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One of the main problems remaining from Quillen’s study of group cohomology 

is the determination of H*(GL,([F,); Fp). Very little is known about these groups 

except that they stabilize to zero, that is, H*(GL,)Fp); Fp) = 0 in positive dimen- 

sions [ll]. This fact, along with the rich variety of elementary abelian p-subgroups 

(p-tori) of GL,(F,), makes computation very difficult. On the other hand, for 

n < co these cohomology groups are important because they give universal charac- 

teristic classes for modular group representations. 

Our main result, Theorem 6.5 gives families of explicit classes in H*(GL,(IF~); lFp) 

detected on certain maximal p-tori of ‘block’ form. Our methods involve a study 

of the invariant theory of these blocks, which generalizes the classical theory of 

Dickson [2], together with favorable properties of the transfer for the general linear 

groups. 

Before going into more detail, we recall that in the non-modular case the situation 

is much clearer: a complete computation of H*(GL,(IFq); Fp) for p not dividing q 

is given in [II]. 

Let M,, m be the additive group of IZ x m matrices over ffp. We consider M,,, as 

the subgroup 

(: ?-) 

of GL .+,(Fp) and propose to study the restriction map in modp cohomology 

H*(GL,+, ( Fp)) -+ H*(M,, m)oL, XGLm 

whose image lies in the GL,(Fp) x GL,(Fp) invariants since 

GL, M,,, 
0 GL, > 
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is the normalizer of M,,, in GL,, ([F,). If S(M&,) denotes the symmetric algebra 

on the dual, then 

where, as usual, M&, is concentrated in dimension 2 if p > 2 or in dimension 1 if 

p = 2. (For p> 2 the inclusion is proper but there is equality when p = 2.) Thus we 

are led to study the action of CL,, x CL, on S(M,$) and the resulting invariants. 

The invariant sets of this action give rise to representations whose Chern classes pro- 

vide elements in the cohomology of the unipotent group U,+,(FJ of upper uni- 

triangular matrices. The transfers of these elements to H*(GL,+,(lFP)) give the 

desired classes. 

The paper is organized as follows: In Section 1 we give the preliminaries on the 

action of CL, x GL,. Invariant polynomials and generalized Dickson invariants 

are studied in Section 2. In particular an invariant set J? is introduced whose corres- 

ponding invariants are easier to compute than the general case. Invariants on the 

level of fraction fields are determined in Section 3 by a simple application of Galois 

Theory. By composing Dickson invariants in an appropriate manner, a maximal set 

of nm algebraically independent invariants is determined in Section 4. P-tori of 

block form are studied in Section 5. These results are applied to the transfer in 

Section 6 to obtain Theorem 6.5. 

We would like to thank Bill Browder, Steve Mitchell, Larry Smith and Bob Stong 

for helpful conversations during the course of this work. In addition, we are grateful 

to Smith and Stong for access to their paper [13]. 

Throughout this paper all cohomology groups are taken with simple coefficients 

in 1F,. 

1. Preliminaries 

Suppose V, W are finite-dimensional vector spaces over lFP. Then an action of 

GL( V) x GL( W) on the symmetric algebra S(V@ W*) is defined by 

(gxh)(o@w)=go@hw for gxhEGL(V)xGL(W), o&cV@W* (1.1) 

where GL(W) acts contragrediently on the dual space W*, i.e., hw(w) = ~(h-’ w) 
for WE W. More explicitly there is an isomorphism 

@ : V@ W* 5 Hom( W, V) 

given by @(u@w)(w)=w(w). u for UE V, WE W, WE W*. Thus we may identify 

VOW* with the set Mn,, of n x m matrices over [F, where n, m are the dimen- 

sions of V, W respectively. Then the corresponding action of GL,(LF,) x GL,([F,) is 

given by 
(gxh)M= gMh-’ for gxhEGL,xGL,, MEM,,,. 

