all, let us show that every atom of algebra A (if it exists) is an atom of the algebra M.
Let e be an atom of the algebra A, 0 � f < e, f ∈ P(M). So, if g is a spectral projection of
a then gf = g(p(ef )) = ((gp)e)f ∈ {0, e}f = {0, ef } = {0, f } ⊂ Mh. In particular, gf = fg,
that is f ∈ A. Hence, f = 0. Consequently, e is an atom of M.

Let zn = ∨{z ∈ P(Z(M)): zq � zpn}. It is easy to see, that zn ↑ 1 (otherwise (1−∨
n zn)q �

(1 − ∨
n zn)p). We will assume znq > 0 for every n ∈ N.

Let us construct a non-decreasing sequence of projections {fn} in A such pnzn � fn ∼ qzn.
Let f0 = z0 = 0. Suppose that f0, f1, . . . , fn−1 have been constructed.
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The set {r ∈ P(A): qzn � r, fn−1 � r � pnzn} is non-empty (since, it contains pnzn) and
is contained in the finite W ∗-algebra (pn ∨ q)A(pn ∨ q). Let τ be a center-valued trace on the
algebra (pn ∨ q)A(pn ∨ q). From Zorn’s lemma and the fact that τ is normal, we have that this
set has the minimal element r0. Suppose τ(r0) > τ(qzn). Using Zorn’s lemma and the fact that
τ is normal again, we obtain that the set {r ∈ P(A): τ(r) < τ(qzn), 0 � r � r0} has a maximal
element r1. Then 0 � τ(r1) < τ(qzn) < τ(r0).

We claim that r0 − r1 is an atom in the algebra A. Suppose there exists e ∈ P(A), 0 � e <

r0 − r1. Then there exists a central projection z in the algebra M such that z(r1 + e) � z(qzn),
(1 − z)(r1 + e) � (1 − z)(qzn). If ze > 0 then P(A) � z(r1 + e) + (1 − z)r1 > r1, τ(z(r1 + e) +
(1−z)r1) � τ(z(qzn)+ (1−z)qzn) = τ(qzn) and if (1−z)e > 0 then P(A) � zr0 + (1−z)(r1 +
e) < r0, τ(zr0 + (1−z)(r1 +e)) � τ(qzn). The first assumption contradicts the maximality of r1,
the second assumption contradicts the minimality of r0. Hence, ze = (1 − z)e = 0 that is e = 0.
Hence, r0 − r1 is an atom of algebra A.

Hence, r0 − r1 is an atom of algebra M.
Since, τ(r1) < τ(qzn), we have r1 ≺ qzn. Hence, there exists a projection e1 ∈ (pn ∨

q)M(pn ∨ q) such that r1 ∼ e1 < qzn. Then τ(qzn − e1) = τ(qzn) − τ(r1) < τ(r0 − r1), that is
qzn − e1 ≺ r0 − r1. Since r0 − r1 is an atom of (pn ∨q)M(pn ∨q), we infer qzn − e1 = 0, which
is a contradiction to the choice of e1. Then τ(r0) = τ(qzn), that is r0 ∼ qzn. We set fn := r0.

This completes the construction of the sequence {fn}n�1. Let q1 := ∨∞
n=1 fn.

Since fn ∼ qzn, fn+1 ∼ qzn+1 and all four projections are finite we have fn+1 −fn ∼ qzn+1 −
qzn. Indeed, applying the center-valued trace τ on the finite W ∗-algebra (fn+1 ∨ fn ∨ qzn+1 ∨
qzn)M(fn+1 ∨fn ∨qzn+1 ∨qzn) trivially yields τ(fn+1 −fn) = τ(fn+1)−τ(fn) = τ(qzn+1)−
τ(qzn) = τ(qzn+1 − qzn). The latter implies immediately fn+1 − fn ∼ qzn+1 − qzn.

Hence, q1 = f1 ∨ ∨∞
n=1(fn+1 − fn) ∼ qz1 ∨ ∨∞

n=1(qzn+1 − qzn) = q .
Assume (ii) holds. By the assumption there exists a projection q0

1 ∈ M, such that q0
1 � p and

q0
1 ∼ q . We set

qn
1 := l

(
anq0

1

)
, ∀n > 0, q1 :=

∞∨
k=0

qk
1 .

