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The problem of finding new metrics of interest, in the context of SUGRA, is reduced to two stages: first,
solving a generalized BPS sigma model with full quaternionic structure proposed by the authors and,
second, constructing the hyper-Kähler metric, or suitable deformations of this condition, taking advantage
of the correspondence between the quaternionic left-regular potential and the hyper-Kähler metric of the
target space. As illustration, new solutions are obtained using generalized Q-sigma model for Wess–
Zumino type superpotentials. Explicit solutions analog to the Berger’s sphere and Abraham–Townsend
type are given and generalizations of 4-dimensional quaternionic metrics, product of complex ones, are
shown and discussed.
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1. Introduction

Several attempts have been proposed in order to find new met-
ric structures for the target space in supersymmetric models, in
particular the N = (4,0) and the N = (4,4) cases. Since each
supersymmetry, beyond the first, requires the existence of com-
plex or quaternionic structure, these attempts are expected to
lead to interesting new hypercomplex geometries in the context
of SUGRA and, consequently, in type IIA and type IIB superstring
theories. Considerable efforts and beautiful methods and prescrip-
tions have been developed in that direction: from the bosonic
approach, monopole solutions in S3 submanifolds [1,2] and the
method of the calibrations [3] (and references therein); from the
supersymmetric side, the harmonic superspace method [4,5]. How-
ever, tentatives to connect the truly BPS solutions of the nonlin-
ear sigma model under consideration, with the corresponding ge-
ometries (metrics) showing the expected hyper-Kähler and quater-
nionic properties, remain lacking.

In this work, our main goal is to attack this problem by reduc-
ing it to two independent stages consisting in: (i) solving a gen-
eralized BPS sigma model with full quaternionic structure and (ii),
with this information, constructing the hyper-Kähler metric using
the correspondence between the quaternionic left-regular potential
and the hyper-Kähler metric in the target space. This correspon-
dence, valid for hyper-Kähler manifolds and quaternionic ones with
compact substructure (also smooth departures of the hyper-Kähler
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condition are allowed), is based on the existence of certain ge-
ometrical mappings that, at the classical level, allow to establish
the equivalence between a model with a potential in flat spacetime
and a free model with a suitable metric in the target space.

The first step of our strategy consists in finding BPS solutions
for a Generalized Quaternionic Lagrangian (GQL), as introduced in
Ref. [6], which presents the important property that both the base
and the target spaces live in H (see subsection below). As we
will show in the following, the proposed GQL has a standard form
with a potential depending on scalar (quaternionic) fields. Then,
with solutions for this model at hand, we will be able to estab-
lish a correspondence with the even sector (B0) of a supergravity
theory. The link is realized by a direct mapping between the ac-
tion of the free sigma model with metric gμν and the GQL action
in a Minkowski space with a potential V (q).

It is worth mentioning that the considered model allows, for
certain choices of the coset, cohomogeneity one metric solutions,
a type well studied in the context of Spin(7) manifolds – see, for
instance [7].

Due to their simplicity and the clear importance they have in
the context of supersymmetric nonlinear sigma models, through
this Letter we will focus our study on Wess–Zumino type poten-
tials. This will allow us to present the analysis by showing specific
explicit solutions, which will put in evidence the underling quater-
nionic structures behind them.

2. Generalized quaternionic action

In all the considered cases, our model is defined on a quater-
nionic spacetime (base space) and with a quaternionic space of scalar
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fields as target. This is the correct and clear geometrical definition.
Another possible terminology (not strictly mathematically accu-
rate) is worldvolume and target space, in referring to the domain
and range manifolds, respectively, of the sigma models [8].

Because of the obvious group relation R⊂ C⊂ H, we can take
a standard real 4-dimensional spacetime, or a 2-dimensional com-
plex or a 1-dimensional quaternionic manifold as our base space
to the quaternionic (target) space of the (four) scalar fields.

