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Quantification of Clustering in Joint Interspike Interval Scattergrams
of Spike Trains
Ramana Dodla* and Charles J. Wilson
Department of Biology, University of Texas at San Antonio, San Antonio, Texas
ABSTRACT Joint interval scattergrams are usually employed in determining serial correlations between events of spike trains.
However, any inherent structures in such scattergrams that are often seen in experimental records are not quantifiable by serial
correlation coefficients. Here, we develop a method to quantify clustered structures in any two-dimensional scattergram of pairs
of interspike intervals. The method gives a cluster coefficient as well as clustering density function that could be used to quantify
clustering in scattergrams obtained from first- or higher-order interval return maps of single spike trains, or interspike interval pairs
drawn from simultaneously recorded spike trains. The method is illustrated using numerical spike trains as well as in vitro
pairwise recordings of rat striatal tonically active neurons.
INTRODUCTION
Neuronal spike-train sequences often exhibit an underlying

correlation structure despite their interspike interval (ISI)

variability (1–4). A common method of visualizing the

underlying structures is the use of joint ISI scattergrams.

For a single spike train, a joint ISI scattergram is constructed

by computing the first-order return maps (which plot the

given ISI sequence ai versus its time-lagged sequence

aiþ1), which pictorially depict geometric dependence

between the neighboring ISIs (5,6). For visualizing depen-

dencies between higher-order neighbors, higher-order return

maps can be constructed using longer time lags between the

ISIs. The scattergrams are not limited to single spike-train

sequences, but can be extended to pairs of simultaneously

recorded spike trains. For such pairs of spike trains, pairs

of ISIs at any given time instance may be obtained by inter-

preting the sequence of ISIs as a sequence of states of the

neuron (7), and scattergrams of the state pairs can be con-

structed. Another method of visualizing simultaneous spike

trains is to construct joint peristimulus time histograms (8),

which again offer a visual depiction of inherent structures

between instantaneous rates derived from the ISIs.

A commonly used method to quantify joint ISI scatter-

grams is computing a serial or Pearson correlation coeffi-

cient. The serial correlation coefficient can be a sufficient

description of a datum that is void of any dominant inherent

structure. However, a considerable amount of crowding and

structure between the interval pairs can be seen in some

experimental return maps (2,6,9–12). These structures are

the density modulations of the ISI pairs within the scatter-

grams. A serial correlation coefficient fails to quantify these

structures, because the coefficient simply measures the

degree of association between pairs, and does not attempt

to parse the structures.
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Another method that has been employed to quantify the

ISI scatter is the so-called box dimension borrowed from

nonlinear time series analysis techniques. This method has

been applied to single spike-train sequences (13–16), as

well as to scattergrams, to estimate the dimensionality of

the attractors (6) caused by the ISI pairs, and it thus may

provide a quantification of the scatter among the ISI pairs.

A box dimension for a scattergram requires that square boxes

of fixed sizes be constructed in the two-dimensional space.

The number of such boxes with one or more ISI pairs is taken

into account. The exponent of that number as a function of

the side length of the boxes results in the box dimension.

This measure does not account for the density in each such

square. For example, if all the pairs under observation fall

in a single box, then the box dimension would become

zero, and if the ISI pairs are uniformly scattered in the

two-dimensional plane, then it would tend to 2. Thus, this

method computes the dimensional spread of the underlying

data pairs, and not the density observed in the scattergrams.

Here, we describe a hierarchical method that directly quan-

tifies the density modulations observed in a given scattergram.

We introduce a cluster coefficient that is proportional to the

local number density of pairs of points in the scattergrams.

A profile of such cluster coefficients is obtained systemati-

cally as a function of the scale length in the scattergram. In

addition, a clustering density is defined by taking the deriva-

tive of the cluster coefficient profile. The clustering density is

amenable for computing statistical quantities such as first- and

second-order moments that quantify the deviations in clus-

tering in the space of lengthscale of the scattergram.

The modulations in a scattergram result in local crowding.

Crowding of ISI pairs can naturally arise in experiments due

to temporal clustering of spike events (1,17,18). However,

not all clusters of points in the joint scattergrams are caused

by temporal clustering of intervals. For our purposes, a

cluster is viewed as a group of points (i.e., ISI pairs) in a fixed

rectangle in the scattergram, and every pair in the
doi: 10.1016/j.bpj.2010.03.015
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scattergram falls in a cluster. The total rectangular area of the

scattergram is split into a fixed number of smaller rectangular

boxes, and the group of pairs in each rectangular box is

referred to as a cluster. The cluster coefficient is proportional

to the weighted sum of the number densities in the rectan-

gular boxes. A cluster coefficient of unity would correspond

to the case of all the pairs falling in a single rectangle, and is

smaller in the case where pairs span more than one rectangle.