This action extends to S(M,,,) via the diagonal action as usual. 

(1.2) 
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In Section 6 we shall consider cohomology groups. As indicated in the introduc- 

tion, this entails studying the GL, x GL, invariants of S(M&J. However, if 

r:GL,xGL,+GL,xGL, 

is the twist isomorphism, then there is a r-equivariant isomorphism given by 

M> mn @ &@I/‘+ (V@W ) * *GM&,, 

where 

w(w@~)(u@~) = am for WE W, WE W*, UE V, VE V*. 

Thus we are reduced to studying GL, x GL, invariants in S(M,,,), eliminating the 

need for a special discussion of invariants in S(M&). 

If (x1, . . ..xJ. (VI, ***, y,) are bases for V, W* respectively, then 

(xjj=x,@yj: llisn, lsjlm) 

is a basis for V@ W*. We view xjj as the n x m matrix with 1 in the (i,j)th position 

and zeros elsewhere. 

2. Invariant polynomials 

If 9c V@ W* is a GL(V) x GL(W) invariant set, then we can form the invariant 
polynomial 

Pfl(X) = .rI$ (X-u) ES(VO w*)Kl. (2.1) 

Clearly Pea(X) E R [Xl, where R = S(V@ W*)GL(V)xGL(W) and so the coefficients of 

P@(X) provide a ready source of invariants. 

In the case of a single vector space V of dimension n over EPp, the algebra 

S(V) GL(V) was computed by Dickson [2] in 1911. He found the result to be a poly- 

nomial algebra 

S(V)GL(V)= ~Jc,,o,c,,t ,..., c,,.-,I 

where the c,,~ are coefficients of the polynomial 

n-l 

(2.2) 

P&c) = c (X- 0) = xp” + c (-l)“-‘c,iX”‘. 
UCV i=o 

The dimension of C,,i is 2(p” -pi) if p> 2 or 2” - 2’ if p = 2. See [14] for a further 

discussion of Dickson invariants. 

In the notation of (2.1) if n or m = 1 and 9 = V@ W* we are reduced to this classi- 

cal situation. For example if m = 1 

S(M,, I)GLn x GLl z S( V)GL(v). 

This is clear since GL, consists of scalars and thus does not affect invariance. 



294 R. J. Milgram, S. B. Priddy 

Remark 2.3. From linear algebra we know that the orbits of GL, x GL, acting on 

M n,m are determined by rank; that is, two matrices M,M’eM,,, satisfy M’= 

PMQ-’ for some PE GL,, Q E GL, iff rank M= rank M’. 

A particularly useful invariant set consists of the union of rank zero and rank one 

matrices, denoted 8. Alternately, we have 

Lemma2.4. &T={u@w:uE~ WEW*}. 

Proof. The right hand side is clearly an invariant set. If 00 w= 0, then u@ w corres- 

ponds to the rank zero matrix. If O@WE$ is non-zero, then there exist elements 

(g, h) E GL, x GL, such that gu =x1, hw =y,. Hence 00 w corresponds to a matrix 

in the orbit of the rank one matrix x,,. The converse is equally obvious. 

Now consider the invariant polynomial 

P$(X)=n(X-vOw)=n nx-u@w . 
u, 1” ( u w > 

For a fixed u we can use Dickson’s result (2.2) to write 
m-l 

n (X-u@ w) = xp”’ + c (-l)“PjC,,j(o)xp’ 
W j=O 

where the c,,j( u are ordinary Dickson invariants based on u. ) 

Example 2.5. For m = 2, p = 2, ,S(W*)GL2 = [F2[Y,,Y21GLZ = F~[c~,~,c,,,] where 
2 2 

C,,o=Y,Y,+Y,Y,7 
2 

c2,, =y, +y,y,+yi. Then, for example, 

C,,,(U) = 4, +x,,++x:2 for u=x, 

Thus 
C2,,(u) =(~,1+X2,)~+(x,,+x2,)(x,2+x22)+(x,2+x22)~ for u=xl+x2. 