Consider a system of four scalar fields governed by the Gener-
alized Quaternionic Lagrangian density (GQL) of the form

L = 1

2
ΠqΠq − 1

2

∣∣W ′(q)
∣∣2

. (1)

The Cauchy–Fueter operator Π is defined by

Π ≡ î0∂0 − î1∂1 − î2∂2 − î3∂3, (2)

where î0 = I and î i (i = 1,2,3) obey the standard quaternionic
algebra, and ∂0 ≡ ∂/∂x0 and ∂i ≡ ∂/∂xi .

Throughout this work we shall adopt Einstein’s convention of
indices summation, with the Latin indices i and j running from 1
to 3, unless otherwise stated. As usual, Sc and Vec will denote the
scalar and vector parts of the corresponding quaternionic expres-
sion. In particular, whenever convenient, we will use the notation
Π0 ≡ Sc Π and Π ≡ Vec Π . We also define q2

i ≡ q2
1 + q2

2 + q2
3, and

Wq0 ≡ Πq0 W (q) and Wqi ≡ Πq W (q), where the Cauchy–Fueter
operator acting on the target space is given by

Πq ≡ î0∂q0 − î1∂q1 − î2∂q2 − î3∂q3 . (3)

Note that these equations for W present both the scalar and vector
parts.

2.1. Wess–Zumino model

Following the lines of the complex field case treated in Ref. [9],
in the present work we will specialize our generalized Q-sigma
model to the case of a Wess–Zumino (WZ) type superpotential [10]
of the form

W ′(q) = n − qN = n − (
q0 + îiqi

)N
, (4)

where N ∈ Z, in principle n ∈ H but through this Letter we will
take n ∈ C or its subgroups, and the prime indicates derivative
with respect to the argument of the considered function. This
standard choice is simply motivated by the fact that the WZ su-
perpotential is the basic prototype for any analysis involving hy-
percomplex quaternionic structures in several areas of the modern
theoretical physics.

Thus, the first order equation Πq = W ′(q) for our WZ potential
(4) reads

dq

dx
= n − qN = n − (

q0 − îiqi
)N

. (5)

This expression, with x identified below, arises from the relation
between the left-regular superpotential W (q) and the BPS condi-
tions as quaternionic configurations with left-regular superpotentials
minimize the energy of the system to the BPS bound (see Appendix A).

The corresponding vacuum (minima) manifold is described by
the set of the N-roots of the unity in the field of the quaternions,
i.e. S2 spheres,

vk
N = eak

N = exp

(
a2π

k − 1

N

)
, k = 1, . . . , N, (6)

being a a pure quaternion of unitary norm.
In the following we will present some solutions (orbits) for

the WZ model above, in the simplest cases of N = 1 and N = 2.
As a first approach to the problem, we will consider an ordinary
(commutative) base space as spacetime equivalent. Then, we will
focus on the case of a quaternionic (noncommutative) base space
as spacetime equivalent.

2.2. Commutative spacetime equivalent solutions

The realization of the commutative base space as spacetime
equivalent is achieved by making the identification

x → î0 X0 (i.e. x ∈R). (7)

2.2.1. Case N = 1 (commutative)
For N = 1, Eq. (5) reads

dq

dx
= n − q = n − q0 + î1q1 + î2q2 + î3q3. (8)

Splitting up this equation into its Sc and Vec parts, we have

dq0

dx
= n − q0, (9)

dqi

dx
= qi . (10)

This system admits the direct solution

q(x) = n − C0e−x + îiCie
x, (11)

where C0 and Ci (i = 1,2,3) are integration constants.

2.2.2. Case N = 2 (commutative)
For N = 2, the first order equation takes the form

dq

dx
= n − (

q2
0 − q2

i − 2îiqiq0
)
, n ∈ Z. (12)

Given the condition on the quaternionic phase and the Vec(q), this
case presents two minima in the field space, located at Sc(q) = ±1
(analogously to the complex field case of [9]).