The spacing of the rectangular grid is an adjustable param-

eter that depends on the mean values of the intervals along

each axis. A cluster coefficient is computed at each level

of the grid spacing, and thus, a functional profile of the coef-

ficient is obtained that reveals the clustering at different

lengthscales. We formulate the method and define the cluster

coefficient and the clustering density in the next section. The

method is applied then to spike-train sequences obtained

from a stochastic FitzHugh-Nagumo neuron model with

different noise levels, as well as to spike-train pairs obtained

from pairwise recordings of rat striatal neurons in slices.
CLUSTER COEFFICIENT AND CLUSTERING
DENSITY

The cluster coefficient is defined based on the two-dimen-

sional density of the scattergrams. We illustrate the construc-

tion of pairs of ISIs from a pair of spike-train sequences. The

ISI pairs are represented in a two-dimensional phase plane

whose sides represent ISI sequences derived from the spike

trains. Fig. 1, a and b, illustrates first return maps (serial

correlograms) of ISIs obtained from two simultaneously re-

corded, tonically active striatal neurons plotted individually

under control conditions, and Fig. 1 e shows the scattergram
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FIGURE 1 Typical scattergrams quantified by cluster coefficient Cw and cluster

experimental trials) of two tonically active striatal neurons under control (a and b)

maps (ISIn versus ISInþ1) of the recorded ISI sequences. (e and f) Mutual ISI pairs f

h) The ISI densities under the two conditions for cell 1 (g) and cell 2 (h) are displ
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between the two cells obtained from forming pairs according

to the methods of Kreuz et al. (7). Fig. 1, c–f, represents the

corresponding scattergrams with apamin applied to the bath.

Application of the drug alters the scattergram distribution of

ISI pairs, in some cases reducing the size of the dominant

single cluster. To quantify the clustering, a rectangular grid

is formed in which the grid spacing along either axis is

proportional to the mean ISI of the spike-train sequence

represented on the corresponding axis. The number of ISI

pairs in each nonempty rectangular bin is computed and a

cluster coefficient is defined on them.

Computing ISI pairs

Pairs from a single spike train

Let Ai, i ¼ 1, ., NA be the given spike-train sequence.

The ISI pair sequence is obtained from return maps of the

ISIs. The first-order return maps are obtained by forming

pairs from the sequence Ai and its time-lagged sequence

Aiþ1. The ISI pairs thus are written as (ai, bi) ¼ (Aiþ1 � Ai,

Aiþ2� Aiþ1), where i¼ 1, ., NA� 2. These pairs are plotted

in the ISI phase plane (a(t), b(t)) for binning the pairs in rect-

angular intervals. Higher-order return maps are similarly con-

structed. A kth order sequence of pairs is written as (ai, bi)¼
(Aiþ1 – Ai, Aiþkþ1 – Aiþk), where i ¼ 1, ., NA � k � 1.

Pairs from two different spike trains

Let Ai, i ¼ 1, ., NA, and Bi, i ¼ 1, ., NB be two spike time

sequences for which the cluster coefficient is being sought.

Let sequences Ii, i ¼ 1, ., NA – 1, and Ji, i ¼ 1, ., NB – 1

be the two ISI sequences derived from the original spike

trains. We aim to form pairs of ISIs that would be
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represented in a two-dimensional plane. Ii and Ji cannot by

themselves form pairs of values, because the relative phases

at which the spike times of the first cell occur with respect to

the spike times of the second cell, and vice versa, do not in

general remain constant throughout the length of recording

times. However, at any given point of time t, one can readily

identify the preceding and succeeding spike times from each

spike-train sequence. In other words, each ISI could be

thought of as a state of the neuron, and such states could

become pairs of values at any point in time, t, or at times cor-

responding to the spike times of each neuron. This concept

was originally described by Kreuz et al. (7), who employed

it in defining an ISI-distance measure. Here, (a(t), b(t)) are

the ISI pairs constructed according to this concept. a(t) ¼
Ajþ1 � Aj, such that Aj % t < Ajþ1. In a similar way, b(t) ¼
Bkþ1� Bk, such that Bk % t< Bkþ1. Time t either can assume

a sequence of times separated by a fixed width or can be

discrete, assuming all the values of Ai and Bi. We adopt the

latter method here, writing the ISI pairs as (ai, bi), i ¼ 1,

., N, where N % NA þ NB � 2. These ISI pairs are repre-

sented as points in a two-dimensional phase plane (a, b).

Defining the cluster coefficient, Cw, from the ISI
pairs

We define a cluster as the group of ISI pairs (ai, bi) falling in

fixed predefined ranges of ISIs. The size of the cluster is the

number of such ISI pairs, and the total number of clusters

accounts for all ISI pairs. We define a cluster coefficient,

Cw, that quantifies the amount of clustering by first identifying

groups of ISI pairs (ai, bi), arranging them in descending order

of size, and then adding the contributions of each group.

