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ABSTRACT 

We describe a relationship between the cogrowth function (and other similarly 
defined functions) of a presentation of a torsion-free group and the Riemann 
hypothesis. This relationship is determined using a certain matrix of Redheffer. 
© 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

Let 

~p 

1 - ~ N ~ F ~ G  ~ 1 (1.1) 

be a presentation for the group G where F = ( a  1 . . . . .  a , )  is a free group of  
rank n. We call n the rank of the presentation. Put 

A = {a 1 . . . . .  a , ,  a~ -1 . . . . .  a~-l}. 

For  g ~ G, c ~ A we let W(k, g , c )  be the set of  words w in F having 
freely reduced length k, which end (on the right) in c and which represent 
the element g of  G [i.e., ~p(w)= g]. Let  w(k, g, c)= IW(k, g,c)l. The 
function 

r(k)  = E w(k,idG,c) 
c E A  
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will be called the cogrowthfunction for this presentation. In the paper [5] we 
showed how the cogrowth function is related to the group matrix and group 
determinant studied by Dedekind and Frobenius [4]. This also allowed us to 
calculate the cogrowth functions in many cases, including most finitely 
generated abelian groups. 

In this paper we show that if one can find the cogrowth function for a 
presentation, then one can also find other such functions. For example, let C k 
denote the words in N of length k which are cyclically reduced, are not 
periodic, and have no base point; let c k denote the cardinality of C k. Then 
putting 

(r(k))m = ( r ( x ) ,  r ( 2 )  . . . . .  r ( m ) )  r and  (ck)m = (Cl ,  c2 . . . . .  Cm) T, 

we show that (in the case where G is torsion-free) there is an infinite integral 
matrix ~ (depending only on the degree n) such that if ~ m  denotes the 
m × m principal submatrix of ~Y~, then for all m > 0 we have 

(r(k)) .  = m(Ck)m. (1.2) 

Our main result shows that information about these functions translates 
into information about the Riemann hypothesis: For any m > 0 let 91m 
denote (the transpose of) Redheffer's matrix of size m. This is the m X m 
which has /j entry 1 if either i = 1 or jli. 91 will be the corresponding 
infinite matrix. According to [7, 8] the Riemann hypothesis is equivalent to 

det91m=O(m 1/2+~) forevery 8 > 0 .  

For results on det 91m see [1, 9] and references therein. 
Write 9tm = ~ , ,  + ~m, where ~ m is the m X m lower triangular 

division matrix (the /j position is 1 if jli and is 0 otherwise) and ~m = 
91,~ -- ~ m  is an m X m rank 1 strictly upper triangular matrix. Then in the 
torsion-free case the relation with cogrowth is given by the fact that 

~[~m = ~ m ~ m ~ m = ~ m ( 91m -- ~ m  ) ~ m " (1.3) 

Here ~m is the diagonal matrix diag(1, 2 . . . . .  m), and ~f~m is a yet to be 
defined integer matrix. What we do is find a sequence of cogrowth functions 
of presentations of infinite torsion-free abelian groups and put them all 
together to give matrices. Suppose that Qj is a sequence of presentations for 
torsion-free groups Gj with the same rank. Let Fj(k) be the cogrowth 
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functions and cj k the corresponding ck's for the presentations Qj. For an 
integer m >t 1 let ( E ( k ) )  m be the m x m matrix whose/ j  entry is Fj(i) and 
similarly for (cj. k)m. ¢rhen (1.2) and (1.3) give 

( ~ j ( k ) ) r n  = ~.~rn(Cj, k)m = ~J'~m(~m -- ~ m ) ~ m ( C j ,  k)m.  (1.4) 

Putting this all together, we have 

THEOREM 1.1. Let ~ m  = (Uj(k))m and Gk = (cj k)m be the matrices as 
above for  presentations Q. of  torsion-free groups G 'with the same degree J Y • 
Then the Riemann hypothesis is true i f  and only i f  

1 
m! det ~,~ det(~J~ml~m + ~m~m~m) = O(ml/2+e) for every 8 > 0. 

