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Synthetic biologists typically construct new pathways within

existing cells. While useful, this approach in many ways ignores

the undefined but necessary components of life. A growing

number of laboratories have begun to try to remove some of the

mysteries of cellular life by building life-like systems from non-

living component parts. Some of these attempts rely on purely

chemical and physical forces alone without the aid of biological

molecules, while others try to build artificial cells from the parts

of life, such as nucleic acids, proteins, and lipids. Both bottom-

up strategies suffer from the complication of trying to build

something that remains undefined. The result has been the

development of research programs that try to build systems

that mimic in some way recognized living systems. Since it is

difficult to quantify the mimicry of life, success often times is

evaluated with a degree of subjectivity. Herein we highlight

recent advances in mimicking the organization and behavior of

cellular life from the bottom-up.
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Introduction
The term synthetic biology was intended simply to

denote the assembly of biological parts into larger sys-

tems, just as synthetic chemists build larger molecules

from smaller molecules [1]. From this perspective, syn-

thetic biology has grown into a wide spectrum of research

programs (Figure 1) incorporating elements from engin-

eering, biology, chemistry, physics, design, and art. The

predominant way in which synthetic biology is practiced

is to engineer subsystems within the larger framework of a

cell that was not engineered. Individual, mostly natural,

biological parts are thoroughly characterized, that is stan-

dardized, so that predictable (sub)systems consisting of

these parts can be built. Just as the same set of Lego

pieces can be used to build many different structures,

standardized biological parts can be put together in many
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ways giving organisms that manufacture fuel, produce

pharmaceuticals, or detect environmental pollutants. The

exercise of building biological behavior, in turn, contrib-

utes to our understanding of how natural biological sys-

tems function. However, the construction of systems that

operate within a host that is dependent upon genes with

unknown function, as is the case for all known life, leaves

many gaps in our knowledge untouched.

The engineering of life does not solely rely on the use of

previously existing natural biological parts. Instead, new

cellular pathways can be built with artificial components.

Because of the difficulties associated with engineering

proteins with new functionality, artificial RNA rather than

protein molecules are more commonly exploited. For

example, Gallivan and colleagues built a ligand respon-

sive artificial RNA to engineer Escherichia coli to swim

towards a pollutant molecule [2]. In this case, the artificial

RNA was integrated with natural RNA and protein com-

ponents to elicit the new behavior. Conversely, entire

artificial systems can be made to exist within a natural

host cell. For instance, orthogonal ribosomes can be

engineered to not recognize natural host transcripts and

only translate sequences containing orthogonal ribosome

binding sites [3].

The de novo engineering of cellular life
The examples described above fit broadly within the

engineering paradigm. In other words, life is treated as a

machine in which characterized parts are assembled in

various ways to generate systems with desired function.

This is possible because the chassis, that is the host of the

engineered genetic elements, is used to provide the ill-

understood properties of life. If, however, the desired

function is life itself built from non-living component parts,

then we begin to move away from traditional engineering.

This is because we do not have a clear idea of what is to be

built. There is no satisfactory definition of life. Never-

theless, it is generally agreed that biological parts alone are

not alive, but the properties that emerge from their

cooperation are collectively referred to as living.

Without clear criteria that can be objectively fulfilled for a

system to be considered living, the available path forward

is simply to build systems that imitate the common

features of life. For example, living things generally re-

produce, move, adapt to changing environmental con-

ditions, and interact with each other. Of these features of

life, reproduction has attracted the most attention, which

is understandable since replication and evolution form

the foundation of life as we know it. However, a machine,

even a machine that is built with natural biological parts,
www.sciencedirect.com
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Different ways in which synthetic biology is practiced. (Top-left) Natural parts can be used to build natural behavior. A refactored T7 genome supports

the infection of E. coli (adapted with permission from Macmillan Publishers Ltd. [41]). (Top-right) Natural parts can be used to construct unnatural

behavior. For example, natural sensory pathways were constructed in such a way as to give synchronous fluorescence of E. coli in a microfluidic

device (adapted with permission from Macmillan Publishers Ltd. [42]). (Bottom-left) Artificial components can be used to mimic natural behavior.