Our approach here is to quantify the clustering without

using any parameters. However, we do use a scale parameter,

w, that determines the size of the rectangular grid for the
a b c

d e f

trate, f1¼ 0.5, f2¼ 0.3, and f3¼ 0.15. More clusters will add smaller areas, but will

of clusters, NC, in the case where all clusters have the same cluster size. At large
purpose of finding clusters. We make Cw assume a maximum

value in the simple case of a pair of regular spike trains with

any frequency, since such a case will simply be a single point

with high density in the phase space of ISIs. Two spike train

sequences whose spike times are phase-locked in a 1:2 ratio

will show two clusters in the ISI phase space described

earlier, but will possess a cluster coefficient less than unity.

The given spike train sequences Ai and Bi are converted to

interspike interval pairs (ai, bi), i ¼ 1, ., N, as described

earlier. N is the total number of ISI pairs. Let

hai ¼ 1
N

PN
i¼1ai and hbi ¼ 1

N

PN
i¼1bi be the average ISI

values of the two sequences. The ISI pairs are now assigned

to two-dimensional rectangular bins of length whai along the

x axis and whbi along the y axis. w is a nonnegative constant

that determines the bin widths. The ISI pairs falling in each

rectangle constitute a cluster. We are not concerned with the

distribution of the ISIs within the cluster or the distances

between such clusters. Let Si,j denote the bin ij that includes

all the ISI pairs that fall in the rectangular window [x0 þ
whai(i� 1), x0þ whaii] and [y0þ whbi(j� 1), y0þ whbij].
That is, the bin Sij counts all ISI values for which x0 þ
whai(i – 1) % ai < x0 þ whaii and y0 þ whbi(j – 1) %bj

< y0 þ whbij. The values x0 and y0 are adjusted such that

the biggest density cluster is at the center of the rectangle

surrounding it. However, computation of the coordinates of

the biggest density cluster itself is carried out by setting

x0 ¼ min{ai, i ¼ 1, ., N}, and y0 ¼ min{bi, i ¼ 1, .,

N} and adjusting a grid reference scale length, w ¼ wref.

The ensuing fluctuations in the computation are discussed

later. The bins Sij are then arranged in descending order of

bin counts. Let ni, i¼ 1, ., NC be such an ordered sequence

of nonzero bin counts. NC is the number of nonzero clusters.

We call ni the cluster size of cluster i. The hierarchical nature

of ni as a function of i is illustrated in Fig. 2 a at different
FIGURE 2 Validation of the condi-

tions for cluster coefficient formulation.

(a) Number of ISI pairs (ni) versus i for

an ISI scattergram shown of Fig. 3 at

different scales, w. At very large w (0.2,

for example), there is only one cluster.

At w z 0, small clusters (~1/N)

of equal size appear. (b) Using the

same scattergram, the coefficients Ti

versus w are shown for three values of i.

The hierarchical ordering of the clusters

ensures that largest clusters (f1, for

example) have larger coefficients (T2).

(c) A cluster coefficient at a w where

there is only one big cluster of density

d in the scattergram is shown for two

different formulations. (d) Cw as a func-

tion of the largest density cluster for

two scattergrams. (e) Graphical depic-

tion of the area terms that contribute to

Cw. The sum of the terms will always

be less than or equal to unity. To illus-

fit within the unit square. (f) Relation between cluster coefficient and number

NC, Cw is inversely proportional to the number of clusters.

Biophysical Journal 98(11) 2535–2543
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w using a scattergram obtained from the stochastic

FitzHugh-Nagumo model with noise level D ¼ 0.1. At large

w (w¼ 0.2), there remains only one cluster, and at very small

w, equal-sized but small clusters remain.

Let the local number density be defined by fi ¼ ni/N. By

definition, fi % 1, and since the number densities are ordered

according to their magnitude, if i > j, then fi % fj. Then, the

cluster coefficient, Cw, is defined as

Cw ¼ f1 þ a2f2 þ a3f3 þ . þ aNfN: (1)

The ratio of the coefficients Ti ¼ ai/ai-1 is chosen such that it

does not increase with increasing i, and a1¼ 1. Our choice of

Ti is guided by the following considerations. We relate Cw to

the density of the clusters. Thus, at a value of w for which

there remains only one cluster, only the first term f1 becomes

nonzero, and Cw thus becomes unity. If, at a given w, there

still remains only one dominant cluster, with all other scatter-

gram points homogeneously distributed, then we want Cw to

directly represent this scenario such that f1 is the biggest

contributor to Cw. Ti can become unity for some values of

i, but obviously it cannot be unity for all i, because that

would render Cw ¼ 1 for all w, and thus make Cw indepen-

dent of w. The weights ai are chosen to satisfy three condi-

tions: 1), weight ai reflects the hierarchy of the local number

density, fi, such that Ti < 1, for i > 1; 2), the dominant factor

contributing to Cw is linear in the highest local number

density, i.e., f1; and 3), Cw is a function of w, and is less

than or equal to unity for any configuration of fi values.

Hypothesis: The recursive relation Ti ¼ fi�1 satisfies the

above three conditions.

