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It is a classical problem to compute a minimal set of invariant
polynomials generating the invariant ring of a finite group as a sub-
algebra. We present here a new algorithmic solution in the non-
modular case.
Our algorithm only involves very basic operations and is based
on well-known ideas. In contrast to the algorithm of Kemper and
Steel, it does not rely on the computation of primary and (ir-
reducible) secondary invariants. In contrast to the algorithm of
Thiéry, it is not restricted to permutation representations.
With the first implementation of our algorithm in Singular, we
obtained minimal generating sets for the natural permutation ac-
tion of the cyclic groups of order up to 12 in characteristic 0 and
of order up to 15 for finite fields. This was far out of reach for
implementations of previously described algorithms. By now our
algorithm has also been implemented in Magma.
As a by-product, we obtain a new algorithm for the computation
of irreducible secondary invariants that, in contrast to previously
studied algorithms, does not involve a computation of all reducible
secondary invariants.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite group linearly acting on a polynomial ring R over a field, such that the charac-
teristic of R does not divide the order of G (“non-modular case”). It is well known that the invariant
ring RG = {r ∈ R: g.r = r, ∀g ∈ G} is a finitely generated sub-algebra of R . A minimal (with respect to
inclusion) set of homogeneous generators for RG is called a set of fundamental invariants. Let β(RG)

be the maximal degree occurring in fundamental invariants for RG . By Noether’s bound, β(RG ) � |G|.
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Kemper and Steel (1999) (see also Derksen and Kemper, 2002) proposed an algorithm for the
computation of fundamental invariants that works in three steps. First, one computes primary in-
variants of RG . Secondly, one computes irreducible secondary invariants with respect to the primary
invariants. Primary and irreducible secondary invariants together generate RG . In the third step, one
removes some primary invariants so that one eventually obtains a minimal generating set. Each of the
three steps may be difficult, depending on the example. The Kemper–Steel algorithm has been imple-
mented in various computer algebra systems, e.g., in Magma (Bosma et al., 1997) or Singular (Greuel
et al., 2005).

Thiéry (2001c) suggested a direct algorithm for the computation of a minimal generating set.
Thiéry’s algorithm is not based on the computation of primary invariants, but uses the incremental
construction of SAGBI bases. The disadvantage is that it is restricted to the special case of permu-
tation groups, i.e., groups acting as subgroup of the symmetric group of the set of variables of R .
Moreover, Thiéry’s algorithm crucially depends on good a priori estimates for β(RG). Unfortunately,
well-known upper bounds for β(RG) are, in general, far from being optimal. Thiéry’s algorithm is
implemented in the library PerMuVAR of MuPAD (Thiéry, 2001a). The extensive benchmark at Thiéry
(2001b) compares the implementation of the Kemper–Steel algorithm in Magma with Thiéry’s algo-
rithm in MuPAD.

By Noether’s degree bound, β(RG) � |G|. However, even if |G| is small, the resulting invariant rings
can be surprisingly complex. For example, consider the natural permutation action of the finite cyclic
group Cn of order n on R = K [x1, . . . , xn], where K is either Q or a finite prime field of characteristic
coprime to n. For n = 9, there are 119 fundamental invariants for RCn , which was first found by Thiéry
(2001c); at that time the fundamental invariants for n � 10 were unknown.

The aim of this paper is to describe another algorithm to compute fundamental invariants in the
non-modular case. Our algorithm is direct and is thus fundamentally different from the Kemper–
Steel algorithm. But in contrast to Thiéry’s algorithm, it is not restricted to the case of permutation
groups. Moreover, it does not rely on an a priori upper bound for β(RG). Instead, while incrementally
constructing the set of generators, we obtain information allowing us to estimate β(RG) a posteriori.

With the implementation of our algorithm in Singular, we found fundamental invariants for RCn

for small finite fields K in coprime characteristic for all n � 15. For n = 15 and K = GF(2), a set of
fundamental invariants is formed by 1494 polynomials. To the best of the author’s knowledge, this
example is unfeasible for the current implementations of both Kemper–Steel’s and Thiéry’s algorithm.