We claim that q1 ∼ q . Indeed, since q1 � q0
1 ∼ q , we have q1 � q . On the other hand, we

have qn
1 ∼ r(anq0

1 ) � q0
1 ∼ q , which implies qn

1 � q for all n � 0. Now, we shall show that
in fact q1 � q . Note that although q is a properly infinite projection we cannot simply refer to
Lemma 21(i) since the sequence {qk

1 }k�0 does not necessarily consist of pairwise orthogonal
elements. However, representing the projection q1 as

q1 =
∞∨

k=0

qk
1 =

∞∑
m=1

(
m∨

k=0

qk
1 −

m−1∨
k=0

qk
1

)
+ q0

1 =
∞∑

m=1

(
qm

1 ∨
m−1∨
k=0

qk
1 −

m−1∨
k=0

qk
1

)
+ q0

1 ,

and noting that q0
1 ∼ q and

qm
1 ∨

m−1∨
k=0

qk
1 −

m−1∨
k=0

qk
1 ∼ qm

1 −
(

qm
1 ∧

m−1∨
k=0

qk
1

)
� qm

1 � q

we infer via Lemma 21(i) that q1 � q . This completes the proof of the claim.
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Since ap = pa and q0
1 � p, we have panq0

1 = anpq0
1 = anq0

1 , and so qn
1 � p for all n > 0.

Hence, q1 � p. It remains to show that aq1 = q1a. The subspace q1(H) coincides with the
closure of linear span of the set Q := {anq0

1 (H): n > 0}. Indeed, setting Qk := akq0
1 (H), we see

that qk
1 (H) = Qk and so Q ⊃ qk

1 (H) for every k > 0. Therefore, q1(H) = ⋃∞
k=1 qk

1 (H) ⊂ Q.
Conversely, qk

1 (H) ⊂ q1(H), for every k > 0. Therefore, the closed linear span containing the

set
⋃∞

k=1 q1(H) contains Q and is contained in q1(H).
By the assumption the operator ap is bounded, and since q1 � p, the operator aq1 is also

bounded. Thus, for every vector ξ ∈ Q, the vector aξ = aq1ξ again belongs to Q. Again ap-
pealing to the fact that aq1 is bounded, we infer q1aq1 = aq1. From this we conclude that
aq1 = q1a. �
Lemma 36. Let 0 < b ∈ Z(M), s(b) = 1; ea

z (0,∞) be a properly infinite projection and
c(ea

z (0,∞)) = 1. Let projection q ∈ P(M) be finite or properly infinite, c(q) = 1 and q ≺≺
ea
z (0,∞). Let R � μn ↓ 0. For every n ∈ N we denote by zn such a projection that 1 − zn is the

largest central projection, for which (1 − zn)q � (1 − zn)e
a
z (μnb,+∞) holds. We have zn ↑n 1

and for

d :=
[
μ1z1 +

∞∑
n=1

μn+1(zn+1 − zn)

]
b

the following relations hold: q ≺≺ ea
z (d,+∞), 0 < d � μ1b and s(d) = 1. Moreover, if all pro-

jections ea
z (μnb,+∞), n � 1 are finite then ea

z (d,+∞) is a finite projection as well.

Proof. Since, ea
z (μn+1b,+∞) � ea

z (μnb,+∞) (by Lemma 22(i)) we have (1 − zn+1)q �
(1 − zn+1)e

a
z (μn+1b,+∞) � (1 − zn+1)e

a
z (μnb,+∞). Hence, zn+1 � zn for every n ∈ N. In

addition, ea
z (μnb,+∞) ↑n ea

z (0,+∞) (by Lemma 22(vii)) and ea
z (0,+∞) is properly infinite

projection. Hence, in the case when q is finite projection, it follows from Lemma 21(v) that
zn ↑n 1. Let us consider the case when q is a properly infinite projection with c(q) = 1 and
such that q ≺≺ ea

z (0,∞). In this case, we apply Lemma 21(vi) with p = q , q = ea
z (0,+∞),

qn = ea
z (μnb,+∞) and deduce

∨∞
n=1 zn � c(q) = 1.