Breaking Eq. (12) into its Sc and Vec parts, we obtain the system
of equations

dq0

dx
= n − q2

0 + q2
i , (13)

dqi

dx
= 2qiq0. (14)

Let us now propose a generic equation for the curves connect-
ing the two minima of the potential (trial orbit method [11]),

Aq2
0 + Biq2

i = C → q2
0 + β iq2

i = 1 (15)

where the reduction from five (A, Bi, C ) to three (βi) parameters
is due the N = 2 condition. Differentiating the orbit equation with
respect to x, and using the first order derivatives of the system
above we obtain

q2
0 + αiq2

i = n, αi = −(1 + 2βi) ∀i, (16)

from which it is easily seen by simple comparison that accept-
able hypercurves must fulfill the ellipticity conditions ∀βi � −1/2
(αi � 0) and n = 1. Thus, Eq. (16) reduces to

q2
0 + αiq2

i = 1, αi � 0 ∀i. (17)

Imposing the orbit condition on the first order equations leads to,

dq0

dx
= q2

i + αiq2
i , (18)

dqi = ±2qi

√
1 − αiq2

i . (19)

dx
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Leaving aside the trivial case αi = 0 ∀i (which leads to q0 = ±1,
qi = 0 ∀i), a solution to the system above presents components of
the form

q0(x) = tanh(2x + c), qi(x) = 1√
3αi

sech(2x + c), (20)

where ai , and c are integration constants. Requiring consistency
with the orbit under consideration results in the restriction 1/α1 +
1/α2 + 1/α3 = 3, which implies that α3 = α1α2(3α1α2 − α1 −
α2)

−1, for arbitrary values of α1 and α2. (In particular, we can
take simply α1 = α2 = α3 = 1.)

Collecting the results we have that our commutative N = 2 case
solution reads

q(x) = tanh(2x + c) + îi 1√
3αi

sech(2x + c). (21)

As expected, in the present case the structure of the solutions
is much richer than in the complex case, as we have here the
parameters αi to play with. Applying the usual parameterization
Λ(x) = tanh(2x + c), the solution takes the form

q(x) = Λ(x) + îi 1√
3αi

√
1 − Λ(x)2, (22)

which looks more suitable for a geometrical analysis.

2.3. Quaternionic spacetime equivalent solutions

Let us now evaluate a quaternionic base manifold (noncommu-
tative spacetime equivalent). This can be done by identifying the
spacetime spatial coordinate x with one of the complex directions
of a quaternionic manifold, namely

x → î1 X1 (
i.e. x ∈ SU(2)

)
. (23)

Therefore, we shall consider scalar fields of the target space de-
pending on this coordinate, and we must also specialize the oper-
ator Π to the X1 coordinate, that is

Π ≡ î0∂0 − î1∂1 − î2∂2 − î3∂3 → Π = −î1∂1. (24)

As a consequence of this choice, the spacetime assumes the struc-
ture S1 ⊗ O (3) ∼ S1 ⊗ SU(2), perfectly described by an element X
of H, in the representation that we have adopted in this work.

Now, in the present case, due to the non-trivial topology of
the base manifold (spacetime equivalent), we solve the first or-
der equations directly (no trial orbit method). Then, the two cases
analyzed before (N = 1 and N = 2), take the completely different
form described below.

2.3.1. Case N = 1 (noncommutative)
Taking x → î1 X1 in the case N = 1 leaves the first order equa-

tion (5) with the form

Πq = W ′(q) = n − q,

−î1∂1[q0 + î1q1 + î2q2 + î3q3]
= n − q0 + î1q1 + î2q2 + î3q3, (25)

which can be put in the form

dq0

dX1
= −q1, (26)

dq1

dX1
= n − q0, (27)

dq2

dX1
= −q3, (28)

dq3 = q2. (29)

dX1
As the equations are not all coupled but in pairs, the resolution of
the system is quite direct, and we obtain the solution

q0(X1) = n − eC+−C− cosh(X1 + C+ + C−), (30)

q1(X1) = eC+−C− sinh(X1 + C+ + C−), (31)

q2(X1) = C cos(X1 + ϕ), (32)

q3(X1) = C sin(X1 + ϕ) (33)

where C , C+ , and C− are integration constants. Now, rewriting the
hyperbolic/trigonometric functions by introducing the algebraic pa-
rameterization ΛA = tanh(X1 + C+ + C−), ΛB = tan(X1 + ϕ), the
quaternion solution assumes a much more appropriate form for
a geometrical analysis

q = n − eC+−C−√
1 − Λ2

A

(1 + î1ΛA) + C√
1 + Λ2

B

(̂i2 + î3ΛB). (34)