In Section 3 we reinterpret the matrices 92~1~,~ and ~ m ~ m ~ m ,  giving 
them combinatorial significance similar to the numbers Fj(k) and cj, k, and so 
obtain a different formulation of Theorem 1.1 (see Theorem 3.1). 

Theorem 1.1 might not appear too interesting except for the fact that one 
can actually calculate some of these determinants in certain circumstances: 

EXAMPLE 1.2. 
cyclic group 

For j >1 1 we let Pj be the presentation of the infinite 

~j 
1 -o Nj ~ F3-o 77 --* 1 , 

where F 3 = ( a, b, c ) , which is determined by 

( a , b , c [ b  =aJ,  c), 

so that ~oj(a)= 1, ~oj(b)=j, and qoj(c)= 0. I_~t Fj(k) be its cogrowth 
function. Then we show 

THEOREM 1.3. 

and 

For Pj as above we have 

Idet (Uj(k))ml = 2re.m! 

I d e t ( % k ) m l  = 9. m. 
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We  note that it is possible (using similar ideas) to prove results like 
Theorem 1.3 for other  sequences o f  presentations, e.g., (a ,  b, c, d I b = 
aJ, c, d ) o r  ( a , b , c ,  d l b  = aJ, c = aJ, d ) .  

We prove Theorem 1.1 in Section 3 after some preliminaries in Section 2. 
In Section 4 we show the relationship between the F(k)  and the c k in the 
situation where the group G of  (1.1) is not torsion-free. In Section 5 we 
indicate the connection with geodesics on certain surfaces associated to 
covers with covering group N. In Section 6 we prove Theorem 1.3. 

2. P R E L I M I N A R Y  D E F I N I T I O N S  AND R E L A T I O N S  

Fix a presentation (1.1) with free group F of  rank n. All words referred to 
will belong to F, and their length will be the freely reduced length relative to 
the fixed generating set A = {a 1 . . . . .  a ~ ,  a l  1 . . . . .  anl}. A word is cyclically 
reduced if it is freely reduced and its first and last letters are not inverses o f  
each other. Sometimes we shall consider "cyclically reduced words without 
base point." This will refer to the set (equivalence class) of  all the cyclically 
reduced conjugates of  the word (cf. free geodesics on surfaces). 

LEMMA 2.1. I f  W is a cyclically reduced word  in F, then w can be 
wri t ten as w = u a where  u is a nonperiodic word; here the positive integer a 
is uniquely determined by w,  and u is determined uniquely as a cyclically 
reduced word.  

Proof. Suppose w = U a = V b ,  where  we may assume 

(1) a /> b, and u and v are cyclically reduced and are not proper  powers; 

and 
(2) either a # b or u is not a cyclic permute  of  v. 

Think of  w as being written around the per imeter  of  a circle. Then  
w = u a means that this circle has a rotational symmetry, r(a)  say, o f  order  a; 
while w = v b means that this circle also has a rotational symmetry, r ( b )  say, 
of  order  b. Thus the group ( r (a ) ,  r (b)> of  rotational symmetries of  w has 
order  c = lcm(a, b)  and is cyclic. I f  c > a, then u is a proper  power and we 
have a contradiction; thus c = a. I f  c = a > b, then b I a and so v is a 
proper  power of  a cyclic permute  of  u, another contradiction. Thus a = b, 
and the result follows. • 
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We will also need 
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LEMMA 2.2. I f  W is a nontrivial, cyclically reduced word in F, then 
there are exactly 2 n - 2 choices of  b ~ A such that bwb -1 is freely reduced 
(as written) and, more generally, there are exactly (2n - 2 ) ( 2 n  - 1 )  p - 1  

choices of b 1 . . . . .  bp E A such that bp "'" blwb~ 1 "" bp I is freely reduced 
as written. 

DEFINITION 2.3. Let C k denote the words in N of length k which are 
cyclically reduced, are not periodic, and have no base point. 