In early 2007, we compared the implementation of our algorithm in Singular 3-0-3 with the
implementation of the Kemper–Steel algorithm in Magma V2.13-8, based on all permutation groups
on 7 and 8 variables and some further actions on 9 and 10 variables. Our algorithm proved very
efficient and was often faster by factors between 50 and 1000; details are available in King (2007b).

Since version V2.15, Magma uses our algorithm as well (Bosma et al., 2010), so that with the
current versions of the computer algebra systems we can only compare different implementations of
the same algorithm. Therefore and for the sake of brevity, we restrict our benchmarks essentially to
the afore-mentioned natural permutation actions of cyclic groups. The implementation of our algo-
rithm in Magma often performs better than the one in Singular, which is probably due to a faster
computation of Gröbner bases in Magma.

1.1. Outline of the algorithm

Let S ⊂ RG be formed by the elements of degree � d − 1 of a set of fundamental invariants,
and let I ⊂ R be the ideal generated by S . Fundamental invariants of degree d are found among
the images of the degree d standard monomials of I under the Reynolds operator. Whether or not
a monomial image is a fundamental invariant, can be tested using a Gröbner basis up to degree d
of I . If sufficiently many generators are found, I will be 0-dimensional. Thus, I only has finitely many
standard monomials, and we denote their maximal degree by β(S). There can be no fundamental
invariants beyond degree β(S), so that the algorithm will eventually stop.

Our algorithm uses Gröbner bases in two ways. Firstly, Gröbner bases with a degree bound are
used to detect fundamental invariants. Kemper and Steel (1999) achieve the same by solving linear
algebra problems that may become rather huge. Of course, mathematically, there is not much of
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a difference between these two approaches. Secondly, Gröbner bases help to determine whether an
incrementally constructed set of elements of RG is a generating set.

A modification of our algorithm can be used to compute irreducible secondary invariants for a
given set of primary invariants. So, in a way, our algorithm is opposite to the Kemper–Steel algo-
rithm: They use irreducible secondary invariants for computing fundamental invariants, whereas we
use fundamental invariants to compute irreducible secondary invariants.

2. Ingredients of the algorithm

This section recalls some definitions and provides various easy lemmas that we use to prove the
correctness of the algorithm that we describe in detail in the final subsection of this section.

We fix a monomial order on a polynomial ring R with n variables over some field K . Let G be
a finite group, linearly acting on R . We denote the action of g ∈ G on r ∈ R by g.r ∈ R . Let RG =
{r ∈ R: g.r = r, ∀g ∈ G} be the invariant ring. Obviously, it is a sub-algebra of R , and we aim at
computing a minimal set of homogeneous generators for RG . We study here the non-modular case,
i.e., the characteristic of K does not divide the order of G . Note that according to Kemper (1998),
algorithms for the non-modular case are useful also in the modular case.

2.1. The Reynolds operator

Considering the non-modular case, we can use the Reynolds operator Rey : R → RG defined by

Rey(r) = 1

|G|
∑
g∈G

g.r

for r ∈ R . Note that, if G happens to act by permuting variables, expressing the Reynolds operator in
terms of orbit sums can provide a more efficient computation. The following is well known and easy
to prove:

Lemma 1. The Reynolds operator Rey : R → RG is a surjective morphism of RG -modules that restricts to the
identity on RG .

2.2. Truncated Gröbner bases

The completeness criterion of our algorithm relies on the computation of a homogeneous Gröbner
basis of the ideal generated by the fundamental invariants. For efficiency, we compute this Gröbner
basis degree by degree, as we find the generators of the invariant ring in increasing degree, and we
also use these partially computed Gröbner bases for the detection of new generators of the invariant
ring. Let us define the notions involved here. For the theoretical background, we refer to Greuel and
Pfister (2008).

If an ideal I ⊂ R is homogeneous (i.e., it can be generated by homogeneous polynomials) then
it has a Gröbner basis G formed by homogeneous polynomials. The S-polynomial of two homoge-
neous polynomials of degree d is homogeneous of degree at least d, and if p ∈ R is homogeneous
of degree d, then the normal form of p with respect to a set of homogeneous polynomials is either
zero or homogeneous of degree d. It follows that Buchberger’s algorithm can be used to compute the
elements of G incrementally, in increasing degrees.