Pg(X) = n (Xp”’ + C (-l)“-jC,, j(U)X”). 
0 

In this form the coefficients of Pg(X) are much easier to compute. 

Example 2.6. Let n = m = 2 and p = 2. Then 

Pf(X) = X’6+Z2X’4+z3X13+ *** +zsX7, 

z2 = det, z3 = det’, 

z4 = Xf+X,X,+Xz+(X, +X,)det, 

zs =X,X~+Xi’X,+(X,+X,)det’+(X;+X~)det, 

z6 = XfX,+X,Xi+X,X, det +Xi2 +X,‘X;+Xi2 + (X;+X;)det’, 

z7 =X,X,det’+(X;X,+X,X;)det’+XiX;+X;Xz, 

zs = X,Xi2 + XL2X2 + (X,‘X, + X,X;)det’+ X;X; det, 

zg = X{X;(X; + Xi + det’) 
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where 

det = xllx22+x1~x21, det’ = Sq’(det), 

X, = C?,,(XI) =x:* +x,,x,,+.& X; = Sq’(X,), 

X, = CZ,I(XZ) = x;1 +XzlX2*+-42, x; = Sq’(X,). 

3. Galois theory 

In this section we show that on the level of fraction fields any non-zero orbit 

essentially determines all CL, x GL, invariants. We begin by observing that since 

M. n m is an nm-dimensional vector space over [F,, we have 

CL,, x GL,cGL,, and S(M,,m)GL~~~~~S(M,,,)GLnxGLf~ 
where 

S(M,, m)GLnJn = F, [c,,, 03 c,,, I 3 . . ., cm, nm - 11 

are the Dickson invariants in Fp[[xll, . . . ,x,,] as described in (2.2). 

Let K,F be the field of fractions of S(M,,,) and S(M,,,)GLn/fl respectively. Then 

K is a Galois extension of F with polynomial 

P&,,(X) = n (X-M). 
M E ~‘4,. 11, 

Let @ be a non-zero orbit (2.3) and let L = L@ be the subfield of K generated over 

F by the coefficients of P,(X). 

Lemma 3.1. The Galois group G(K/L) is the set T, of invertible linear transfor- 
mations of M,,m which leave B setwise fixed. 

Proof. If g EGL,, and leaves B invariant, then g fixes P&X). Hence g fixes L. 
Conversely, if g E G(K/L) C GL,,, then g fixes P,(X) and hence permutes the 

roots of P@(X). 

Questions related to the determination of T@ have a long history dating back to 

Frobenius. 

Lemma 3.2. Zf n # m, then T@ = GL, x GL,. Zf n = m, then T@ has an additional 
generator given by matrix transposition. 

Proof. Marcus and Moyls [8] have shown that if f: M,,, --t M,,,, is linear and pre- 

serves rank one matrices, then it has the desired form assuming the ground field is 

algebraically closed. Thus f(.)=P(-)Q for fixed PEGL,, QEGL,; if n=m, 
f( .) = P(.)tQ is also allowed. Later McDonald [9] observed that if f is also inver- 

tible, then the argument works for any field. Assuming f is invertible and the field 

is infinite DjokoviC [3] showed that if f preserves matrices of rank w for some w > 0, 
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then f preserves matrices of rank k for k< w. The lemma follows since passing to 

the algebraic closure does not affect the question of preserving rank. 

Standard Galois theory proves 

Theorem 3.3. If n fm, then Lg=KGLnxGLm. If n =m, then KGLnxGLn is a degree 
two extension of Lg. 

Thus, for n = m we must find one invariant in addition to the coefficients of P@ 
in order to obtain a complete set of generators for 

KGL,xGL, 

This is done in Section 4. 