Let Pk denote the words in N of length k which are cyclically reduced, 
are periodic, and have no base point. Let Pk. q denote the words in Pk which 
have period q. 

Let P£ denote the words in N of length k which are cyclically reduced, 
are periodic, have no base point, and are proper powers of elements of C k, 
for some k' .  Let P£. q denote the words in P~ which have period q. 

Let P~' denote the words in N of length k which are cyclically reduced, 
are periodic, have no base point, and are not powers of elements of C k, for 
any k '. Let P'k', q denote the words in P~' which have period q. 

Let E k denote the words in N of length k which are cyclically reduced 
and which have no base point. 

Let Ck, /Sk, etc. denote the same sets except that the words now have a 
base point. Let c k, Pk, ~k, /Sk, etc. denote the cardinalities of C k, Pk, Ck, /Sk, 
etc. 

Let Ck(g)  , Ck(g),  Pk(g), l;k(g), etc. denote the same sets except that 
the words (in F)  now represent the element g ~ G. 

Given these definitions, we have 

LEMMA 2.4. The following equations relate these variables: 

p~ = p;  + p ; ,  

Pk,q = Plk,q + " Pk,q ,  

Pk E Pk,q 4- rr = J Pk,q,  
qlk 

qv~k 

P'k.q = Cq if q I k,  



106 S T E P H E N  P. H U M P H R I E S  

dlk 
dc=k 

Pk,q = qCq if 

P~ = E qP'k,q 
qlk 

q ~ k  

ek ~- Ck 3t- P k ,  

Ck =- kCk ,  

dlk 
d ~ k  

qlk, 
PP 

qPk, q, 

By partitioning the set of all words in N of length k into four disjoint sets 
according as they are or are not periodic and cyclically reduced, one thus 
obtains 

LEMMA 2.5 .  

r ( k )  = zk + 
k - 2  

E 
m = l  

m -~ k rood2 

Cm(2r t  --  2 ) ( 2 r t  - -  1)  ( k - m - 2 ) / 2  + Pk 

+ 
k - 2  
E ~3m(2rt --  2 ) ( 2 r t  --  1)  ( k - m - 2 ) / 2  

m = l  
m ~ k  rood2 

= kc k + 

k - 2  

E m~m(2~ -- 2)(2n -- 1) (~-m-~)/~ + E ~cd 
m = l  dlk 

m=-k rood2 dc:k 

+ 
k - 2  
E E dcd(2n - 2)(2n - 1) (k-m-2)/2 +/3~ 

m = l  dim 
m-=k rood2 d ~ l , m  

+ 
k - 2  

E ~ : ( s n  - 9)(2n - 1) ~-~-2) /2 .  
m = l  

m =- k rood2 
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We write the above as F (k)  = Z k + Jk, where 

Z k = kc k + 
k-2 
E mCm(2n -- 2 ) ( 2 n  -- l )  (k-m-2)/2 q- E dCd 

m=l  dlk  
m---k mod2 dg~k 

-4- 
k-2  

E E 
m=l dim 

m = - k m o d 2  d#l ,m 

J~ . (2n  - 2 ) (2n  -- 1) (~-m-2~/2 

and 

k - 2  

1~ = h'~ + E ~7~('2. - 2 ) ( 2 n  - 1) (k-m-2) /~.  (2 .1 )  
rrt = 1 

m=-k rood2 

LEMMA 2.5. I f  G has no elements of  finite order, then ~ = 0 for  all k 

and also Jk = 0 for  all k. In particular, F(k)  = Z k for all k. 