Definition 2.

(1) For any subset S ⊂ R , we denote by 〈〈S〉〉 ⊂ R the sub-algebra generated by S , and by 〈S〉 ⊂ R
the ideal generated by S . For d > 0, let RG

d be the set of homogeneous invariant polynomials of
degree d. For an ideal I ⊂ R , let lm(I) be the set of leading monomials of elements of I .

(2) A finite set {g1, . . . , gk} ⊂ I of homogeneous polynomials is a homogeneous Gröbner basis up to
degree d of the ideal 〈g1, . . . , gk〉, iff rem(S(gi, g j); g1, . . . , gk) = 0 or deg(S(gi, g j)) > d, for all
i, j = 1, . . . ,k.
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(3) If Gd is a homogeneous Gröbner basis up to degree d of 〈S〉 and p ∈ R is a homogeneous polyno-
mial of degree � d, then let rem(p;Gd) be the normal form of p obtained by iterated polynomial
division by the elements of Gd .

It is an easy consequence of Buchberger’s criterion, that the subset Gd ⊂ G formed by the ele-
ments of degree at most d of a homogeneous Gröbner basis G is a homogeneous Gröbner basis up to
degree d of the ideal 〈Gd〉 ⊂ 〈G〉, in the sense of the previous definition.

If G is a homogeneous Gröbner basis of an ideal I and p ∈ R is homogeneous of degree d,
then the classical solution of the ideal membership problem asserts that p ∈ I if and only if
rem(p;G) = 0. Since p can only be reduced by polynomials of degree � d, we obtain p ∈ I if and
only if rem(p;Gd) = 0.

In particular, it follows that 〈Gd〉 coincides with the ideal generated by the elements of 〈G〉 of
degree at most d.

2.3. Finding generators of the invariant ring

In this subsection, we discuss where we should search for further generators if we want to extend
an incomplete generating set S ⊂ RG .

Definition 3. For S ⊂ R , let mon(S) be the set of all standard monomials of 〈S〉, i.e., those monomials
of R that are not contained in lm(〈S〉). Let mond(S) be the standard monomials of 〈S〉 of degree d.
Let Bd(S) = Rey(mond(S)).

Note that mond(S) and thus Bd(S) are easy to compute if a homogeneous Gröbner basis at least up
to degree d of 〈S〉 is known. Moreover, if G is a homogeneous Gröbner basis of some homogeneous
ideal, then mond(G) = mond(Gd), since 〈Gd〉 contains all elements of 〈G〉 of degree at most d.

Lemma 4. Let S ⊂ RG . Then, S ∪ Rey(mon(S)) is a generating set for RG . In particular, if RG
d 	⊂ 〈〈S〉〉 then

Bd(S) 	⊂ 〈〈S〉〉.

Proof. By the graded Nakayama lemma (Lemma 3.5.1 in Derksen and Kemper, 2002), mon(S) gen-
erates R as 〈〈S〉〉-module. Therefore and since Rey : R → RG is a surjective homomorphism of 〈〈S〉〉-
modules, S ∪ Rey(mon(S)) is a generating set for RG . The second part of the lemma is a direct
consequence. �

So, in increasing degree d starting with d = 1 and S = ∅, we may loop through all b in the finite
set Bd(S), and add b to the set S of previously found generators if b /∈ 〈〈S〉〉. In that way, one incre-
mentally constructs a generating set of RG , consisting of homogeneous invariant polynomials. In fact,
it is a minimal generating set (Thiéry, 2001c). We can test whether b ∈ 〈〈S〉〉 according to the following
lemma. Again, the lemma is well known, but we include a proof for completeness.

Lemma 5. Let S ⊂ RG be a set of homogeneous invariant non-constant polynomials. Assume that RG
d′ ⊂ 〈〈S〉〉

for all d′ < d, and assume that we are in the non-modular case. Let b ∈ RG
d . We have b ∈ 〈〈S〉〉 if and only if

b ∈ 〈S〉.