Poly(ethylene glycol) and dextran aqueous phases inside of phospholipid vesicles can divide (adapted with permission from [31]). (Bottom-right) An

artificial part can be used to encode unnatural behavior. Here an artificial riboswitch was used to make E. coli swim towards a molecule that the

bacterium does not naturally swim towards (adapted with permission from Macmillan Publishers Ltd. [2]).
that is programmed to copy DNA and to split into two

probably would not be confused with a living system.

Perhaps this is because the decision of whether some-

thing is alive or not is the result of a subjective comparison

between what was previously agreed upon as living with

the system in question. The successful mimicking of a

single trait when compared against the complexity of a

living cell would be perceived as an inadequate repres-

entation of cellular life. Additionally, the programming of

repetitive behavior in itself misses another aspect of life,

which is error. Cellular function is largely based on

stochastic processes and even the fundamental event of

genomic replication proceeds with error. A system that

mimics a trait of life too well, probably would be per-

ceived more as a machine rather than life.

The lack of clearly objective means of evaluating the

outcome of experimental efforts in building a cell has

slowed progress. A potential solution to this problem

would be to shift the responsibility of determining

whether something is alive or not away from us and

towards natural cells. In this way, the interaction between
www.sciencedirect.com 
the interrogator and the artificial system would be

mediated by sensory pathways of similar scale. Such an

approach is similar to that described by Turing in eval-

uating artificial intelligence in the absence of an agreed

upon definition of intelligence [4]. The translation of such

a Turing test to a cellular scale, as previously suggested

[5], could allow for a more direct and unbiased way to

evaluate success in building cell-like systems with life-

like the behavior. A starting point for an artificial system

that could pass the cellular Turing test could be the

construction of a synthetic quorum pathway between

an artificial and a natural cell [6].

The inability to define what is being built poses some

problems, but also provides room for a variety of different

research avenues. Mimics that morphologically resemble

a cell, others that carryout similar chemical transform-

ations as natural cells, and artificial systems engineered to

pass a Turing-like test all will deepen our understanding

of life. Thus far, most of the progress has been in building

bottom-up replication and division mechanisms, but

complementary studies are beginning to point to a more
Current Opinion in Chemical Biology 2012, 16:586–592
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exciting phase of bottom-up synthetic biology that better

captures the complexities of life.

Reconstituting the parts and organization of
life
To build something that looks like an extant cell, DNA,

RNA, protein, and lipids should be assembled in a man-

ner that gives a genetically encoded system with a cytos-

keleton and a lipid membrane (Figure 2a). Each of these

molecular components can be functionally reconstituted

in the laboratory. However, the lack of knowledge con-

cerning the way the biological parts fit together to give life

is obvious when one considers that the successful syn-

thesis of an entire genome [7] required genes of unknown

function and a recipient host cell to provide additional

components with unknown function.

When provided with the required monomeric building

blocks, the information stored within a DNA molecule

can be used to direct the synthesis of RNA through the

activity of a single protein in vitro. Although the synthesis

of protein from an RNA template is much more complex,

after the pioneering work of Ueda and co-workers, it is

now rather straightforward to carryout translation in vitro
[8,9]. Similarly, the construction of a membrane-defined

body to house a cell-like system is achieved easily in vitro.

Many lipids spontaneously form vesicle membranes in

aqueous solution that efficiently retain large molecules,

allow for the selective exchange of small molecules, and

are compatible with growth and division. The interior of a

vesicle can be further organized. Polymer solutions, such

as polyethylene glycol and dextran, can form distinct

aqueous phases to which some molecules preferentially

partition depending on their hydrophobicity [10].

Since protein synthesis proceeds efficiently in vesicles

[11], vesicle structure and organization can be reinforced

by the formation of cytoskeletal mimics (Figure 2b and c).