All other statements follow from the form of element d . Since, z1d = μ1z1b, (zn+1 − zn)d =
μn+1(zn+1 − zn)b and znq ≺≺ zne

a
z (μnb,+∞) for every n ∈ N. Observe also that s(d) =

s(b)(z1 + ∑∞
n=1(zn+1 − zn)) = 1.

Finally, let all projections ea
z (μnb,+∞), n � 1 be finite. Since dz1 = μ1b, d(zn+1 − zn) =

μn+1b(zn+1 − zn), we have

ea
z (d,+∞)z1 = ea

z (μ1b,+∞)z1,

ea
z (d,+∞)(zn+1 − zn) = ea

z (μn+1b,+∞)(zn+1 − zn)

for every n ∈ N. There projections standing on the right-hand sides are finite. Hence, ea
z (d,+∞)

is finite projection as a sum of the left-hand sides [16, Lemma 6.3.6]. �
In the proof of the following lemma, we shall use a following well-known implication

p ≺≺ q ⇒ zp ≺≺ zq, ∀z ∈ P
(
Z(M)

)
, 0 < z � c(p) ∨ c(q).
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We supply here a straightforward argument for convenience of the reader. Let z′ ∈ z ∈ Z(M)

be such that 0 < z′ � c(pz) ∨ c(qz) = z(c(p) ∨ c(q)). Then z′ � c(p) ∨ c(q) and therefore
z′(zp) = z′p ≺ z′q = z′(zq). This means zp ≺≺ zq .

Lemma 37. Let M be properly infinite and

ea
z (0, t1] �� ea

z (−∞,0] + ea
z (t1,+∞)

for every t > 0. Then for every ε > 0 there exists an element uε ∈ U(M) such that |[a,uε]| �
(1 − ε)|a|, u2

ε = 1.

Proof. Of course, we may assume ε < 1.
Let us observe that c(ea

z (0,+∞)) = 1. Indeed, ea
z (0,+∞) � ea

z (0, t1] �� ea
z (−∞,0]. Ob-

serve that the preceding estimate immediately implies that

c
(
ea
z (0,+∞)

)
� c

(
ea
z (−∞,0]).

By the definition of elements ea
z (−∞, c], we have ea

z (0,+∞) ∨ ea
z (−∞,0] = 1. Consequently,

c
(
ea
z (0,+∞)

) = c
(
ea
z (0,+∞)

) ∨ c
(
ea
z (−∞,0]) � ea

z (0,+∞) ∨ ea
z (−∞,0] = 1.

We want to show that if d ∈ Z+(LS(M)) and s(d) = 1 then ea
z (0, d] �� ea

z (−∞,0] +
ea
z (d,+∞). Indeed, the semi-axis R+ = (0,+∞) can be split into countable family of intervals

In = [λn,μn), n � 1. Then ed(In) ∈ P(Z(M)), and since the spectral measure ed is σ -additive,
we write

∞∨
n=1

ed(In) = ed(0,+∞) = s(d) = 1.

Next, assuming that ed(In) �= 0, we have

ea
z (0, d]ed(In) = ea

z

(
0, ded(In)

]
ed(In)

(
by Lemma 22(ii)

)
� ea

z

(
0, λne

d(In)
]
ed(In)

(
by Lemma 22(i)

)
= ea

z (0, λn1]ed(In)
(
by Lemma 22(ii)

)
�� (

ea
z (−∞,0] + ea

z (λn1,+∞)
)
ed(In) (by the assumption)

= (
ea
z (−∞,0] + ea

z

(
λne

d(In),+∞))
ed(In)

(
by Lemma 22(ii)

)
�

(
ea
z (−∞,0] + ea

z (d,+∞)
)
ed(In)

(
by Lemma 22(i)

)
.

This inequality implies, in particular, that for such choice of d the projection ea
z (0, d] is prop-

erly infinite.
Next our goal is to construct a decreasing to zero sequence

{dn}∞ ⊂ Z+
(
LS(M)

)
, d0 � 1, dn+1 � dn/2, s(dn) = 1
n=0
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for all n ∈ N and two sequences {pn}∞n=0, {qn}∞n=0 of pairwise disjoint projections in M, which
satisfy the following conditions:

(i) pnqm = 0, apn = pna, aqn = qna, pn ∼ qn for every n,m � 0.
(ii) pn � ea

z (dn,+∞), qn � ea
z (−∞, εdn] for every n � 0 q0 � ea

z (−∞,0].
(iii)

∨∞
n=0 pn ∨ ∨∞

n=0 qn = 1.