Fig. 2 b illustrates a scattergram of the stochastic FitzHugh-

Nagumo model in which Ti is computed as a function of w.

Only T2 can go up to 1 for large w; all other Ti values are

less than or equal to T2, since they are obtained from terms

that have T2 as a factor. T2 can increase to 1, because as w
increases, the density of the largest cluster increases to unity,

and the size of the other clusters must become smaller. Thus,

Ti, i ¼ 3, ., N becomes 0 when T2 approaches unity. The

nature of the approach to unity is dependent on the distribu-

tion of the ISI pairs in a given scattergram. If the scattergram

consists of only one dominant crowded region, then an S-

shaped profile toward unity can be expected.

It is easy to validate condition 1. For w ¼ w*, let there be

two clusters. Then, Cw¼ f1þ a2f2. However, T2¼ a2¼ f1¼
1� f2< 1, and the ith coefficient ratio in an N-cluster scatter-

gram is Ti¼ fi�1 < 1 by definition. The linearity condition is

demonstrated by two examples. Consider again the case of

two clusters at w ¼ w*. Then,

Cw ¼ f1 þ a2f2 ¼ f1 þ f1 � ð1� f1Þ ¼ 2f1 � f 2
1

¼ 2d � d2;

where d h f1 is the density of the largest local cluster. Since

d < 1, the second term is much smaller than the first, and

consequently, the dominant contribution of the largest local
Biophysical Journal 98(11) 2535–2543
number density, f1, to Cw is the first power of f1. As a second

example, consider a case where there is only one dense

cluster, and the rest of the ISIs are distributed uniformly

such that the densities are given by f1 ¼ d and fi ¼ 1/N for

i ¼ 2, ., N. We assume that there is at least one cluster

such that d ranges from 0 to 1 � 1/N. Then, Cw is given

by a function that depends on both d and N:

FNðdÞ ¼ d þ a2

1

N
þ . þ aN

1

N

¼ d

�
1 þ 1

N
þ 1

N2
þ . þ 1

NN�1

�

¼ d

�
1� xN

1� x

�
/d; as N/N

; (2)

where x ¼1/N. This expression is plotted in Fig. 2 c for two

values of N. As can be seen directly from this expression,

FN(d) tends to d, the density itself, as N / N. We can

contrast this property with other possible nonlinear formula-

tions of Cw. If, instead of Eq. 1, we had used a formulation

such as
PN

i¼1 fi
2 to represent Cw, the above sample scatter-

gram would give the cluster coefficient

GNðdÞ ¼ d2 þ 1

N2
þ . þ 1

N2
: (3)

Thus, the cluster coefficient would become a nonlinear func-

tion of d. GN(d) is illustrated in Fig. 2 c for two values of N.

The advantage of a hierarchical choice of coefficients is also

evident here. In the nonlinear formulation, the coefficients

are not self-determined, and thus, for small N, they need to

be corrected to avoid the finite jump in GN(d), as seen in

the figure, when the density itself is close to 0. In our hierar-

chical choice of coefficients, this is self-corrected, and there

is no jump seen in FN(d) when d ¼ 0. In real scattergrams,

however, density distributions among the clusters can be

more complex. Fig. 2 d shows the dependence of Cw on

the density of the largest cluster, f1. The value of w is varied

to effect changes in f1 so that it can range between 0 and 1.

The value of w at which f1 reaches unity is different for the

results shown in the figure. However, the profile itself is

close to linearity. The contribution of other larger clusters

becomes significant when considerable deviation from the

linearity is seen. The sudden increment seen in the experi-

mental curve for intermediate w is due to the readjustment

of the ISI pairs into bigger clusters when w is increased.

This can happen because the position of our grid is taken

with respect to one biggest cluster at a given wref.

To validate the third condition, we first depict geometri-

cally (Fig. 2 e) the areas represented by the terms in the defi-

nition of Cw in Eq. 1 as subareas in a unit square. Since each

fi is less than or equal to unity, any product of any number of

such terms will also be less than or equal to unity. Also, the

sum of all the fis is equal to unity. The first term, f1, which

represents the biggest density in the hierarchy, is shown by

the rectangular area with sides 1 and f1. The second term,
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f1 � f2, contributes a smaller area than that of the first. Thus,

successive terms contribute successively smaller areas, but

all terms fit within the unit square whose area is unity.

