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Abstract 

The effect of two singularity fields: the Hutchinson-Rice-Rosengren (HRR) fields and the Rice-Kujawski-Ellyin (RKE) fields, is
investigated in the present study to discuss a former fatigue crack growth (FCG) model based on energy balance during growth of 
the crack. A parameter which can demonstrates the effect of different types of singularity fields is included in the crack 
propagation model which can predict stage-II FCG behavior independently from the basic low cycle fatigue properties. Good 
agreement between experimental and theoretical results is obtained. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of 
Structural Engineering. 
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1. Introduction 

Fatigue crack growth has been studied in various types of structural materials in recent decades. It is generally 
accepted that the local nature of the phenomenon of fatigue crack propagation rate, da/dN, may be described by a 
sigmoidal curve in log(da/dN) vs log( K) coordinate scale. In the intermediate K range, log(da/dN) is almost 
linearly related to log( K), hence the semi-empirical relation proposed by Paris and Erdogan, da/dN=C( K)m, 
where C and m are termed material constants. It is well-known that fatigue crack growth occurs because of local 
reversed plastic yielding of a material near the crack tip [1-3]. Based on nonlinear fracture mechanics and low cycle 
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fatigue concepts, the crack growth law is desirable to be formulated and some attempts were made scholars. It would 
be an advantage to predict the FCG behavior chiefly from the low cycle fatigue (LCF) properties since the LCF test 
is easier to conduct and the LCF properties, can also be estimated from the monotonic tensile data [4, 5] and the 
hardness data [6]. A series of fatigue crack growth model [7-16] are generally formulated with the help of the stress 
and strain range ahead of the crack tip and using a suitable failure criterion to predict fatigue crack growth behavior. 
All failure criteria are found that energy-based criteria are more suitable than others [17-20].  

Based on the cyclic HRR fields near the crack tip, a model developed by Pandey [14] predicts the fatigue crack 
growth rate using the equation 
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  In Eq. (1), σ′f  is the fatigue strength coefficient, ε′f is the fatigue ductility coefficient, E is the elastic modulus, K 
is the stress intensity range, Kth is the threshold stress intensity range, Wc is the area below the cyclic stress strain 
curve, p is the plastic dissipated energy per cycle unit growth, In’ is a non-dimensional parameter of exponent n′, 
θ and r are non-dimensional functions of cyclic strain hardening exponent n′. Eq. (1) prediction results are, 
however, dependent upon the material constitutive relation and the crack-tip fields. 

The present study is aimed to examine these effects of different singularity fields ahead of the crack tip for the 
model proposed by Pandey [14] and propose a fatigue crack growth model. The resulting prediction is then 
examined by the experimental FCG data which can be easily found in the literature. Cyclic Stress-strain distribution 
near the crack tip 

2. Cyclic Stress-strain distribution near the crack tip 

The monotonic solution for the elastic-plastic field near a crack tip were given by Hutchinson [21] and Rice and 
Rosengren [22], which are now commonly referred to as the HRR singularity fields. The HRR fields are for the 
monotonically increasing load. To extend the response to unloading, reloading and cyclic loading, we may use 
Rice’s plastic superposition method [23]. The fundamental assumption is that the components of the plastic strain 
tensor remain in constant proportion to on another at each point in the plastic region. The method may be taken as a 
first approximation in the absence of a more accurate theory. The cyclic stress-strain range along crack line (θ=0) is 
given by Eq. (2). 
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where 
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' '1 /N n                                                                                (2.b) 

  In Eq. (2), r and θ are polar coordinates, x is the distance from the ahead of the crack tip, N’(N’=1/n’) is the cyclic 
strain hardening exponent, σ‘

y is a reference stress. Hutchinson has provided numerical values for the dimensionless 
parameters mentioned above. For convenience, the parameters required in applying the plane stress HRR theory can 
be obtain by curve fitting the tables provided by Shih [24].  

' ' ' '0, 0.56168exp( 0.99531 ) 0.03151exp( 0.16508 ) 1.15310     2 100N N N N            (3.a) 

' ' ' '0, 0.44386exp( 0.45292 ) 0.09435exp( 0.08423 ) 0.58278       2 100r N N N N             (3.b) 

'
' ' '0.69424exp( 0.06251 ) 2.18980exp( 0.36520 ) 2.54772         2 100

N
I N N N             (3.c) 

The cyclic stress-stain curve can be described as 
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So, the parameter α’ in Eq. (2) is given in the form 
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  Closed form solutions for the stresses and strains in the plastic zone have not yet been obtained for strain hardening 
materials in the Mode I and Mode II. However, Rice’s solution for Mode III (anti-plane shear) [25] can be obtain the 
stresses and strains within the plastic zone for the tensile loaded crack (Mode I). Such a method was developed by 
Kujawski and Ellyin [26] for a Ramberg-Osgood material, based on an energy interpretation of the strain hardening 
exponent. The stress-strain fields are termed RKE fields. Based on Rice’s plastic superposition method [23], the 
cyclic stress-strain components normal to the crack plane, in the plane stress condition, can be derived from RKE 
fields. So, the cyclic fields can be described as 
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The product of stress range and plastic range is then given by 
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  '1   πn                                                                                                                     (6.a) 

The cyclic HRR fields are transformed according to the product of stress range and plastic range, the constant Ψ 
in Eq. (6.a) is given by  
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Substituting Eq. (6.b) into Eq. (1), Eq. (1) can be rewritten as 
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where Ψ is a function of cyclic exponent n’. Based on the cyclic RKE fields, a new model as similar with Eq. (1) can 
also be described Eq. (7) where the Ψ is Eq. (6.a).  