3. P R O O F  OF  T H E O R E M  1.1 

Let 92 be the following infinite lower triangular matrix: 

1 
0 1 
y 0 1 

0 y 0 1 

xy 0 y 0 

0 xy 0 y 

x2y 0 xy 0 

0 x2y 0 xy 

x3y 0 x2y 0 

1 

0 1 

y 0 

0 y 

xy 0 

1 

0 1 

y 0 l 

where y = 2 n - 2  and x = 2 n -  1. Let  92 m be the principal m X m  
submatrix of  ~ .  Since ~ is lower triangular, it is locally invertible, and in 
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fact one easily sees that 

1 
0 

- -y  

0 
- -y  

0 
- -y  

1 
0 1 

- - y  0 1 

0 - - y  0 1 

- - y  0 - - y  0 1 

0 - - y  0 - - y  0 

Thus from L e m m a  2.5 we see that  if (Cq),,, = (c I . . . . .  c m) and (Zq)  m = 
( Z  1 . . . . .  Z m) are the corresponding m-vectors,  then we have 

( Z q )  m = ~ m ~ m ~ m ( C q )  m 

=- ~m(~)~m -- ~rn)~C~m(C.q)m 

= ~J~m~m~m(Cq)  -- ~f~m~m~m(Cq)m 

and so 

= m - -  Zm m(Cq) m 

Now if G (j), j = 1 . . . . .  is a sequence of  presentations for torsion-free 
groups having the same degree  n, then  we get m x m matrices 

~m = (Z~J')  and ¢,,, = (c~J)), j ,  q = 1 . . . . .  m .  

Thus 

and so taking determinants  gives 

m ! d e t  9~ m det ~m = det(~J~ml~m -[- ~m~m~m)" 

From (3.1) and L e m m a  2.5 we get the p roof  of  Theo rem 1.1. 

(3.1)  
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Note that since G is torsion-free, L e m m a  2.4 gives ~(~m~m = (C(qJ))m and 
~ m l ~ m  = ~ m ~ r n ~ m  = (e~J))m, and so Theorem 1.1 can also be stated as 

THEOREM 3.1. The Riemann hypothesis is true if and only if 

1 
m!det~mdet[(~J))m + ~,m(C~J))m] =O(m 1/2+~) forevery e > 0 .  

4. T H E  N O N - T O R S I O N - F R E E  CASE 

We now consider Jk- We  note that 

P~,q= E Ck/q(g ) and p ~ =  Y'~ E % ( g ) ,  
g ~ G \  {id} g ~ G  \ {id} mlk 

[gl=q 

where [g[ is the order  of  g and we recall that Cm(g) is the number  o f  
cyclically reduced words of  length m which represent g, are not periodic, 
and have no base point. 

We will indicate how to proceed  in the non-torsion-free case in the 
following: 

EXAMPLE 4.1. We choose the presentation (a, bla 2, ab) with n = 2; 
from (2.1) we see that Jk = 0 if k is odd and 

k k - 2  m 
Jk = -~c~/2(a') + ~ ~Cm/e(a')2 × 3(k-m-2)/e 

m =  1 
m ~ k  rood2 

if k is even, and so if (Jq),,, = (J1, J2 . . . . .  Jm) a n d  ( C q ( a ' ) )  m = 

(cl(a'), cz(a') . . . . .  Cm(a')) are the m-vectors, and 

m 

r 0 ° ° °  

1 0 ... 
0 0 ... 
0 1 0 ... 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 1 

° ° °  

° ° °  

0 
0 

° ° .  

° . .  
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is an m × m matrix (the only nonzero entries being in the (2i ,  i) positions), 
then 

(L),,, = ~ " * " ~ m ~ m ( C . ( ~ ' ) ) m "  

Here a' = ~(a) .  Thus from Lemma 2.5 we get 

(r(q))o, = ~J~m'C~m~m(Cq)m "l- ~ ( ~ m [ ~ ) m ~ m ~ m ( C q ( a t ) ) m  . (4 .1 )  

Now  a similar argument to that used to calculate F(k)  (Lemma 2.5) 
allows us to find F(k)(a') .  We first get relations 

LEMMA 4.2. 

pk( a') = p'k( a') + p'~( a'), 

p~(a' )  = 0, 

p~,q(~')  = { ; q ( ~ ' )  

pk(a')  = p~(a ' )  = 

if k /q  is odd, 
otherwise, 

k - 2  

E c~(a'), 
q = l  

k /q  odd 

ek(a' ) = ck(a' ) + pk(a').  