2.3.2. Case N = 2 (noncommutative)
In this case the first order equation Πq = W ′(q) can be split up

into its Sc and Vec parts to give the system

dq0

dX1
= −2q1q0, (35)

dq1

dX1
= n − q2

0 + q2
1 + q2

2 + q2
3, (36)

dq2

dX1
= −2q3q0, (37)

dq3

dX1
= +2q2q0. (38)

The explicit symmetry of this system suggests that the simplest
non-trivial solution is q1 = constant. With that choice we have

n = q2
0 − (

q2
1 + q2

2 + q2
3,

)
, (39)

q0(X1) = C0e−2X1q1 , (40)

q2(X1) = C1 sin
(
C0q−1

1 e−2X1q1 + ϕ
)
, (41)

q3(X1) = C1 cos
(
C0q−1

1 e−2X1q1 + ϕ
)

(42)

where the integration constants C0 and C1 must fulfill the con-
straint equation

n2 = (
C0e−2X1q1

)2 − (
q2

1 + C2
1

)
. (43)

In particular, we can make the convenient choice

C0 =
√

n2 + 2q2
1 and C1 = q1, (44)

which simplifies the solution to the expression

q(X1) = q0(X1) + q1
(
î1 + î2 sin

(
q0q−1

1 + ϕ
)

+ î3 cos
(
q0q−1

1 + ϕ
))

(45)

where

q0(X1) =
√

n2 + 2q2
1e−2X1q1 . (46)

This expression can be rewritten in an algebraic form using the
parameterization Φ = tan(q0q−1

1 + ϕ). We obtain

q(X1) = q0(X1) + q1

[
î1 + 1√

1 + Φ2

(
î2 + î3Φ

)]
. (47)

Another simple solution is obtained by putting q0 ≡ 0, which
results in
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dq1

dX1
= n + q2

1 + q2
2 + q2

3,

q2 = C2,

q3 = C3. (48)

Thus,

q1(X1) =
√

n + C2
2 + C3

2 tan(X1 + C1). (49)

The compactness of the solution is quite evident, even more
putting Φ = tan(X1 + C1), which gives

q(X1) = î1
√

n + C2
2 + C2

3Φ + î2C2 + î3C3. (50)

3. GQA and hyper-Kähler Q-structures

In this Letter the case with torsion will not be considered. Nev-
ertheless, it is worth noting the particular cases of interest:

i) N = (2,0), D = 4 (or N = (4,4), D = 2): the torsion vanishes,
complex structures are annihilated by covariant derivatives
and form the quaternionic algebra (hyper-Kähler geometry). In
both cases, prepotentials are known in the seminal references
[12,13].

ii) N = (4,0), D = 2: the torsion is a closed 3-form; complex
structures are annihilated by covariant derivatives and form
the quaternionic algebra (hyper-Kähler with torsion).

Then, in the following we will be dealing with the first case,
just to show the consistency of the procedure of finding BPS solu-
tions in the context of SUGRA.

3.1. The new metrics: Quink, a Q-Kink analogue?

The general form of the metrics we are interested in, admitting
a quaternionic structure (hyper-Kähler or not) is, following the no-
tation of [14],

ds2
new = U dq · dq + U−1(dq0 + ω · dq)2. (51)

Now, as in [14] ω can be considered as an euclidean 3-vector and
it must fulfill the Killing’s equation as follows

LX E0 = 0, (52)

where E0 = U−1(dq0 + ω · dq) ≡ U−1(dq0 + ω̃) is the tetrad one-
form corresponding to the scalar component of the line ele-
ment (51) and the Killing vector field X is given i.e. by ∂q0 . Notice
that, from the point of view of the Cartan’s structure equations,
relation (52) can interpreted as an integrability condition.