Actin polymer filaments can be anchored to lipid mem-

branes [12] and bacterially derived cytoskeletal elements

can be assembled inside of vesicles [13]. It should be

noted, however, that while active RNA polymerases can

be produced through in vitro transcription–translation

reactions, the in vitro production of translation machinery

has not been achieved to date. Therefore, current bottom-

up constructions of cellular mimics make use of bac-

terially derived translation components.

Artificial reproduction
At a minimum, cell-like reproduction consists of genomic

replication and the division of the vesicle body [14]. The

replication of DNA in vitro is easy, but to do so in a fashion

amenable to the construction of a cell is challenging. A

typical cell uses ten to twenty proteins to synthesize RNA

primers, copy the leading and lagging DNA strands,

substitute the RNA primer sequences with DNA,

and ensure that no regions are left uncopied. Several
Current Opinion in Chemical Biology 2012, 16:586–592 
isothermal DNA replication strategies have been devel-

oped that fulfill many of these needed activities [15,16].

However, thus far only the phi29 replication machinery

has proven effective in copying entire genomic sequences

end-to-end in vitro [17�]. Remarkably, only four phi29

proteins are necessary to copy viral genomes in vitro.

Considering the small size of the phi29 bacteriophage

genome, it will be important to determine whether the

system in its current form will be capable of copying

genomes with greater than 20 encoded genes.

Attempts to further simplify the construction of a cell

have sought at times to remove some of the perceived

redundancies of the DNA to RNA to protein pathway that

pervades life. Since RNA and DNA are both capable of

storing information, in vitro systems guided by RNA

encoded information rather than DNA have been con-

structed in which the same RNA molecule acts as both

the template for replication and the template for protein

synthesis [18]. While this apparent simplification does

reduce the number of needed components, it is unclear if

an artificial, autonomous cell ultimately could be built

with an RNA genome. DNA based life, that is all known

life, is able to more easily separate genomic replication

from the production of protein, whereas an organism that

relies on an RNA genome would have to cope with the

influences of RNA folding on replication and translation

efficiencies [19] and on competition between RNA poly-

merases and ribosomes for the same template [20]. One

potential solution would be to simplify the RNA genome-

based organism even further by removing the need for

protein function. Not only would this remove compli-

cations arising from coordinating replication and trans-

lation, it would also greatly simply the genome itself. This

is because few genes are required for DNA and RNA

synthesis, whereas protein synthesis necessitates over 100

genetically encoded elements [21]. Since RNA can pos-

sess catalytic activity and can replicate segments of RNA

templates [22�], it is conceivable that a self replicating

cell-like system could be built with an RNA genome and

without proteins. Nevertheless, significant advances are

required in RNA replicase processivity before such a goal

can be accomplished.

The lack of a sufficiently processive RNA replicase

could be circumvented by building systems that do not

depend on catalysts. While the complexities of extant

life probably require high activation energy barriers for

metabolic processes to ensure proper control and

coordination through enzyme activity, simpler cells

may not require such regulatory mechanisms. For

example, the incorporation of better leaving groups

in nucleotides allows for template guided nucleic acid

polymerization [23] that is compatible with lipid

vesicles [24]. Other non-enzymatic mechanisms exist,

too, such as those that exploit intercalators [25] or

altered backbone connectivities [26].
www.sciencedirect.com
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Figure 2
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Structural organization of a cell. (a) Cellular mimics are often constructed from the basic parts of life, such as DNA, RNA, protein, amino acid,

nucleotide, and lipid. (b) Some proteins can self-organize on lipid surfaces, such as those of the cell division Min system (adapted with permission from

AAAS [28]). (c) A synthetic cytoskeleton built with polymerized actin inside of a vesicle (adapted with permission from Macmillan Publishers Ltd. [43]).
Impressively, several advances in in vitro vesicle division

mechanisms have been reported. One such system relies

on the bacterial division pathway consisting of Fts and

Min proteins. In particular, focus has been placed on

FtsZ, which forms a constricting ring in vivo localized to

the midcell that divides the cell into two. The Min

proteins help guide the placement of the Z-ring by

inhibiting FtsZ polymerization at the poles of the cell.