This gives 

LEMMA 4.3. 

F ( k ) ( a ' )  = kck(a' ) + 
k - 2  

E 
m = l  

m=-k mod2 

mc,,,(2n - 2 ) ( 2 n  - 1) {k-m-2)/2 

+ 2~ dca(a') 
dlk,  d # k  
k / d  odd 

+ 
k - 2  

E 
17 l  = 1 

m==-k mod2 

d . ~ ( ~ ' ) ( 2 ~  - 2 ) ( 2 ~  - 1) ~k-~-~)/~.  
dim, d~  1, m 

rn / d odd 
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L e m m a  4.3 then shows that 

(F(q)(a'))t,~ = ~ m ( ~ m  - ( ~ m ) ~ m ~ m ( C q ( a t ) ) m ,  

where  ~ k is the k × k identity matrix, which in turn gives (since ~ k - q6 k 
is invertible) 

(Cq(a')) = ~ Z ~ - I ( Z k  - ( ~ 6 , ) - l ~ t ~ k x ( r ( q ) ( a ' ) ) .  

Substituting for (cq(a')) in (4.1) now gives 

( r ( q ) )  = ~ t ~ k ~ ; k ( C q )  + 9~kq~k(Zk -- q 6 k ) - ' 9 ~ ; ' ( r ( q ) ( a ' ) ) ,  

from which we can find (Cq) m for the presentat ion (a, bla 2, a = b ) ;  specifi- 
cally this gives the sequence 

1, 4, 18, 116,810,  5880, 44,220, 341,484, 2,690,010, 21,522,228, 

174,336,264, 1,426,403,748, 11,767,874,940, 97,764,009,000, 

817,028,131,140, 6,863,037,256,208 . . . . .  

where  (starting at 0) we have only listed the even terms (the odd terms being 
0). 

One can do lots of  o ther  examples like this; however,  the details are 
tedious and unenlightening to write down. 

5. C O N N E C T I O N  W I T H  G E O D E S I C S  ON SURFACES 

W e  now represent  the free group F = ( a  I . . . . .  a , )  in the presentat ion 
(1.1) as a Schottky group genera ted  by hyperbolic elements ,  which we also 
call a I . . . . .  a n [2]; these generators  give an action of  F on hyperbolic space 
with fundamental  domain a regular 2n-gon  with 2n  vertices at infinity, as 
shown in Figure 1 for the case n = 2, where  we draw the Poincare disc 
model  for 2-dimensional  hyperbolic space H 2. In general we will have the 
n axes of  the hyperbolic generators a I . . . . .  a ,  all crossing pairwise. See 
Figure 1, where  a = a 1, b = a 2. In general  the quotient  surface H~/F has 
genus [ n / 2 ]  and has one cusp point. The  surface H2/N is thus a cover of  
H2/F with covering group G = F/N. For  example for the presentat ion 
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FIG. 1. 

(a,  b [ a 2, a = b)  considered above, the quotient H2/N is a twice punctured 
toms. The presentation 

( a l  . . . . .  an[ aa . . . . .  an, at 2) 

of C 2 gives a surface of genus n -- 1 with two cusp points. 
Consider an arbitrary presentation (1.1), and let v k be the number of 

oriented geodesics of length k on the surface It2/N; here length is relative 
to the generators for the free group F. Now a closed geodesic on H2/N is 
represented uniquely as a free homotopy class, which in turn is represented 
as a cyclically reduced word in N without base point; note that this word is 
not a proper power of an element of N. Conversely, any cyclically reduced 
word without base point in N which is not a proper power of a word in N 
determines a closed geodesic in HZ/N. 