For any projection p ∈ P(M) there exists a unique central projection z such that pz is a
finite projection and p(1 − z) is properly infinite projection and c(p) � 1 − z (if p is finite
projection then z = 1, otherwise the assertion follows from [16, Proposition 6.3.7]). In this case,
we have c(p(1 − z)) = c(p)(1 − z) = 1 − z [15, Proposition 5.5.3]. Let z0 ∈ P(Z(M)) be such
a projection for ea

z (−∞,0] and let zn be such a projection for ea
z (1/n,+∞), n ∈ N. Since the

sequence ea
z (1/n,+∞) is non-decreasing, it follows that the sequence {zn}∞n=1 is non-increasing.

In addition we have 1 = (1 − z0) + ∧∞
n=1 z0zn + z0(1 − z1) + ∨∞

n=1 z0(zn − zn+1). Hence, it is
sufficient to prove the assertion for reduced algebras M[∧∞

n=1 z0zn], M[z0(1−z1)], M[z0(zn −
zn+1)] and M(1 − z0). It is sufficient to consider three following cases:

(a) The projection ea
z (−∞,0] is finite and all projections ea

z (λ1,+∞) are the same for ev-
ery λ > 0. The algebra M[∧∞

n=1 z0zn] satisfies this condition. Note that in this case the
projection ea

z (0,+∞) is a supremum of non-decreasing sequence of finite projections
ea
z (1/n,+∞).

(b) The projection ea
z (−∞,0] is finite and there exists λ > 0 such that the projection

ea
z (λ1,+∞) is properly infinite and c(ea

z (λ1,+∞)) = 1. Algebras M[z0(zn − zn+1)] (in
this case λ = 1/(n + 1)) and M[z0(1 − z1)] (in this case λ = 1) satisfy this condition.

(c) The projection ea
z (−∞,0] is properly infinite and c(ea

z (−∞,0]) = 1. The algebra M(1−z0)

satisfies this condition.

We would like to show that there exists an element d0 ∈ Z+(M), d0 � 1 such that
ea
z (−∞,0] ≺≺ ea

z (d0,+∞) s(d0) = 1.
Consider the case (a). We shall use Lemma 36. To this end, we set b = 1, μn = 1/n, q =

ea
z (−∞,0]. In this case the projection q = ea

z (−∞,0] is finite and projection ea
z (0,+∞) is

properly infinite and c(ea
z (0,+∞)) = 1. Hence, the assumptions of Lemma 36 hold. Thus, there

exists an element 0 < d0 ∈ Z(M) such that d0 � 1, s(d0) = 1 and ea
z (−∞,0] ≺≺ ea

z (d0,+∞).
In the case (b) we set d0 = min(1, λ)1. Then ea

z (−∞,0] is a finite projection and ea
z (d0,+∞)

is a properly infinite projection. Hence, ea
z (−∞,0] ≺≺ ea

z (d0,+∞) and s(d0) = 1.
In the case (c) we will use Lemma 36 again. Set b = 1, μn = 1/n, q = ea

z (−∞,0]. We have
that q = ea

z (−∞,0] is a properly infinite projection, c(q) = 1 and q ≺≺ ea
z (0,+∞). Hence, the

assumptions of Lemma 36 hold. So, there exists an element 0 < d0 ∈ Z(M) such that d0 � 1,
s(d0) = 1 and ea

z (−∞,0] ≺≺ ea
z (d0,+∞).

This completes the construction of the element d0. Let us now show that there exists a se-
quence dn ∈ Z+(M) such that dn � dn−1/2, s(dn) = 1 and ea

z (dn,+∞) �� ea
z (dn−1,+∞) for

every n ∈ N.
Suppose that elements d1, . . . , dn have been already constructed.
We are going to use Lemma 36 again. For this we set b = dn, μm = 1/(2m), q = ea

z (dn,+∞).
In the case (a) q = ea

z (dn,+∞) is finite projection. In the cases (b) and (c) ea
z (dn,+∞) is a prop-

erly infinite projection, c(q) = 1 and q ≺≺ ea(0,+∞) (we have shown this fact at the beginning
z
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of the proof). The assumptions of Lemma 36 hold. Hence, there exists 0 < dn+1 ∈ Z(M) such
that dn+1 � dn/2, s(dn+1) = 1 and ea

z (dn+1,+∞) �� ea
z (dn,+∞).