Although over fifteen proteins are believed to be involved

in bacterial division, much simpler versions have begun to

be built in the laboratory. For example, the tubulin

homologue FtsZ was engineered to insert directly into

membranes by Erickson and colleagues. This engineered

protein polymerized into rings within tubular liposomes

and generated noticeable indentations within the mem-

brane [27], suggestive of the first steps of division.

Although less work has been reported on the Min system,

Min proteins self organize into protein waves on sup-

ported lipid bilayers consistent with their in vivo behavior

[28]. To date, the Min and Fts systems have not been

integrated into a single in vitro system.
www.sciencedirect.com 
Vesicle division mechanisms that do not depend on

protein activity have proved easier to build in vitro. In

fact, membranes consisting of three different lipids that

phase separate into liquid ordered and liquid disordered

domains can result in membrane curvature, budding,

and division facilitated by osmotic pressures [29]. More

recently an alternative system that exploits encapsu-

lated aqueous two phase systems was shown to similarly

induce budding and division in hypertonic solution

[30]. While impressive, both methods only allow for a

single cycle of division since the needed asymmetries

are not retained in the daughter vesicles. However,

when both mechanisms were integrated in such a

way as to create a mismatch between the surface area

of the two lipid domains with the volume of the two

aqueous phases, the daughter vesicles maintained a

level of asymmetry sufficient to allow for a second cycle

of division [31��]. If this remarkable lipid domain –
aqueous two phase system were coupled with a vesicle

growth mechanism, then a self sustained growth –
division cycle could be envisaged.
Current Opinion in Chemical Biology 2012, 16:586–592
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Figure 3

(a) (b)
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Examples of artificial systems that mimic cellular behavior. (a) Cell-like systems can be built to sense their surroundings. Here a riboswitch is used to

sense the extravesicular addition of theophylline and responds by synthesizing a fluorescent protein (reproduced with permission from the Royal

Society of Chemistry [38�]). (b) Just as cells move, droplets can be formulated to move down concentration gradients (adapted with permission of the

Royal Society [40]).
An unrelated non-protein based system does just that,

couples vesicle growth with division. Vesicles composed

of single chain fatty acids have a broader range of acces-

sible dynamics than vesicles made from the types of

diacyl lipids that are typically found in biological mem-

branes. Although the details of the mechanism are

unclear, if fatty acid micelles are added to multilamellar

vesicles, the vesicles grow into unstable thread-like fila-

ments [32]. Division into daughter vesicles can be

induced either by mild agitation or through the oxidation

of thiol containing compounds that interact with the

membrane when oxidized [33�]. The fluid shear force

division mechanism can go through multiple growth and

division cycles through forces imparted by the environ-

ment. The latter thiol oxidation mechanism suggests that

if a metabolic-like oxidation–reduction cycle were recon-

stituted within the vesicle, then multiple rounds of

growth and division could be mediated by internal pro-

cesses rather than by external forces.

An alternative pathway developed by the Sugawara

laboratory uses DNA replication to drive vesicle division.

The lipid composition is more complex, including a

mixture of natural and unnatural lipids plus a catalyst

that converts precursor molecules into more lipid [34��].
During intravesicular DNA replication through PCR,

ionic interactions between DNA and the membrane

results in the division of the vesicle. Not only does this

system couple two processes crucial for constructing

cellular life, that is genomic replication and compartment

division, the molecular components used are compatible

with biological machinery, suggesting that cellular

mimics that more closely resemble life as we know it
Current Opinion in Chemical Biology 2012, 16:586–592 
could be built. However, the lipid composition of the

membrane changes over the course of the reaction so that

multiple rounds of division are not possible.