Proof. If b ∈ 〈〈S〉〉 then b ∈ 〈S〉. Any b ∈ 〈S〉 can be written as a finite sum b = ∑
i piqi with homo-

geneous polynomials pi ∈ R and qi ∈ S . We have b = Rey(b) = ∑
i Rey(pi)qi by Lemma 1. Since the

elements of S are non-constant, the pi are of degree at most d − 1. Hence, Rey(pi) ∈ RG
d′ for some

d′ < d. Thus Rey(pi) ∈ 〈〈S〉〉 by hypothesis. Therefore, b ∈ 〈〈S〉〉. �
We verify b ∈ 〈S〉 by reduction of b with respect to a homogeneous Gröbner basis G of 〈S〉 up to

degree d. After adding b to the set of generators, we easily obtain a homogeneous Gröbner basis up
to degree d of 〈S ∪ {b}〉, by the following lemma.
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Lemma 6. Let G ⊂ R be a homogeneous Gröbner basis up to degree d of 〈G〉. Let b ∈ R be a homogeneous
polynomial of degree d, and b /∈ 〈G〉. Then G ∪ {rem(b;G)} is a homogeneous Gröbner basis up to degree d of
〈G ∪ {b}〉.

Proof. Let r = rem(b;G). Since b /∈ 〈G〉 and both b and the elements of G are homogeneous, we have
r 	= 0, deg(r) = d, and 〈G ∪ {b}〉 = 〈G ∪ {r}〉.

By hypothesis, the S-polynomials of pairs of elements of G are of degree > d or reduce to 0
modulo G . We now consider the S-polynomials of r and elements of G . Let g ∈ G . By definition of the
normal form, we have lm(g) � lm(r). Therefore the S-polynomial of r and g is of degree > d = deg(r).
This implies that G ∪ {r} is a homogeneous Gröbner basis up to degree d of 〈G ∪ {b}〉. �
2.4. The completeness criterion

There remains one problem: The preceding lemmas allow for an incremental construction of a
minimal generating set of RG , in increasing degrees—but in what degree shall we stop the construc-
tion? By definition, we can stop after having found the generators in degree β(RG). So, we could
adopt a general estimate for β(RG) like Noether’s bound β(RG) � |G|. However, such general a priori
estimates are very often far from being optimal. Therefore, we prefer to derive an estimate for β(RG)

from the previously constructed generators, due to the following proposition.

Definition 7. For S ⊂ R , define β(S) = sup{deg(p): p ∈ mon(S) ∪ S}.

Proposition 8. Let S ⊂ RG be a finite set. We have β(RG) � β(S). If S is a generating set of RG , then 〈S〉 is
zero-dimensional, and thus β(S) is finite and can be computed from a Gröbner basis of 〈S〉.

Proof. It is a direct consequence of Lemma 4 that β(RG )� β(S).
Recall that R is a polynomial ring with n variables, say, x1, . . . , xn . Since G is finite, we obtain an

integral equation for xi over RG by
∏

g∈G(t − g.xi) ∈ RG [t]. Hence, R is integral over RG and is thus a

finite dimensional RG -module.
Now assume 〈〈S〉〉 = RG . By the graded Nakayama lemma (Lemma 3.5.1 in Derksen and Kemper,

2002), the standard monomials of 〈S〉 provide 〈〈S〉〉-module generators for R . Since R is a finite
dimensional RG -module, 〈〈S〉〉 only has a finite number of standard monomials, and is thus zero-
dimensional. �
2.5. The algorithm

Starting with S = ∅, we successively add fundamental invariants to S . Our strategy is to work
with a truncated rather than with a complete homogeneous Gröbner basis of 〈S〉, whenever possible.
Sometimes, a truncated Gröbner basis also suffices for testing whether 〈S〉 is of dimension 0. However,
in general one needs a Gröbner basis of 〈S〉 without degree restriction for that purpose. To avoid
needless computations, we use the following trick.