Thus, Cw will always be less than or equal to unity for any

configuration of fis. As an example, we next consider an

extreme example in which all clusters are of equal size,

which would produce a maximum Cw. For a value of w
that results in a single cluster in the scattergram, Cw ¼ 1,

but if two or more clusters result, then Cw < 1. We see

that for two equal-sized clusters, f1 ¼ f2 ¼ 1/2 , which leads

to Cw ¼ 0.75. For three equal-sized clusters, fi ¼ 1/3, i ¼
1, 2, 3, which leads to Cw ¼ 0.48. For NC (N/n) clusters of

each size n, we have f1 ¼. ¼ fNC
¼ f ¼ 1=NC. Then, the

cluster coefficient is given by the expression

Cw ¼ f þ f 2 þ . þ f NC ¼ f � f NC þ 1

1� f
; (4)

which is valid for all positive integers of NC. This expression

is plotted in Fig. 2 f as a function of the number of clusters

(dots are the evaluations at integer values, and the dashed

curve is a continuous plot of the expression). For a large

number of clusters, Cw is proportional to the inverse of the

number of clusters. That is, for a homogeneous and contin-

uous distribution of ISI pairs in the two-dimensional plane,

the cluster coefficient becomes equal to the density of the

distribution (1/N). We can use this formula to find Cw in the

limit of w / 0. In this limit, NC ¼ N, and thus, f ¼ 1/N
and can be assumed to be much smaller than unity for large

N. Thus, 1/(1� f) can be expanded in a Taylor series, and after

simplification, we find that to the first order in f, Cw / f¼ 1/N,

which at large NC validates the result in Fig. 2 f.
The cluster coefficient, Cw, quantifies the clustering

between the interval sequences at each value of w. The func-

tional dependence of Cw on w is obtained by increasing w
from 0 to a value at which a single rectangle contains all

the ISI pairs, and thus a single cluster is formed. Increasing

w further has no effect on Cw. For a regular spike train with

no ISI deviation, Cw is nothing but a Heaviside function, and

for all other types of ISI sequence, Cw always has a profile as

a function of w.

Clustering density, F(w)

The growth rate of Cw with respect to w quantifies the density

of the hierarchically ordered local number densities. We call

this rate the clustering density,

FðwÞ ¼ dCw

dw
: (5)

F(w) has the characteristics of a density distribution, since its

integral is continuous and goes from 0 to 1. Thus, Cw has the

characteristics of a cumulative distribution. However, F(w)

itself is not a measure of the density of clusters in the scatter-

gram, as we did not consider the mutual distances between

the clusters in formulating Cw. F(w) quantifies the rate of
change of the clusters, and its coefficient of variation (CV)

is a measure of the deviation in the clusters. For a scattergram

with a single point (from a regular spike train), Cw becomes

a step function with the step at w ¼ 0, and the corresponding

F(w) is a delta function with width 0. The width of F(w)

becomes nonzero as the scatter of the ISI pairs becomes

larger. For the uniform distribution of ISI pairs discussed

earlier, the local density at a given w can be written as fi ¼
f for all i, and f ¼ (whISIi/D)2, where D is the width of the

ISI scatter along any of the axes. The corresponding Cw

values (using the formula in Eq. 4), along with results

obtained from actual simulations, are presented in Fig. 3 a.

The overestimation at large w is caused by the fact that the

computational grid is positioned with respect to the highest

density point, resulting in fi < f1 for i > 2. The mean Cw is

smoothed, and its derivative is presented as F(w) in Fig. 3 b.

Cw is affected by the rate of the ISIs, but the CV of F(w)

is not.
APPLICATIONS

Application to stochastic FitzHugh-Nagumo
spike trains

FitzHugh-Nagumo (19) model equations using a voltage

variable, V, and a feedback variable, u, in their spontaneous

spiking parameter regime (as given below) were stochasti-

cally integrated (20), and sequences of spike times were

obtained at different levels of external noise, D:

e
dV

dt
¼
�

V � 1

3
V3 � u

�
þ hðtÞ; (6)

du

dt
¼ gV þ b; (7)

where 3¼ 0.01, g¼ 1, b¼ 0.9, and hh(t)h(t0)i ¼ 2Dd(t� t0).
Time t is measured in millivolts. For a given noise level D,

20 realizations of 1-s duration each were obtained to collect

spike times. A typical time course, a typical ISI scattergram,

and the ISI densities for three noise levels are shown in

Fig. 3, c and d. The mean Cw across the realizations is shown

in Fig. 3 e at three levels of D, with error bars indicating the

standard deviation around the mean. The clustering densities

(Fig. 3 f) were computed from mean Cw profiles after

smoothing with a Bézier fit.

In the absence of stochastic input (D ¼ 0), the model

spikes at regular intervals of 2.86 ms. The corresponding

ISI scattergram has no spread, and the ISI density is a delta

function. With increasing D, the mean spiking frequency

increases (ISI density thus shifts to lower ISIs), and the ISI

scattergram remains as a single dense region and acquires

a broadening around its mean, though the CV of the ISIs is

small—0.02 at D ¼ 0.1, 0.04 at D ¼ 0.5, and 0.05 at

D ¼ 1.0. However, Cw captured the density modulations

prominently; it reached unity at higher w with increasing
Biophysical Journal 98(11) 2535–2543
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FIGURE 3 Application of the model

to numerical spike trains of uniform

ISI distribution (a and b) and the

stochastic FitzHugh-Nagumo model

(c–f). (a) Cluster coefficient for scatter-

grams of uniform ISI distributions for

three different mean ISIs, keeping the

distribution width, D, constant at 1 ms.