Life-like behavior
There are now available many mechanisms for vesicle

division that could be exploited for the construction of a

cell. However, as noted above, the construction of a self-

replicating system in the absence of other distinguishing

features of life is unlikely to be perceived as living. A

more convincing cellular mimic would sense and respond

to internal and external stimuli in order to coordinate

different physiological processes and to adapt to changing

environmental conditions. For example, natural cells

ensure that division only occurs after genomic replication,

and natural organisms adapt to fluctuating temperatures

by modulating membrane compositions and protein cha-

perone levels. Interestingly, some of the environmental

fluctuations that a cell must cope with arise from the cell

itself, since living systems modify their environment by

acquiring food and releasing waste. Although examples of

in vitro constructed sense–response systems are few,

recent developments suggest viable routes forward in

exploiting sensory pathways for the building of cellular

mimics.

In vitro genetic systems can be constructed to sense and

respond to the availability of small molecules. An in vitro
cascading genetic network, for example, was built to

control the production of protein in response to IPTG

[35]. More recently, in vitro negative feedback loops

exploiting tetracycline [36] and arabinose transcriptional

repressors [37] were built. Rather than using natural
www.sciencedirect.com
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protein transcriptional repressors, protein production can

be controlled by the activity of artificial RNA sequences,

such as that displayed by the theophylline riboswitch

[38�] (Figure 3a). Riboswitches are regulatory elements

residing in the untranslated regions of mRNA that control

translation through direct ligand binding. The advantage

of riboswitches is that they are much simpler to engineer

than proteins. Of the systems described above, the ara-

binose sensing [37] and the theophylline sensing [38�]
systems were reconstituted in phospholipid vesicles, thus

allowing for the development of cellular mimics capable

of responding to the chemical composition of their extra-

vesicular surroundings.

Non-genetically encoded sensing mechanisms are a

potential complement to the use of protein and RNA

sensors. The aqueous two phase system developed by

Keating and colleagues can be used to control the local-

ization of molecules in response to environmental fluctu-

ations. This is because many biological molecules

undergo structural changes that affect their surface charge

distribution upon shifts in pH or temperature [39�]. Sen-

sing that results in the movement of a chemical system is

also possible [40] (Figure 3b). Hanczyc and colleagues

built a chemical system that moves away from depleted

nutrients and towards molecules that sustain movement.

Now that it possible to build cellular mimics that sense

and respond to changing chemical conditions, it seems

that the time is right to begin to more deeply probe non-

replication aspects of life. Sensory pathways are required

for the construction of systems that better represent the

complexities of extant life. Unlike life, machines are

programmed to act in a very defined manner, performing

a designated task regardless of external conditions. Cel-

lular mimics with sense–response capabilities, therefore,

probably would come closer to being perceived as living

than a machine. Further, the incorporation of sense–
response pathways allows for a more objective means

of evaluating success through the implementation of a

cellular Turing test.

Conclusion
Many of the features of cellular life now can be built in

the laboratory. However, the individually reconstituted

features of life may not be compatible with each other in

their present form. Their integration into a system that

better represents the complexity of life poses a significant

challenge. It may be that the purely chemical approaches

and those that make use of biological molecules will

continue to proceed on separate tracks, which would

be unfortunate. DNA replication is easier to achieve with

the aid of proteins and vesicle division is simpler through

purely chemical–physical means. If these two branches of

bottom-up synthetic biology found a way to merge,

perhaps the synthesis of an artificial cell would be much

nearer.
www.sciencedirect.com 
Bottom-up synthetic biology has largely focused on self-

replication and in the process has developed a wide

variety of ways to copy nucleic acids and divide vesicles.

However, life is not simply a machine that divides.

Instead, life is integrated with its surroundings, both

on a cellular and a chemical level. The recent advances

in building cellular mimics capable of sensing and

responding to small molecules opens an exciting alterna-

tive to the prevalent attempts at building bottom-up cells.

Perhaps it is time to allow a bacterium to judge our work.
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