By definition, in degree β(RG) we will find a homogeneous generator of RG , but in degree
β(RG ) + 1 we don’t. Hence, only if our incremental construction of S arrives at some degree d, such
that there is an element of S in degree d −2 but none in degree d −1, does it make sense to compute
a Gröbner basis of 〈S〉 without degree restriction. If dim(〈S〉) = 0, which is tested using the Gröbner
basis, then we obtain an estimate β(RG) � β(S) by Proposition 8 telling us in what degree we can
stop the incremental search. We thus obtain the following algorithm for the computation of a minimal
generating set of RG , where G is any finite matrix group.

Algorithm Invariant Algebra

(1) Construct the Reynolds operator Rey : R → RG .
Let S = G = ∅ and define β = β(S) = ∞.



106 S.A. King / Journal of Symbolic Computation 48 (2013) 101–109
(2) For increasing degree d, starting with d = 1:
(a) If S contains elements of degree d − 2 but no elements of degree d − 1:

(i) Replace G by a complete Gröbner basis of 〈S〉.
(ii) If dim(〈S〉) = 0 (which is tested using G), then replace β by β(S), which is easily com-

puted using G . If d > β then break and return S .
If S contains elements of degree d − 1, then replace G by a homogeneous Gröbner basis G
of 〈S〉 up to degree d.

(b) Compute Bd(S) using G and Rey.
(c) For all b ∈ Bd(S):

If rem(b;G) 	= 0 then replace S by S ∪ {b} and G by G ∪ {rem(b;G)}.
(d) If d = β then break and return S .

Theorem 9. Algorithm Invariant Algebra returns a set of fundamental invariants of RG .

Proof. By Lemma 6, G is a homogeneous Gröbner basis of 〈S〉 at least up to degree d in all steps of
the algorithm. By Lemmas 4 and 5, the algorithm successively extends S to a set of fundamental in-
variants. By Proposition 8, the algorithm terminates in finite time, but not before S generates RG . �

Our algorithm has a very simple structure based on elementary methods, and probably this is why
it works so well. It differs widely from both the algorithms described in Kemper and Steel (1999)
(using a Hironaka decomposition and linear algebra) and in Thiéry (2001c) (using SAGBI bases).

One group action is particularly difficult to study with our algorithm: The natural action of the
symmetric group Sn on n variables. Of course, the set S of elementary symmetric polynomials is
a minimal generating set, and β(RSn ) = n. However, for n = 8, one has β(S) = 28.

Nevertheless, in most of the examples that we computed, our completeness criterion β(RG) � β(S)

works almost perfectly, i.e., β(S) − β(RG) is usually equal to zero and only in few cases bigger than
one. And of course, the result for the natural action of the symmetric group is well known from
theory, so we can certainly live with that exception.

3. Computational results

3.1. Transitive permutation groups

A classical test bed for the computation of minimal generating sets of invariant rings of finite
groups is provided by transitive permutation groups (Thiéry, 2001c, 2001b). These are groups act-
ing on a polynomial ring R over a field K by permuting variables, such that any two variables are
related by the group action. An extensive benchmark comparing Thiéry’s algorithm implemented in
MuPAD with Kemper and Steel’s algorithm implemented in Magma is provided by Thiéry (2001b).
Benchmarks involving an implementation of our algorithm in Singular 3-0-3 are provided in King
(2007b), based on all permutation actions on 7 or 8 variables and some examples on 9 and 10 vari-
ables. In the majority of examples, the implementation of our algorithm worked much faster than the
implementation of the Kemper–Steel algorithm in Magma V2.13-8, typically by factors between 50
and 1000.

3.2. Cyclic groups

Here, we consider the natural permutation action of the cyclic group Cn of order n on R =
K [x1, . . . , xn], where K is either Q or a finite prime field of characteristic coprime to n, and the
generator of Cn maps xi to xi+1 for i = 1, . . . ,n − 1 and xn to x1.