4. Algebraic independence of composite Dickson invariants 

In this section we describe a type of composite Dickson invariant, which can be 

considered as a Dickson invariant on Dickson invariants. Roughly speaking, we 

form Dickson invariants on the column variables, then form Dickson invariants on 

the resulting variables. 

More precisely, for each j, 0 5 jr m - 1 consider the polynomial 

Q,(x) = II (X-Cqj(u)) 
OCV 

which is GL, x GL, invariant since the Cm,j (0) are 1 x GL, invariant. Let c,,~(c,,,, j) 

denote the coefficient of X,, in Qj(X). Then we have 

Theorem 4.1. The invariants C,,;(C,,j), 0~ isn - 1, 05 j<m - 1 are algebraically 
independent, i.e., they form a polynomial subalgebra of 

and a transcendence basis for K. 

The proof uses an ordering of the (X;,j}. Set 

x; j<xj,,j, 

if j< j’ or if j = j’ and i< i’. We shall also need the lexiographical ordering on 
monomials in the x~,~‘s. If m =x~,~ *** X;,,j, and m’= Xi;,j; 1.. Xi:,j: are two monomials 
in which the x;,~‘s are arranged in non-decreasing order, then 

m<m’ if Xi,, j, I Xi:, j; 

for 15 u 5 r. Here we allow Xi,j = 1 and specify 1 SXi,,j, for all i’, j’. This ordering 
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is multiplicative in the sense that if misni (i= 1,2), then mlm21nln2. 

Let 4 =I) - 1 and set _Y,j = (Xi,j)‘. 

modulo larger terms. 

Proof. From the definition of c,,~(c,,~) as a composite it suffices to show 

n-, n-2 c,;eyf Y2” . ..y.p’; 

modulo larger terms, where yj = xi” and 0 5 is n - 1. This result is clear for n = 1 

since c~,~= ky,, c,,i - - 1. According to [14, Proposition 1.31 we have 

c,,i = c,P~~,j-~-c,-~,j[f~-~(x~)lq 

where f,(X) = P&Y) is the polynomial of (2.2). Now if i > 0, then 

c,i”cp = .(yf 
n-2 

n-l,i-I 
...Y;I_f)P 

by induction. Hence, c,, i = kyf-’ ...ylli as required. If i=O, then 

C 
n,O 

E -C n_l,O[fCn &JQ= +cnp_1 ox;= +-Yl"n**~Y,"-~Yn 

by induction. 

Proof of Theorem 4.1. Since the terms on the right of the formulas of Lemma 4.2 

are clearly algebraically independent, the result follows from the multiplicative pro- 

perty of the order filtration. 

Remarks. (1) It follows from Theorem 4.1 that S(MII,JGLnXGLm is a polynomial 

algebra on the c,,, i (cm, j) only in case n = 1 or m = 1. For example Co E r, c,, m _ 1(u) is 

a non-trivial GL, x GL, invariant not in the polynomial algebra generated by the 

cn,i(cm,j). 
(2) If n = m, then c,, ;(c,, j) and cn, j(cn,i) provide distinct invariants (if i#j) of 

the same dimension, thus supplying extra invariants to generate 

@L” x CL, 

as promised in Section 2. This is illustrated in Example 2.6 by the decomposition 

of zg as the sum of two invariants 

z6 = c2,0(c2,1) + ‘2, I@,, 0). 
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5. P-tori and weak closure 

As in the introduction we consider the additive group &I,,, of n x m matrices 
over FP as the subgroup 

(: :q 

of GL .+,(EJ. Then M,,,, is an elementary abelian p-subgroup or p-torus for 
short. Let H=M,,,, G=GL,+,, then NoH, the normalizer of H in G, is easily 
seen to be the subgroup 

( 

GL, M,,m 
0 > GL, * 

The Weyl group WGH= NG H/H= GL, x GL, acts on H by conjugation 

(gr, gMg;*, g;‘) = g&5’, (gr, g2) E WGH, h EH 

which is precisely the action defined in (1.2). 