Twenty realizations of 1-s duration

were used. The length of the error bars

is twice the standard deviation. For

computation, the maximum density

point of the scattergram is explicitly

given as (hISIi, hISIi), instead of using

a wref. The solid lines are analytical

curves predicted by Eq. 4, with f ¼
(w � hISIi/D)2. (b) Clustering density

for the corresponding curves in a. The

CV of F(w) is unchanged at 0.37 with

rate, whereas the CVs of the ISI distri-

bution for hISIi ¼ 1.5, 2.5, and 3.5

are, respectively, 0.19, 0.12, and 0.08.

(c) ISI scattergram of order 1 at noise level

D ¼ 1.0 for spike trains of the stochastic

FitzHugh-Nagumo model. The construc-

tion of the grid at scale w¼ 0.3 is illustrated. The grid is positioned such that the largest cluster at scale wref is at the center of a grid. The inset is a voltage time course of

the model. The length of the horizontal bar is 10 ms. (d) The ISI density (using cumulative data from all realizations) shows broadening of its distribution and a slight

speed-up of the spiking with noise level. (e) Cw as a function of w for three levels of noise intensity. The solid curves are the mean of 20 realizations of 1 s each. The

error bars extend 1 standard deviation on either side of the mean. wref¼ 0.02. (f) Clustering density, F, as a function of w for the three curves in e. F(w) is computed

using a smoothed Bézier fit of the mean Cw. The CVs of F(w) do not alter considerably, and at noise levels D ¼ 0.1, 0.5, and 1.0, they are 0.62, 0.56, and 0.55,

respectively.
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D, which increases the scatter (Fig. 3 e). Cw decreased with D
for intermediate values of w. The clustering density, F(w),

computed from a smoothed mean of Cw showed broadening

of its distribution with D (Fig. 3 f), but its CV is not very

sensitive to D.
Application to paired recordings of tonically
active neurons

Pairwise whole-cell current-clamp recordings were made

from tonically active neurons of the striatum in the basal

ganglia of rat brain slices in vitro. These neurons are

involved in the motor learning mechanism and can show

spontaneous and burst firing patterns. The recorded neurons

fired spontaneously but irregularly. Blocking the afterhyper-

polarization currents using apamin can transition the cells

into burst firing (21) in the absence of synaptic input. The

recordings were made before and after application of apamin

at 34�C. A small, steady external current was applied to the

neurons to alter the firing rate. For the control case, one of the

neurons received a steady current of 0.2 nA. Before the bath

application of apamin, its level was varied from 0.12 nA to

0.2 nA, whereas the second neuron did not receive any

current. Recordings were made in multiple trials, each trial

lasting either 5 or 10 s. Before apamin, 18 trials of 5-s dura-

tion were obtained from a single pair of cells. From the same

pair, 20 trials of 10-s duration were obtained after the bath

application of apamin.
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Only one of the cells (Cell 2) exhibited visible burst

spiking after apamin. However, the spiking pattern across

the trials varied considerably. The first cell did not burst.

Means of the ISI values were computed from the pooled

ISIs in each condition. The corresponding ISI densities are

shown in Fig. 1, g and h. Both cells showed a decrease in

average firing rate after apamin (the mean ISIs increased

from 0.51 to 1.15 s and 0.45 to 0.61 s under control and

apamin, respectively). The CVs of the ISIs of the two cells

increased when apamin was applied (from 0.34 to 0.43 and

0.92 to 1.21, respectively). The scattergrams of the joint

ISIs for individual cells, as well as for the simultaneous

ISIs, are shown in Fig. 1, a–f, using pooled data from all

the trials.

Our computation of the cluster coefficient uses scatter-

grams formed from individual trials under control and apa-

min, and the results are presented as averages of quantities

of interest over the trials. For the analysis of spike trains

belonging to cell 1 and cell 2 individually, first-order ISI

scattergrams are obtained from each trial, and the ISI pairs

(ISIi, ISIiþ1) were formed before and after apamin. The cor-

responding Cw for each trial is computed, and the averages

across the trials are presented in the upper portions of

Fig. 4, a and b. To appropriately display the large random-

ness in Cw, we used error bars showing the first and third

quartile of the distributions at each w. Let Cw
control and

Cw
apamin represent these average quantities. For each cell,

the percentage increment of the averaged cluster coefficient
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FIGURE 4 Application to pairwise

whole-cell recordings of striatal toni-

cally active neurons. (a–c, upper)

Cluster coefficients, Cw, as a function

of w under control conditions and apa-

min application computed from scatter-

grams constructed for cell 1 alone, cell

2 alone, and cell 1 versus cell 2, respec-

tively, as shown in Fig. 1, but using

individual trials. Solid lines are the

means across the trials, and the lower

and upper limits of each error bar repre-

sent the first and third quartiles of Tu-

key’s box plot. wref ¼ 0.1. (a–c, lower)