Note that a closed geodesic is thus only represented by a periodic word 
w = u r if q~(u) = g ~ G where g has order r. Thus we have 

LEMMA 5.1. 

v k = c k ( i d )  + E E Cq(g)= E E cq(g). 
g ~ G \  {id} qlk g~G qlk 

IgL=k/q Igl=k/q 

EXAMPLE 5.2. Lemma 5.1 now allows us to find v k for the presentation 
(a, bla 2, a = b);  we get the sequence (starting at k = 1) 

0, 8, 0, 18, 0, 124, 0, 810, 0, 5928, 0, 44,220, 0, 341,796, 0, 2,690,010, 0, 
21,524,412, 0, 174,336,264, 0, 1,426,419,852, 0, 11,767,874,940 . . . . .  
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6. P R O O F  OF T H E O R E M  1.3 

113 

Let 

P~ =(a,b,clab =ba ,  c). 

Then  P~ is a presentat ion for 2~ × 2[. Let  F~(k) be  its cogrowth function. 
Note that  for each k we have 

lim F j ( k )  = F ~ o ( k ) .  
j - - *  ¢ ¢  

Suppose that  F~o(k) = a k for k > 0. Proposit ion 6.1 (below) shows that  the 
infinite matrix ~ = (Fj(k)), where  j is the column index and k is the row 
index, has the form 

a 1 a l  a l  a 1 a 1 a l  

a z + 4 a 2 a 2 a 2 a 2 a 2 

* a 3 + 6 a 3 a 3 a 3 a 3 

* * a 4 + 8 a 4 a 4 a 4 

* * * a 5 + 1 0  a 5 a 5 

* * * * a 6 + 12 a 6 

° ° o  

• ° °  

• ° °  

° ° .  

° • °  

° • •  

where  a 1 = 2, a z = 2, a 3 = 10, a 4 = 50, etc. It  is easily seen [by subtracting 
the ( m  - 1)th row from the ruth, then the ( m  - 2)th row from the ( m  - 1)th, 
etc.] that  if this matrix is t runcated to the principal m × m matrix ~ m, 
then  d e t a i n  = ( - - 1 ) m + 1 2  × 4  X 6 × " "  X 2 m  and so we have proved 
Theorem 1.3. 

P a o e o s m o N  6.1. For all k, j > 0 we have 

(i) Fj(k)  = I 'm(k) i f k  <<. m , j .  
(ii) Fj(j  + 1) = Fj( j )  + 2 ( j  + 1). 

Proof. (i): F o r j  ~ {1,2 . . . .  } U {~} let Wj(k)  be  the set o f  words in the 
kernel ~ of  the presentat ion P2 of  length k, so that  Fj(k) = card(We(k)). 

We  prove (i) by showing that  if k <~j, then W~(k) = W~(k). 
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Let w ~ Wj(k) have a letters equal to a, 13 letters equal to b, 3' letters 
equal to c, a '  letters equal to a - l ,  /3, letters equal to b - l ,  and 3" letters 
equal to c-1. We will show that a = a '  and /3 = / 3 ' ,  from which it follows 
that w ~ W~(k) .  Then the nonnegative integers a , /3  . . . .  satisfy 

k = a + / 3 +  3"+ a '  + / 3 '  + 3", (6.1) 

a + j / 3 - a ' - j / 3 ' = 0 .  (6.2) 

Equation (6.1) comes from the fact that w has length k, while (6.2) comes 
from the fact that w ~ N,. Now replacing w by w-1 replaces a by ot ', a '  
by a ,  /3 by /3', etc., and so with no loss of generality we may assume that 
/3 >//3'. Note further from (6.2) that ot = a '  if and only if/3 = / 3 ' .  Thus we 
may now assume that 13 > /3 ' ,  in order to get a contradiction. Solving (6.2) 
for a '  and substituting into (6.1) gives 

j <... j ( /3 - /3 ' ) < j ( / 3 - / 3 ' )  + 2 a + /3 + /3 ' + .r + 3" = k <~ j , 

a contradiction. This proves (i). 
(ii): We show that the only words in Wj(j + 1) that are not in W~(j  + 1) 

are the 2(j + 1) words 

arba s with r ,  s ~< 0 and r + s = - j  

and 

a " b - l a  s with r , s  >/0 and r + s  = j .  