The maximal degree occurring in a minimal generating set is, by Noether’s bound, of course at
most |Cn| = n, hence, quite small. However, the minimal number of generators of RCn is surprisingly
large. According to Thiéry (2001b), the invariant ring of C10 in characteristic 0 was out of reach at
that time. With our algorithm, we obtain fundamental invariants for C12 in characteristic zero and
even for C15 in characteristic 2.
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Table 1
Natural action of Cn on n variables (characteristic 0). Singular version 3-0-3 on a Linux x86_64 platform with AMD Opteron
248 processors (2.2 GHz) and a memory limit of 16 GB.

n time [s] mem. [Mb] # generators (sorted by degree)

6 0.05 0.746 1,3,6,6,2,2
7 0.17 1.25 1,3,8,12,12,6,6
8 1.54 2.25 1,4,10,18,16,8,4,4
9 35.6 11.92 1,4,14,26,32,18,12,6,6

10 298.3 54.16 1,5,16,36,48,32,12,8,4,4
11 1187 116 1,5,20,50,82,70,50,30,20,10,10
12 2010 min 2160 1,6,24,64,104,84,36,20,12,8,4,4

Table 2
Natural action of Cn on n variables (characteristic p > 0). Singular version 3-0-3 on a Linux x86_64 platform with AMD Opteron
248 processors (2.2 GHz) and a memory limit of 16 GB.

n p time [s] mem. [Mb] # generators (sorted by degree)

6 5 0.03 0.746 1,3,6,6,2,2
7 2 0.09 0.746 1,3,8,12,12,6,6
8 3 0.34 1.25 1,4,10,18,16,8,4,4
9 2 1.65 1.86 1,4,14,26,32,18,12,6,6

10 3 12.7 4.48 1,5,16,36,48,32,12,8,4,4
11 2 73.5 9.33 1,5,20,50,82,70,50,30,20,10,10
12 5 693 33.2 1,6,24,64,104,84,36,20,12,8,4,4
13 2 4079 81.1 1,6,28,84,168,180,132,84,60,36,24,12,12
14 3 25 280 304.3 1,7,32,104,216,242,162,96,42,30,18,12,6,6
15 2 99 873 780.4 1,7,38,130,306,388,264,120,88,56,40,24,16,8,8

Table 3
Natural action of Cn on n variables (characteristic 0), on a Compute-Server i7 (2.8 GHz, 16 GB). Computation time in [s].

n 6 7 8 9 10 11
Singular 3-1-4 0.03 0.08 0.53 11.1 105.3 1427.9
Magma V2.17-13 0.01 0.02 0.08 0.53 3.07 42.73

Tables 1 and 2 provide the timings with an old version of Singular, which we used when we first
computed these invariant rings. For n � 5 the computations are finished in almost no time, so we omit
them in our tables. Table 1 provides the result for n = 6, . . . ,12 in characteristic 0. Table 2 provides
the results for n = 6, . . . ,15 in small prime characteristic p > 0, of course such that p does not
divide n (non-modular case). Apparently this is much easier than characteristic 0. The reason is that
in characteristic 0 the coefficients occurring in the Gröbner bases become very huge. By consequence,
it takes too long to compute normal forms.

In Table 3, we provide more recent timings: We compare the implementations of our algorithm in
Singular 3-1-4 and Magma V2.17-13, on a Compute-Server i7 (2.8 GHz, 16 GB).

Note that in all examples, the number of generators in each degree is the same in characteristic 0
and in non-modular prime characteristic. It is in fact conjectured that this is always the case (Thiéry,
2007).

3.3. Permutation action on pairs

To work in prime characteristic is not the only way to simplify the computations. Following a
suggestion of Kemper (2006), we study here the action of S5 on non-ordered pairs, which yields
a 10-dimensional representation of S5. We could describe that representation of S5 by a transitive
permutation group on 10 variables. However, in that formulation of the problem, our algorithm would
take a very long time to find a minimal generating set. One can decompose the representation into
a 1-, a 4- and a 5-dimensional irreducible representation, and in this form, the representation is given
by the matrices
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M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 1