Let km = km (FJ be the unipotent subgroup of GL,,,, i.e., the upper tri- 
angular matrices with l’s on the diagonal. Then U,,,, is a p-Sylow subgroup con- 
taining M,, m. Generators for U,,, are given by the matrices U;,j, 15 i<j< n + m, 
which agree with I,,, except for a single non-zero entry, namely 1 in the (i,j)th 
position. Then uk = Z,, + m and commutators (4 b) = aba-‘bP’ are given by 

i 

uil if j=k, 

C”ij* u!f/) = u$ if i = 1, 

I n+m otherwise. 

Using these relations one easily checks 

Lemma 5.1. The p-tori IV,,, are maximal in GL,+,. 

One also has 

Proposition 5.2. Among the maximal p-tori of GLk, the largest rank is k2/4 if k 
is even and (k2- 1)/4 if k is odd. These ranks are attained by A4k,2,k,2 and 

M(k- 1)/2,(k+ 1)/2 revctiv&- 

Proof. The result is clearly true for k= 1,2. Let I#?,+c uk be the subgroup generated 

by {Ur,j~uj,k)~ i.e., the union of the top row and right hand column subgroups. 
Then Ek is normal and there is an extension 

Ek+ u,- u,_2. 

Ek is an extra-special p-group of order p 2k-3* by inspection the rank of the largest , 



Invariant theory 299 

p-torus of Ek is k- 1. By induction, the rank of the largest p-torus of U,_, is 

(k - 2)2/4 or ((k - 2)2 - 1)/4 according as k is even or odd. Consequently the largest 

possible rank for a p-torus in U, is 

(k - 1) + (k - 2)2/4 = k2/4 

if k is even and 

(k-1)+((k-2)2-l)/4 = (k2-1)/4 

if k is odd. 

This completes the proof since Mk,2,k,2 and Mck_ 1j,2,(k+ rjj2 have these ranks res- 

pectively. 

Remarks. (1) It follows from a result of Quillen [12] that the Krull dimension of 

H*(GL,(lFp)) is k2/4 if k is even and (k2- 1)/4 is odd. 

(2) There are maximal p-tori in CL,,, not congugate to one of the M,,,. For 

example9 ~(u12u34, ~13~24,~14)cGL4(~2)- 

In order to facilitate computation of transfer in group cohomology we shall need 

the following result. Let K= M,,,,, H= U,, +m, G = GL,,,. 

Lemma 5.3. gKg_’ c H implies gKg-’ = K for g E G. 

Proof. Let BC G be the subgroup of upper triangular matrices, then BcN,K and 

so gKg-’ c K iff 2Kg-l C H for ge HgB. However H \ G/B =.Zn+m by Bruhat’s 

decomposition [ 11. The action of o EZ,,+, is given by oXij o-’ =Xa(;),o(j). Thus 

aKo_’ c H implies o E Z,, x &, and so OKC’ = K. 

Remark 5.4. In the situation of Lemma 5.3, K is said to be weakly closed in H. In 

case K is also a p-torus this condition forces a drastic simplification in the double 

coset formula for the transfer as we shall observe in Proposition 6.2. These notions 

were used by Kahn and the second author in [5] and by Mui in [lo]. Kuhn has also 

studied this condition in [4]. Finally S. Mitchell has pointed out that Lemma 5.3 

holds generally for K the nilpotent radical of a parabolic subgroup in a Chevalley 

group in characteristic p with unipotent group H. 

6. Characteristic classes for H*(GL,+,(FJ) 

In this section we construct characteristic classes for H*(GL,+,(EJ) related to 

the invariant theory of the previous sections. 

Let GL,, be the parabolic subgroup 

GL,, = ~,,,n >a (GL, x W,,) 
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which is the normalizer of M,,, in GL, +,,, described in Section 5. For each GL, x 
GL, invariant set #CM,Tm set 

vs=UrI#(-u):K,,+IF;, N=j4. 