Percent increase due to apamin of the

mean Cws corresponding to the record-

ings in the upper panels. The percent

confidence in the effect of apamin is

also shown as a function of w using an

unpaired t test on the two samples at

each w. Colored dots indicate confi-

dence levels >90%. (d–f) Clustering

density, F(w), for the three cases shown

in a–c under control and apamin condi-

tions. Clustering density is computed

from the mean Cw after smoothing

with a Bézier fit. After apamin, the

CVs of F(w) changed from 0.75 to

0.91 (d), from 1.07 to 1.35 (e), and

from 1.0 to 1.19 (f).
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due to apamin is ðCapamin
w � Ccontrol

w Þ=Ccontrol
w � 100 and is

shown in the lower portions of Fig. 4, a and b, for the two

cells. We used the unpaired t test to compute the confidence

level in the effect of apamin at each w using the two sample

sizes available under the two experimental conditions for

each cell. The values of w at which the percent increments

in Cw have confidence levels >90% are in color. In a similar

way, joint scattergrams were formed from pairs of ISIs

computed from each trial. The ISI pairs (ai, bi) were

computed using the method described earlier. Their averages

(hai, hbi) were computed before and after apamin for each

trial separately, the corresponding values of Cw were found,

and their means with error bars are presented, as before, in

Fig. 4 c (upper). The percent increase of the mean Cw due

to apamin, along with the corresponding confidence level,

is shown in Fig. 4 c (lower). Corresponding to the three cases

(cell 1, cell 2, and cell 1 versus cell 2) the mean Cw as a func-

tion of w is smoothed with a Bézier fit and their numerical

derivative is computed to find the clustering density, F(w)

(Fig. 4, d–f).
The experimental scattergrams are considerably different

in the spread of the ISI pairs from those obtained from the

stochastic FitzHugh-Nagumo model of the previous section.

More than one big cluster can be seen in certain scattergrams

because of the temporal spike bursting. In addition, we also
encounter very few ISI pairs (as few as four) in scattergrams

of certain trials. Together, they contribute to large fluctua-

tions in Cw from trial to trial. In the numerical implementa-

tion, as explained previously, a small reference value, wref,

is used for finding the maximum density cluster, such that

the center point of that cluster is fixed always at the center

of the rectangle that surrounds it at any w > wref. In the im-

plementation algorithm, wref is adjusted until a single

maximum is found. However, a scattergram with multiple

dense regions (Fig. 1 d, for example) can have rectangular

grids not necessarily centered around the densest clusters.

This can cause loss of local monotonicity in Cw as a function

of w. However, in the Cw computed for the experimental

scattergrams (Fig. 4, a–c), our method did not result in a

significant deviation from monotonicity of Cw. The approach

to Cw can itself be very slow for some scattergrams. The

clustering densities are also qualitatively different from those

for the FitzHugh-Nagumo model. They start at a nonzero

value and are dependent completely on the nature of the

scattergrams. Changes in the cluster coefficient after drug

application can be nonzero, even near w ¼ 0. However,

the differences due to drug application tend to 0 for values

of w that result in grid spacings closer to the scattergram

size. Cw reaches unity at smaller w for tighter clustering of

the entire scattergram, and for sparse clustering, unity is
Biophysical Journal 98(11) 2535–2543
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attained at larger w. The effect of apamin is seen as a clear