3
1
3

1
3 0 0 0 0 0

0 0 1
3 − 2

3 − 2
3 0 0 0 0 0

0 0 − 2
3

1
3 − 2

3 0 0 0 0 0

0 0 − 2
3 − 2

3
1
3 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 0 1

3 − 2
3 − 2

3 0 0 0 0 0

0 0 − 2
3

1
3 − 2

3 0 0 0 0 0

0 0 − 2
3 − 2

3
1
3 0 0 0 0 0

0 1 1
3

1
3

1
3 0 0 0 0 0

0 0 0 0 0 −1 −1 1 1 0
0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Originally, we used it as an example for the computation of irreducible secondary invariants, but
of course it is also a nice example for the computation of a minimal generating set. Our algorithm In-

variant Algebra executed in Singular version 3-0-2 finds the fundamental invariants after 47.8 min-
utes using 4.4 GB in characteristic 0 respectively after 84.2 seconds using 81.7 MB in characteristic 7.
In both cases, there is a minimal number of 1,2,4,7,10,13,13,4,2 generators sorted by degree.

However, that example illustrates a potential disadvantage of using Gröbner bases. Namely, by
changes in the computation of Gröbner bases in Singular, the computation of the same example
takes considerably longer with version 3-1-3 than with 3-0-2. In contrast, Magma V2.17-13 seems
to compute the occurring Gröbner bases more easily, and only needs 37.5 s on a Compute-Server i7
(2.8 GHz, 16 GB) to compute the fundamental invariants, even in characteristic 0.

3.4. Application to irreducible secondary invariants

An algorithm for the computation of secondary invariants is described in Kemper (1998), Kemper
and Steel (1999) and Derksen and Kemper (2002). Sometimes one is only interested in irreducible
secondary invariants. By a slight modification, our algorithm provides a very efficient way to compute
irreducible secondary invariants, without the need to compute the reducible secondary invariants as
well.

For that aim, let P be a set of primary invariants. In Step (1) of algorithm Invariant Algebra, let
S = P and let G be a Gröbner basis of P . The rest of the algorithm remains unchanged. In the end,
it returns the union of P with a set of irreducible secondary invariants. Note that this algorithm does
not involve an application of Molien’s Theorem. So, it even applies when the Molien series is difficult
to compute.

Our algorithm works particularly well if there are many secondary invariants but only few irre-
ducible secondary invariants. This is the case in the following example, that was originally motivated
by our work in low-dimensional topology (King, 2006, 2007a). We work in R = Q[x1, . . . , x20]. To sim-
plify notation, let ei be the column vector with 1 in position i and 0 otherwise. Then, we obtain a
20-dimensional representation of the symmetric group S3 by the following two matrices:

M1 = (e2e1e3e19e9e13e17e11e5e15e8e16e6e14e10e12e7e20e4e18),

M2 = (e1e3e2e4e6e5e10e9e8e7e13e16e11e19e20e12e18e17e14e15).
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We use the following sub-optimal primary invariants:

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, x4 + x14 + x19,

x4x14 + x4x19 + x14x19, x4x14x19, x5 + x6 + x8 + x9 + x11 + x13,

x8x9 + x5x11 + x6x13, x6x8 + x5x9 + x11x13,

x5x8 + x6x9 + x6x11 + x9x11 + x5x13 + x8x13,

x5x6x11 + x5x8x11 + x8x9x11 + x5x6x13 + x6x9x13 + x8x9x13,

x6
5 + x6

6 + x6
8 + x6

9 + x6
11 + x6

13, x12 + x16, x12x16,

x7 + x10 + x15 + x17 + x18 + x20, x7x17 + x10x18 + x15x20,

x10x15 + x17x18 + x7x20, x7x15 + x10x17 + x7x18 + x15x18 + x10x20 + x17x20,

x7x10x17 + x7x15x17 + x7x10x18 + x15x17x20 + x10x18x20 + x15x18x20,

x6
7 + x6

10 + x6
15 + x6

17 + x6
18 + x6

20.

In this example, there are 248 832 secondary invariants of maximal degree 26, among which are
283 irreducible secondary invariants of maximal degree 4. The sheer number of secondary invariants
(which can be computed by Molien’s Theorem) makes the computations unfeasible for any algorithm
that is based on the generation of power products, as the one described in Kemper (1998), Kemper
and Steel (1999) and Derksen and Kemper (2002). However, our algorithm executed in Singular 3-0-3
just needs few seconds to compute all irreducible secondary invariants.
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