Let w ~ Wj(j + 1) with or,/3, etc. as above. Again we can, without loss, 
assume that /3/>/3 '. Then we have 

j + 1 =  a + /3 + 3" + a '  + /3' + 3' ' ,  

a + j / 3 - a ' - j / 3 ' = o ,  

which gives 

j(13 - /3') + 2 a +  f l + 1 3 '  + y +  y '  = j +  1. 
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From this equation we see that if /3 > /3', then the only solution is 

/ 3 = 1 ,  / 3 ' = 0 ,  a = ' / = 7 ' = 0 ,  and a ' = j ,  

as required. If /3 = /3 ' ,  then a = a '  and so w ~ Woo(j + 1), as required. • 

This completes the proof of Theorem 1.3. 
We now indicate how to calculate the cogrowth function Fj(k). For 

j,  m /> 0 we let Pj, m be the presentation 

1---)Nj, m ~ F 3 - - ) ~ - - *  1 , 

where F 3 = (a, b, c ), determined by 

(a ,  b, clb = aJ, a m, c> 

of the infinite cyclic group 7/. Let Fj, re(k) be its eogrowth function. 

LEMMA 6.2. Let j, k > 0; then for all m >1 k we have 

r; 2~j+l~(k)  = r~(k) .  

Proof. Let Wj, m(k) be the set of words in the kernel Nj, m of the 
presentation Pj, m of length k, so that Fj, re(k) = card(Wj, m(k)). Let or,/3, 
etc. be as in the proof of Proposition 6.1. Then we have the following two 
equations: 

k = a +  /3+ T +  or' + / 3 '  + T' ,  (6.3) 

a + j /3  - or' - j / 3 '  = [2m( j  + 1)] p (6.4) 

for some integer p. We aim to show that p = 0, from which the result will 
follow. Note that by (6.3) we see that 

lal,  I/31, la'l ,  I/3'1 ~< k. 

Then by (6.4) we have 

12m(j + X)pl = la + j /3  - a '  - j / 3 ' l  

~< lal +jl/31 + la ' l  + j l /3 ' l  

< k  +jk  + k  +jk  

= 2 k ( j  + 1) 

<~ 2m( j  + 1), 

which gives a contradiction if p # 0. II 
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We take the case m = k of the above lemma in order to calculate 
Fj(k) = F  i zk(j+l)(k). Using the techniques used in [5] for calculating the 
cogrowth of infinite abelian groups (see [5, Theorem 1.2 and Section 5]), we 
get that F,(k) is equal to 

2k(n  + 1) 

E 
j = l  

1 2 njcr 

-2n~c°s~  2 k ( n ~  1) + 3n~I/r~-i + 3n~I/'~-I 

+ 2 . ~  oos ~ 2k(~  ~ 1) - 2n~ cos ~ 2k(n  ~- i)  ' (6.5) 

where 

n, = cos 4 2 k ( n +  1) - c°sz - "  2k(n + 1) - 1 

+ 2c°s2 2 k ( n +  1) c°s2 2k(n + 1) 

2 k ( n  ¥ 1) + cos' 2 k ( .  + 1) ' 

n 2 = 2 cos ~ ( jzr 
2k(n  + 1) ) - 2k(n + 1) 

n 3 = ~, COS 2 ( 2 k ( n +  1) - l + c o s  1 2 k ( n +  1) +21/n-l-l" 

We note that n 1 = 0 gives the trigonometric diophantine equation 

cos 2k(n-+ 1) + c ° s  2 k ( n +  1) + 1 = ___vr5 

which has no solutions for integral j ,  k, and n by [6, Theorem 4], which is 
proved using results of Conway and Jones [3]. Thus n 1 ~ 0. 

One can now expand the expression (6.5) as we did in similar examples in 
[5] to get F,(k) as a multisum of rational multiples of binomial coefficients. 
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