trend in Cw as a function of w. The clustering has drastically

improved, up to 60% for w near 0.25 (corresponding to a grid

size of 0.25� hISIi), in cell 1 after apamin. Although the ISI

pairs span larger ranges after apamin, the dominance of

a single visible cluster in the scattergram ensures that the

corresponding Cw reaches unity as quickly as that under

control, and the difference is close to 0 for large w. In cell

2, strong clustering is seen (up to 40% for w near 0.2) after

apamin, but at longer grid spacings, the clustering in fact

became significantly weaker. From the scattergrams

(Fig. 1, b and d), we can infer that the single dominant cluster

split into two after apamin, and the cluster at shorter intervals

that is due to the bursting in cell 2 is denser, and thus, at

shorter grid spacings (determined by w), the Cw after apamin

is larger than that in the control condition. This leads to the

positive lobe in Fig. 4 b (lower). The emergence of the nega-

tive lobe is due to the spread of the ISI pairs in the scatter-

grams, which show a very limited spread of the ISI pairs

in the control compared to the apamin condition. Cw com-

puted for the joint scattergrams showed a significant effect

of apamin for w < 1, corresponding to grid spacings smaller

than one mean ISI value. Clustering densities varied little for

scattergrams of cell 1 (Fig. 4, d–f), but showed broader

widths due to apamin for cell 2, as well as for cell 1 versus

cell 2. Unlike the examples drawn from uniform ISI distribu-

tion and the stochastic FitzHugh-Nagumo model, in all three

experimental cases, the CV of F(w) changed considerably

after apamin.
SUMMARY AND DISCUSSION

We introduced a scale-dependent cluster coefficient, Cw, to

quantify density modulations of interspike interval scatter-

grams, as an alternative to other methods such as linear

correlation coefficient and box dimension. A clustering

density function, F, which is the derivative of Cw with

respect to w, provides quantification of variability or spread

of the clustering in the w-space. The clustering is computed

at each lengthscale of the scattergram. The cluster density is

computed from a smoothed Cw profile, and its statistics,

such as CV, are used to quantify the deviations in the clus-

tering. The biggest contribution to the cluster coefficient at

a given w comes from the largest cluster, and any other

cluster of equal or smaller size is scaled with all the

preceding (and thus larger) clusters, and their contribution

is thus smaller.

We demonstrated the profile of Cw and F(w) for spike

trains drawn from a uniform distribution, a stochastic Fitz-

Hugh-Nagumo model, and pairwise recordings of striatal

tonically active neurons. For these three cases, we studied

the effect of spike rate, external noise, and drug effects,

respectively. Cw is sensitive to all these parameters. F(w)

also showed sensitivity to these parameters, but its CV is

only sensitive to the drug effects. The distribution F(w)
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may also have multimodality if Cw has plateau regions,

a scenario that might occur if multiple dense regions are

separated by empty regions in the scattergram.

Fluctuations in Cw and the choice of wref

No smoothing of the local densities, fi, was employed in

computing Cw. Also, the grid that was used to find fi for

determining the highest density uses wref and is positioned

with respect to the the minima of ISI sequences. This may

contribute to local fluctuations of Cw when the method is

applied to scattergrams with multiple dense regions, or

even nearly uniform-density scattergrams, due to the impre-

cision in finding the highest local density. A kink or a locally

decreasing profile of Cw is an indication of a poor choice of

wref or poor estimation of the highest density point. In such

cases, smoothing techniques could be employed to smooth

the two-dimensional scattergram density, and the maximal

density coordinate may be provided directly. For typical

scattergrams such as those illustrated in Fig. 1, a value of

wref near 0 is usually sufficient such that only one single

density maximum is found. For uniform density distribu-

tions, the center point of the scattergram could be supplied

as the maximal density coordinate. Nonmonotonic behavior

may still occur if all significantly large clusters cannot

be centered by specifying one maximal density coordinate.

In such cases, extensions of our method must be sought,

perhaps by using disjoined multiple grids.
Dependence of Cw and F(w) on rate

The two sides of the rectangle in the grid used to compute Cw

are w� hai and w� hbi. For ISI scattergrams of single spike

trains, each side becomes w� hISIi. But Cw is plotted in both

cases as a function of scale length w and not as a function of

the side length of the rectangle itself. This leads to a depen-

dence of Cw on the spike rate. A slow spike train with a

certain amount of scatter of ISIs in the scattergram will be

considered to have tighter clustering than a fast spike train

with the same amount of scatter because the spread when

measured with respect to its mean is larger in the latter

case. As a consequence, the clustering density, F(w), will

have a sharper peak and a smaller width for the spike train

that has smaller CVs of its ISIs.
Difference from cluster analysis

Several methods reported in the literature sought to identify

the occurrence of clusters in recordings of spike trains

(1,17,18). Although scattergrams obtained from spike trains

with temporal clusters could lead to clusters in the return

maps, our aim was to quantify the clusters seen in the return

maps, and not to identify them in the spike trains. Methods

regularly used in spike sorting (22,23), for example, consider

the distribution of the points and their relative mutual

distance. Our method differs from this technique in that we
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do not factor the mutual distances into our calculation. The

meaning of a cluster as used here is not the same as that

used in typical cluster analysis literature. A cluster here is

simply a group of ISI pairs in an area-limited rectangular

grid. This area limiting is necessary to introduce length (or

time) scale (w) in the scattergram phase space. In the absence

of such a scale, the scattergrams obtained for the stochastic

FitzHugh-Nagumo model, for example, would be considered

to have a single cluster at all the noise levels illustrated. This

would not give any useful quantification of the spread of the

ISI density with noise level. The important parameter in our

analysis is the scale length, w. It determines the number of

clusters in the scattergram at each scale length. Every ISI

pair is counted and is part of a cluster. But single outliers

in the ISI phase space form the smallest clusters, and their

contribution is thus much smaller than 1/N, where N is the

total number of ISI pairs. The weight of each cluster depends

on the number of ISI pairs in that cluster. Our analysis is

focused on clustering in a two-dimensional space, and our

method simply quantifies the density fluctuations in it using

a hierarchical method.

A numerical implementation routine in Mathematica and

another in MATLAB for computing w versus Cw for either

single spike trains at a given order or two simultaneous spike

trains are provided in the Supporting Material.
SUPPORTING MATERIAL
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