Thus, we have constructed the sequence {dn} ⊂ Z+(LS(M)) such that dn+1 � dn/2 and
ea
z (dn+1,+∞) �� ea

z (dn,+∞), s(dn) = 1 for every n ∈ N. In addition we have ea
z (d0,+∞) ��

ea
z (−∞,0].

Set p0 = ea
z (d0,+∞). There exists a projection r ∈ P(M) such that ea

z (−∞,0] ∼ r < p0. By
the assumption and using the argument at the beginning of the proof, we have ea

z (0, εd0] �� p0,
and so, by Lemma 35, it follows that there exists a projection q1

0 ∈ M such that p0 − r ∼ q1
0 <

ea
z (0, εd0] and aq1

0 = q1
0a (in the case (a) the condition (i) of Lemma 35 is applied and in the

cases (b) and (c) the condition (ii) is used). Set q0 := ea
z (−∞,0] + q1

0 . Then q0 ∼ p0.
Suppose that projections p0, . . . , pn; q0, . . . , qn have been constructed. Set pn+1 = ea

z (dn+1,

+∞)
∏n

k=0(1 −pk)
∏n

k=0(1 − qk). In the case (a) all projections pk , qk with k � n are finite and
ea
z (0, εdn+1] is a properly infinite projection which is a supremum of non-decreasing sequence

of finite projections {ea
z (1/m,εdn+1]}∞m=1. Hence, ea

z (0, εdn]∏n
k=0(1 − pk)

∏n
k=0(1 − qk) is a

properly infinite projection. It follows from Lemma 35(i) that there exists a projection qn+1 ∈ M
such that pn+1 ∼ qn+1 < ea

z (0, εdn+1]∏n
k=0(1 − pk)

∏n
k=0(1 − qk) and aqn+1 = qn+1a.

Let now consider the cases (b) and (c). Recall that in these cases all ea
z (dn,+∞) are prop-

erly infinite projections. Since
∑n

k=0 pk � ea
z (dn,+∞) ≺≺ ea

z (dn+1,+∞), by Lemma 21(ii)
we obtain that

∑n
k=0 pk + ∑n

k=0 qk ≺≺ ea
z (dn+1,+∞). Then pn+1 = ea

z (dn+1,+∞)
∏n

k=0(1 −
pk)

∏n
k=0(1 − qk) = ea

z (dn+1,+∞)(1 − ∑n
k=0 pk − ∑n

k=0 qk) is a properly infinite projec-
tion. It follows from Lemma 21(iv) that pn+1 ∼ ea

z (dn+1,+∞) ≺≺ ea
z (0, εdn+1] ∼ ea

z (0,

εdn+1]∏n
k=0(1 − pk)

∏n
k=0(1 − qk) (we applied Lemma 21(iv) at the beginning and at the end

of the chain). So, it follows from Lemma 35(ii) that there exists a projection qn+1 ∈ P(M) such
that qn+1 < ea

z (0, εdn+1]∏n
k=0(1 − pk)

∏n
k=0(1 − qk), qn+1 ∼ pn+1 and aqn+1 = qn+1a.

Thus, projections pn+1 and qn+1 are constructed.
It is clear that these projections satisfy conditions (i) and (ii). To check the condition (iii) we

note that
∨n

k=0 pk ∨ ∨n
k=0 qk � ea

z (−∞,0] + ea
z (dn,+∞) ↑ 1 with n → ∞.

Now, we can proceed with the construction of the unitary operator uε ∈ M from the assertion.
Let vn ∈ M be a partial isometry such that v∗

nvn = pn, vnv
∗
n = qn, n = 0,1, . . . . We set

uε =
∞∑

n=0

vn +
∞∑

n=0

v∗
n

(here, the sums are taken in the strong operator topology).
Then, we have

u∗
εuε =

∞∑
n=0

pn +
∞∑

n=0

qn = 1, uεu
∗
ε =

∞∑
n=0

qn +
∞∑

n=0

pn = 1.