As our case does not include torsion (hyper-Kähler and Con-
formal hyper-Kähler target spaces), clearly, the relation between U
and ω̃ ≡ ω · dq, is

Ud
(
U−1) = ω̃d

(
ω̃−1). (53)

As shown in detail in [6] a connexion (harmonic map) between
the potential in our GQL and the free sigma model can be explicitly
established, leading to

V = [
det(gab)

]−1
, (54)

where gab is the metric associated to the Kähler manifold (tar-
get space) of the free model. Consequently, we can write a simple
relation between our GQL potential and the U factor of the met-
rics (51), namely

V = m2

U−1, (55)

4

which corroborates the important results from physical arguments
given in [8,14], now obtained from a purely geometrical approach.

3.1.1. Metric for the N = 1 case (commutative)
Let us consider first the N = 1 case. The potential is related to

the U factor by

V = 1

2
(n − q)(n − q) = m2

4
U−1. (56)

Then we can write

U = det(gαβ) = m2/2

n2 − |q|2 . (57)

Then, the line element corresponding to the quaternionic solu-
tion (11) reads

ds2 = U−1C2
0e−2x d2x + U C2

i e2xσ i ⊗ σ i . (58)

3.1.2. Metric for the N = 2 case (commutative)
Let us now consider N = 2 case. For the potential we can

write

V = 1

2

(
n − q2)(n − q2) = m2

4
U−1. (59)

Therefore, we have the relation

U = det(gαβ) = m2/2

n2 − |q|4 . (60)

Similarly to the N = 1 case, we can write the line element corre-
sponding to the quaternionic solution (21) calculated above,

ds2 = 4 sech4(2x + c)

[
U−1 dx2 + U

σ i ⊗ σ i

3αi
sinh2(2x + c)

]
. (61)

The analysis of this expression is extremely simplified introducing
the relation Λ ≡ tanh(2x + c) as in (22). Such definition transforms
the hyperbolic/trigonometric expressions in algebraic ones leading
to the line element

ds2 = 4
(
1 − Λ2)2

[
U−1 dx2 + U

σ i ⊗ σ i

3αi

Λ2

(1 − Λ2)

]
. (62)

3.2. Generalization of the Berger’s sphere and comparison with other
solutions

Let us now analyze the 3-dimensional (compact) part of the
metrics obtained above, ds2

3 = U dq · dq. In order to make ex-
plicit the S1 ⊗ S2 structure, we introduce the usual left angle-
variables representative forms of the compact submanifold, and
some constant coefficients

◦
qi . Two main consequences immedi-

ately arise:
i) If

◦
q1 = ◦

q2 = ◦
q3, that is, if the compact part of the metric takes

the form

ds2
3(N=1) = U C2

i e2x ◦
q1

2[
dθ2 + sin2 θ dϕ2

+ (dψ + cos θ dϕ)2], (63)

ds2
3(N=2) = 4U

(
1 − Λ2)Λ2 ◦

q1
2[

dθ2 + sin2 θ dϕ2

+ (dψ + cos θ dϕ)2] (64)

then the solution is a generalization similar to the Abraham–
Townsend (Q-Kink) solution [15], and to the multicenter Gibbons–
Hawking [16] solution, which are hyper-Kähler or conformally
hyper-Kähler target manifolds.
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Table 1
Comparison with solutions from Abraham–Townsend (AT) model.