The action of GL, x GL, on 9 defines a y,,-equivariant permutation representa- 

tion 
osg : GL, x GL, --+ EN 

Combining these maps we obtain a representation of GL,, 

YS xag 
e.a:M,,,>a(GL,xGL,)-~,N>a~ N - u(l)N>azNc u(N) 

where U(k) is the unitary group and lFp =Z/p+ U(1) is the standard inclusion (if 

p = 2, U(k) can be replaced by the orthogonal group O(k)). 

Restricting to A4,,, m, it is clear that the total Chern class (resp. Stiefel-Whitney 

class if p = 2) of es satisfies 

e.XC) = Ev (1 -u) = K?(l) 

in S(M,T,) where Pg(X) is the invariant polynomial (2.1) associated with 9. Thus 

we have proved 

Proposition 6.1. For any GL, x GL, invariant set 9 CM&, the coefficients of 
P.g(X) are Chern classes of Q.J belonging to the image of the restriction 

i*: H*(GL,,) -+H*(M,,,)GL~xGLfn 

where i : M,,, + GL, m denotes inclusion. 

In fact, these classes come from H*(GL,+, ). This is our main result. To prove 

it we invoke the following general fact 

Proposition 6.2 [4, Proposition 2.31. Let KU HC G be finite groups with K a 
p-torus. Suppose K is weakly closed in H (gKg_’ C H implies gKg_’ = K for g E G, 
see Remark 5.4). Then the double coset formula for transfer and restriction simpli- 
fies to the commutative diagram 

i* 
H*(H) - H*(K)6cK) 

4 i* I 
H*(G) - H*(K)h(K) 

Corollary 6.3. If W,(K) is a p-Sylow subgroup of W,(K), then 

HEWS n Im(H*(H) -+ H*(K)w”(k)) = Im(H*(G) -+ HUNG). 
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Proof. The inclusion > is clear. Now assume x is an element of the left hand side. 

Then tr(x) = kx where k= [W,(K) : W,(K)] is prime to p. Hence x is also an ele- 

ment of the right hand side by the proposition. 

By Lemma 5.3 the conditions of Proposition 6.2 are satisfied for K=M,,,, 

H= U,,,, G=GL,+,,,. Hence 

Corollary 6.4. 

H*(M,, m)GLnxGLgnfi Im(H*(U,+,) -+ H*(M,,,)U~XU~~~) 

= Im(H*(GL,+,) + H*(M,,III)GL~XGL~~~). 

Proof. W,(K)=GL,xGL,, W,(K)=U,,xU,,,. 

Combining Proposition 6.1 and Corollary 6.4 we have our main result 

Theorem 6.5. For each GL, xGL, invariant set 9 CM:,,,, let ps denote the 
restriction of @.a to U, +m. Then k. tr(Q$(C)) are classes in H*(GL,+,) which 

restrict to the coefficients of P$(X) in 

S(M,Tm)GL”xGLm cH*(M,,,), ~=[GL,xGL,:U,XU,]~‘E~;. 

Corollary 6.6. If n or rn = 1, then the restriction map 

i* 
H*(GL+,) - ff”(&f,, m)GLn x GLm 

surjects onto the polynomial algebra S(M,,m)GLnXGLm of ordinary Dickson in- 
variants discussed in Section 2. 

Remarks. (1) For a discussion of Chern classes of the regular representation see [7]. 

(2) Work of Maazen [6] shows 

H%L,) = 0 
for k< [n/2] if p = 2, 
for k<n 

if p> 2. 

If p=2, the class 

det, = det(xij) E H*(M,,.)GLnxGLn 

is a natural candidate for a non-trivial class of lowest dimension coming from 

H*(GL,,). Example 2.6 shows det2 is, in fact, in the image of restriction. We do 

not know if this is true in general, however. 
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