3 Comparison with experimental data for difference singularity fields 

  The crack growth model developed is compared with the experimental results available in the literature for the 
materials given in Table 1 in which the mechanical and fatigue properties of the above materials are also listed.  
  Figure 1 shown that the Ψ parameter in Eq. (7) for two types singularity fields near the crack tip. Ψ value is 
calculated form Eq. (6.a) and Eq. (6.b). The Ψ value estimated from HRR Fields is higher than the Ψ value estimated 
from RKE Fields. 

 
Figure 1. The Ψ parameter in Eq. (7) for two types singularity fields. 

               Table 1.Mechanical and fatigue properties 

Material 
E 

/GPa 
σ' 

/MPa 
K' 

/MPa 
n' f

’ 

/MPa 
b f

’ c R 
Kth 

/MPa·m1

/2 
7075 T6 alloy 

[27] 
71 469 781 0.088 781 -0.045 0.19 -0.52 0.5 1.98 

4340 steel 
[27] 

200 889 1910 0.123 1879 -0.0895 0.64 -0.636 0.7 4.56 
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A5333-B1 steel 
[13] 

200 345 1047 0.163 869 -0.085 0.32 -0.52 0.1 7.7 

SAE 1020 steel 
[28] 

205 270 941 0.18 815 -0.114 0.25 -0.54 0.1 11.6 

API5L X60 steel 
[28] 

200 370 840 0.132 720 -0.076 0.31 -0.53 0.1 8.0 

E36 steel 
[10, 14, 29, 30] 

206 350 1255 0.21 1194 -0.124 0.60 -0.57 0.0 5.0 

10Ni steel 
[14, 31] 

207 1106 2177 0.109 2019 -0.08 0.54 -0.645 0.1 5.0 

2219 T 851 Al 
[9, 10, 14, 17, 29] 

71 334 710 0.121 613 -0.0756 0.35 -0.55 0.1 2.7 

8630 steel 
[14, 29, 32] 

207 661 2267 0.195 1936 -0.121 0.42 -0.693 0.5 10 

C-Mn steel 
[14, 29, 32] 

208 372 896 0.141 868 -0.101 0.15 -0.514 0.0 13 

35CD4 steel 
[29, 30] 

209 800 1180 0.15 1818 -0.1 1.15 -0.71 0.0 3.0 

TA12 steel 
[15] 

113 903 1494 0.077 1609 -0.081 0.29 -0.662 0.1 8.0 

35 NDC 16 steel 
[10] 

190.6 1405 3580 0.15 3050 -0.11 0.58 -0.76 0.1 5.0 

2024 T351 Al 
[27] 

70 404 751 0.1 738 -0.081 0.3 -0.6 0.0 2.68 

Spring steel (500 ) 
[13] 

210 1490 3190 0.15 2970 -0.106 0.62 -0.709 0.1 2.05 

To study detailed the prediction model Eq. (7), Figure 2 gives the impact factor in Eq. (7) based on fifteen metal 
fatigue properties. The maximum difference in impact facto (within the circle), which is affected different 
singularity fields ahead of crack tip, is found for 7075-T6 AL alloy in Figure 2.  

 
Figure 2. Impact factor in Eq. (7) with different fatigue properties of materials. 

 
  Figure 3 shows Eq. (7) prediction result for 7075-T6 AL alloy with two types singularity fields. Good agreement 
between experimental and Eq. (7) result is obtained.  
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Figure 3. Comparison between Eq. (7) predictions and experimental data of 7050-T6 AL alloy 

 
4 Conclusions 

  This work is a further develop about Pandey’s previous work [14] where an expression for the fatigue crack growth 
rate is derived. Two types of the crack-tip, HRR Fields and RKE Fields, are employed in the present study. 
Hutchinson gives some numerical values for the dimensionless parameters mentioned Eq. (2). For convenience, the 
dimensionless parameters are estimated by curve fitting the numerical values at θ=0. The RKE Fields are considered 
ahead of the crack tip. The choice of the singularity fields (HRR or RKE) is contained in the express for the 
parameter for Eq. (7). 
  The parameter Ψ in Eq. (7) is studied based on the low cycle fatigue properties of fifteen metal materials, as shown 
in Figure 1. Figure 1 shown that Ψ value from Eq. (6.a) is lower than Ψ value from Eq. (6.b). Therefore, Eq. (7) 
prediction results may be effects based on different singularity fields. Figure 2 shown the impact factor of two kinds 
of singularity fields.  
  The prediction of the rate of crack propagation model is compared with the 7075-T6 alloy, and the agreement is 
found to be fairly good for two types of the crack tip, as shown in Figure 3. Figure 3 shown that Eq. (7) prediction 
result has a little drop, but the effect can be negligible. 
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