AT GQSM (commutative)

One center Two centers N = 1 N = 2

U = 2m 1
|q−q0 | U = 2m[ 1

|q−q0 | + 1
|q+q0 | ] U = m2/2

(n2−|q|2)
U = m2/2

(n2−|q|4)

q0(x) = const.,
(angular character: compact)

q0(x) = n − C0e−x q0(x) = tanh(
m|η|
8μ (2x + c))

qi(x) = Φ tanh(
m|η|
8μ (x − x0)),

Φ = const.
qi(x) = Ci ex qi(x) = ◦

qi sech(
m|η|
8μ (2x + c)),

◦
qi = 1/

√
3αi (αi � 0 ∀i)

and 1/α1 + 1/α2 + 1/α3 = 3
ii) If
◦
q1 = ◦

q2 
= ◦
q3, then the metric corresponds to a gener-

alization of the Berger’s sphere (deformation of the O (3) ≈ SU(2)

structure), which is a smooth deviation from the pure hyper-Kähler
condition,

ds2
3(N=1) = U C2

i e2x ◦
q1

[◦
q1

2(
dθ2 + sin2 θ dϕ2)

+ ◦
q3

2
(dψ + cos θ dϕ)2], (65)

ds2
3(N=2) = 4U

(
1 − Λ2)Λ2[◦

q1
2(

dθ2 + sin2 θ dϕ2)
+ ◦

q3
2
(dψ + cos θ dϕ)2]. (66)

We can now establish a comparison between our solutions and
the well known results from other works [15,16] – see Table 1.

Finally, note that in the cases of the commutative spacetime
equivalent, the obtained metrics are generalizations of Majumdar–
Papapetrou solutions.

4. More examples: Generalization of standard metrics
factorization

It is well known, in the context of SUGRA, the importance of
the metrics that can be factorized as product of lower dimensional
ones. The main reason is the claim that the appearing of these type
of metrics (in particular the Bertotti–Robinson’s (BR) and general-
izations) in supergravity theories, indicates that the theory is fully
renormalizable. The proof of the non-renormalization theorem for
the BR background was almost trivial due to conformal flatness of
this type of metrics, and because the Maxwell field is constant.
These properties are not present in the general case of metrics
admitting super-covariantly constant spinors. In General Relativ-
ity these solutions are known as the conformal-stationary class
of Einstein–Maxwell fields, with conformally flat 3-dimensional
spaces. Some generalizations of this class of metrics have been
found by Neugebauer, Perjes, Israel and Wilson [17]: the flat space
Laplacian in x. However, the analysis of these subjects is out of the
scope of this Letter, and will be discussed elsewhere.

The product type metrics are 4-dimensional but composed by
two 2-dimensional ones, in general, of Kähler type. In particular,
we have found two metrics showing this structure in general form,
as described below.

4.1. Case N = 1 (noncommutative)

For this case we have obtained a metric solution of the form

ds2 = e2(C+−C−)

1 − Λ2
A

(
U−1Λ2

A dx2
1 + Uσ 1 ⊗ σ 1)

+ C2
1

1 + Λ2
B

U
(
Λ2

Bσ
2 ⊗ σ 2 + σ 3 ⊗ σ 3). (67)

This metric ‘product’ is the result of the geometrical structure
of the quaternion solution (30). Precisely, if we make the choice
n = 0, C+ = C− and i2C+ = ϕ , the quaternion solution (34) can
be written as the result of a product of the form C ⊗ C → H, as
follows

q = [
I2 + f σ 2]z, (68)

where the complex number z ∈ C⊂ H is defined as

z ≡ cosh(x1 + C+ + C−) + sinh(x1 + C+ + C−)σ 1, (69)

and the mapping f over the C field is given by

f :C(x1 + C+ + C−) →C
(
i(x1 + C+ + C−)

)
. (70)

This is the reason why in this case the metric can be interpreted
as product of two complex Kähler metrics with the structure C ⊗
C →H.

4.2. Case N = 2 (noncommutative)

For this case we have obtained a metric solution of the form

ds2 = 4q2
0q2

1

(
U−1 dx2

1 + U

q2
0

σ 1 ⊗ σ 1
)

+ U

1 + Φ2

(
σ 2 ⊗ σ 2 + Φ2σ 3 ⊗ σ 3). (71)

This metric ‘product’ is the result of the geometrical structure of
the quaternionic solution (47). Notice that now, in a sharp contrast
with the previous case, the solution cannot be written directly as
the result of a product of the form C⊗C→H, or as the action of
an ideal over a complex field ∈ H.