Observe that

uεpn = qnuε, uεqn = pnuε, apn = pna, qna = aqn, n � 0,

and so the element u∗
εauε commutes with all the projections pn and qn, n � 0. Moreover, since

for all n � 0, it holds
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apn = aea
z (dn,+∞)pn � dne

a
z (dn,+∞)pn = dnpn,

aqn = aea
z (−∞, εdn)qn � εdne

a
z (−∞, εdn)qn = εdnqn,

we obtain immediately for all such n’s that

u∗
εauεpn = u∗

εaqnuε � εdnu
∗
εqnuε = εdnpn,

u∗
εauεqn = u∗

εapnuε � dnu
∗
εpnuε = dnqn.

In particular, (u∗
εauε − a)pn � εdnpn − dnpn = −dn(1 − ε)pn � 0. Taking into account that

apn � dnpn, we now obtain

∣∣u∗
εauε − a

∣∣pn = (
a − u∗

εauε

)
pn � apn − εdnpn

� apn − εapn = (1 − ε)apn

= (1 − ε)|a|pn.

Analogously, for every n � 0, we have (u∗
εauε −a)qn � dnqn −εdnqn = (1−ε)dnqn � 0. There-

fore,

∣∣u∗
εauε − a

∣∣qn = (
u∗

εauε − a
)
qn � (1 − ε)dnqn

� (1 − ε)aqn.

Observe that the inequalities above hold for all n � 0. If n > 0, then qn < ea
z (0, εdn], qna = aqn

by the construction and so aqn = |a|qn, that is, we have

∣∣u∗
εauε − a

∣∣qn � (1 − ε)|a|qn.

A little bit more care is required when n = 0. In this case, recall that q0 = ea
z (−∞,0] +

q1
0 , where q1

0 < ea
z (0, εd0]. Obviously, aea

z (−∞,0] � 0, and so aea
z (−∞,0] = −|a|ea

z (−∞,0].
Therefore since (see above) u∗

εauεq0 � d0q0 and aq0 = aea
z (−∞,0]+ aq1

0 = −|a|ea
z (−∞,0]+

aq1
0 , we have

∣∣u∗
εauε − a

∣∣q0 �
(
u∗

εauε − a
)
q0 � d0q0 − aq1

0 + |a|ea
z (−∞,0]

� d0q
1
0 − εd0q

1
0 + |a|ea

z (−∞,0] = (1 − ε)d0q
1
0 + |a|ea

z (−∞,0]
� (1 − ε)aq1

0 + |a|ea
z (−∞,0] = (1 − ε)|a|q1

0 + |a|ea
z (−∞,0]

� (1 − ε)
(|a|q1

0 + |a|ea
z (−∞,0]) = (1 − ε)|a|q0.

Collecting all preceding inequalities, we see that for every k � 0 we have

∣∣u∗
εauε − a

∣∣ k∑
(pn + qn) � (1 − ε)|a|

k∑
(pn + qn)
n=0 n=0
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and since
∑∞

n=0(pn + qn) = 1, we conclude

∣∣u∗
εauε − a

∣∣ � (1 − ε)|a|.

The assertion of the lemma now follows by observing that |u∗
εauε − a| = |[a,uε]|. �

Proof of Theorem 1. Prior to Lemma 33 we have shown that the identity 1 ∈ M can be written
as a sum of three central projections 1 = p0 +p− +p+. The assertion (i) of Theorem 1 holds for
the element ap0 (by Lemma 30) affiliated with the algebra Mp0. The assumptions of Lemma 37
hold for the element (a − c0)p− in the algebra Mp−. Hence, the assertion (ii) of Theorem 1
holds in this algebra. The assumptions of Lemma 37 hold for the element (c0 − a)p+ in the
algebra Mp+ as well (see the discussion preceding Lemma 35). Hence, the assertion (ii) of
Theorem 1 holds in this algebra as well.

Next, if M is finite or purely infinite σ -finite algebra, then by Lemmas 31 and 32 we have
1 ∈ P0, which implies 1 � p0. In other words, we have p0 = 1 and by Lemma 30 the assertion (i)
of theorem holds in this case. �
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