5. Concluding remarks

In the present Letter we have proposed a new method for find-
ing BPS solutions in the context of SUGRA. This method, in sharp
contrast with the methods of the calibrations [1], or the monopole
method introduced in [2,3], allows to find suitable quaternionic
and hyper-Kähler geometries with the required properties appear-
ing in the bosonic sector of supergravity theories based in the susy
extensions of the nonlinear sigma models. The solutions found
have the particularity of being BPS and are not just generalizations
of the well known solutions, but new distinct ones.

While the focus of the present work was to present the method,
that is, the geometrical link between genuine BPS quaternionic so-
lutions of the GQL and the target space metric of the bosonic sector
of the SUGRA theory, it is important to note the clear existence of
a relation between our solutions and the Bianchi IX generalizations
of hyper-Kähler metrics with Taub-NUT structures, and also the
possible close connexion of our method with the (unconstrained)
Harmonic Superspace Formalism [18]. The proper analysis of these
points requires the evaluation of the full version of the supergrav-
ity theory (bosonic and fermionic sectors), and will be addressed
in future work.
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Appendix A. Energy, left-regular W (q) and BPS conditions

Similarly to the complex case of Ref. [9], we can rewrite the
energy in a convenient fashion, in order to make explicit the re-
lation between the BPS conditions and the corresponding gradient
and potential terms of the Hamiltonian. Namely, we have

E = 1

2

∫
dx

[(
dq0

dx
+ Wqi

)(
dq0

dx
+ Wqi

)

+
(

dqi

dx
+ Wq0

)(
dqi

dx
+ Wq0

)]

−
∫

dx Sc

(
dq0

dx
Wqi + dqi

dx
Wq0

)
. (72)

Here, consistently with the 1-dimensional spatial coordinate,
we retain the scalar (commuting) part of the Π operator and of
the quaternionic position X introducing the usual (commutative) x
coordinate: Π0 → d

dx , X0 → x.
For quaternionic field solutions obeying

dq0

dx
= −Wqi , (73)

dqi

dx
= −Wq0 , (74)

expression (72) is minimized to the Bogomol’nyi bound, and the
energy is given by the superpotential

EBPS =
∫

dX
(|Wqi |2 + |Wq0 |2

)
. (75)

Analogously to the complex case, where Cauchy–Riemann condi-
tions arise, the above equations solve the quaternionic equation of
motion if we impose the Fueter-harmonic condition on W (q0,qi),
that is

0 = �W (q0,qi) = ∂2
q0

W + ∂2
q1

W + ∂2
q2

W + ∂2
q3

W

= �W (q0,qi) − 2Πq
[
Sc

(
W (q0,qi)

)]
. (76)

That is, the Fueter-harmonic condition implies the (left) holomor-
phy of W

0 = Πq W (q0,qi)

= Πq W (q0,qi) − 2Πq
[
Sc

(
W (q0,qi)

)]
. (77)

Therefore, we can generalize previous results concerning the com-
plex fields [9], to a quaternionic function W = W̃ + W , such that
the Cauchy–Fueter left regularity is satisfied
W̃q0 = −Wqi , W̃qi = −Wq0 . (78)

It is worth mentioning here that all the above expressions in-
volving analytical properties of the functions in the quaternionic
field, reduce to their corresponding analogous expressions in the
complex field case, when we retain only two of the quaternionic
variables, namely

W (q0,qi) → W (q0,q1) = W0 + iW1. (79)

In this case, Eq. (77) reduces to the Cauchy–Riemann conditions

(∂q0 + i∂q1)(W0 + iW1) − 2i∂q1 W0 = 0,

(∂q0 W0 − ∂q1 W1) + i(∂q0 W1 − ∂q1 W0) = 0. (80)

Taking into account the above statements, the energy can be
put in a more general fashion

E = 1

2

∫
dX

[
(W̃q0 + Wqi )(W̃q0 + Wqi )

+ (W̃qi + Wq0)(W̃qi + Wq0)
]

−
∫

dX Sc(W̃q0 Wqi + W̃qi Wq0), (81)

generalizing Eq. (72).
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