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Much work has been devoted, during the past 20 years, to using complexity to protect elec-

tions frommanipulation and control.Many “complexity shield” results have beenobtained—

results showing that the attacker’s task can bemade NP-hard. Recently there has beenmuch

focus on whether such worst-case hardness protections can be bypassed by frequently cor-

rect heuristics or by approximations. This paper takes a very different approach: We argue

thatwhen electorates follow the canonical political sciencemodel of societal preferences the

complexity shield never existed in the first place. In particular, we show that for electorates

having single-peaked preferences, many existing NP-hardness results on manipulation and

control evaporate.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Elections represent a crucial process in human societies. They are also used inmultiagent systems. For example, elections

have been proposed as amechanism for collaborative decision-making in suchmultiagent system contexts as recommender

systems/collaborative filtering [39] and planning [19,20]. The importance of elections explains why elections are studied

intensely over awide range of fields, including political science,mathematics, social choice, artificial intelligence, economics,

and operations research. Formally, an election system takes as input a set of candidates or alternatives and a set of votes,

and outputs a subset of the candidates as the winner(s). The votes are over some domain, typically the linear orders over

the candidates or the 0-1 “approval vectors” over the candidates.

“Control” and “manipulation” are terms-of-art for two types of manipulative actions on elections.We provide definitions

in Section 2. However, briefly put, control refers to attempts to make a given candidate win [6] or not win [33] an election

by actions such as adding or deleting voters or candidates. And manipulation refers to attempts to make a given candidate

win [4,5] or not win [16] by some coalition of voters who strategically change their votes. There is a large literature, started
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by the insightful contributions of Bartholdi, Orlin, Tovey, and Trick [4–6], on choosing election systems that make control

and manipulation NP-hard, i.e., on choosing election systems that seek to make control and manipulation computationally

prohibitive (see the survey [25]). Recently, there has been a flurry of work seeking to bypass worst-case manipulation

hardness results by frequently correct heuristics or approximation algorithms (as some pointers into that literature, see,

e.g., [13,15,28,41,44,45]).

The present paper takes a radically different approach. We study elections where the vote set must be “single-peaked.”

We will discuss single-peakedness in more detail after stating our main contributions. But, simply put, in the model in

which votes are linear orders single-peakedness means that there is some linear ordering of the candidates relative to

which each voter’s preferences always increase, always decrease, or first increase and then decrease. In the model in which

votes are approval vectors, single-peakedness means there is some linear ordering of the candidates relative to which each

voter’s approved candidates are contiguous. Single-peaked preferences, introduced by Black [9,10], model societies that are

heavily focused on one issue (taxes, war, etc.). The single-peaked framework is so central to political science that it has been

described as “the canonical setting formodels of political institutions” [30]. Indeed, it is typically themodel of societal voting

first covered in an introductory course on positive (i.e., theoretical) political science. This paper’s main contributions are the

following:

1. We introduce the study of single-peakedness for approval-voting elections. Approval-voting elections are elections

where voters vote by approval vectors, and the candidate(s) with the highest number of approvals win.

2. In Section 3 we show that for both approval voting and plurality voting, many election control problems known to be

NP-hard in the general case have polynomial-time algorithms in the single-peaked case.

3. In Section 4 we show that many election manipulation problems known to be NP-hard in the general case have

polynomial-time algorithms in the single-peaked case.

However, in Section 4 we also show that many manipulation problems remain NP-hard even when restricted to

the single-peaked case. In this result we were inspired by the path-setting work of Walsh. Walsh [43] showed that

single transferable vote, for at least three candidates and weighted votes, remains NP-hard to manipulate even in the

single-peaked case.

4. InTheorem4.2weshowthat in the single-peakedcase in3-vetoelections (i.e., eachvotervotes against threecandidates

and for all others) manipulation is in P for up to four candidates, is NP-hard for five candidates, and is in P for six or

more candidates. This shows that, contrary to intuition, even for natural systems there are cases where increasing the

number of candidates decreases the complexity.

We mostly defer discussion of related work until after our results, as the related work will then have more context and def-

initions to draw on. However, we mention now an issue that may at this point worry readers familiar with “median voting.”

“Median voting” and “generalized median voter schemes” are known not to give voters incentives to vote insincerely, for

single-peaked electorates (see [3,38] and the references therein for definitions and discussion). Onemight naturally wonder

whether single-peaked electorates should use only median voting. However, in real-life scenarios voting rules are typically

fixed (e.g., to be plurality or approval) and cannot be changedwhen one suspects the electorate to be single-peaked. In addi-

tion, lack of incentive to vote insincerely regarding manipulation does not say anything about a rule’s resistance to control.

2. Preliminaries

2.1. Elections and preferences

An election consists of a setC of candidates and a collectionV of votes.Wewill consider twodifferentmodels for votes. One

is that each vote is a vector (an approval vector) from {0, 1}‖C‖, denoting approval (1) or disapproval (0) for each candidate.

The other model is that each vote is a linear order over the candidates, e.g., Bob > Alice > David > Carol. By linear order we

mean a strict, linear order—a complete, transitive, antisymmetric relation. An election system is amapping that takes as input

a candidate set C and a set V of votes over that candidate set, and outputs an element of 2C , i.e., outputs which candidates

are winners of the election. We, like Bartholdi et al. [6], do not expressly forbid elections with no winners. However, all the

natural election systems discussed in this paper have the property that there is always at least one winner when there is at

least one candidate. Except where we explicitly state otherwise, V is a list of votes (ballots), so if three votes are the same,

they will appear three times in the list. We will use succinct input [23] to describe the quite different input model in which

each preference that is held by one or more voters appears just once in the list and is accompanied by a binary number

stating how many voters have that preference.

The election systems ofmost interest to us in this paper are the following ones. In approval voting, voters vote by approval

vectors, and whichever candidate(s) get the most approvals are the winner(s). A scoring protocol election, which is always

defined for a specific number m of candidates, is specified by a scoring vector, α = (α1, α2, . . . , αm) ∈ N
m, satisfying

α1 ≥ α2 ≥ · · · ≥ αm. Votes are linear orders. Each vote contributes α1 points to that vote’s most preferred candidate, α2

points to that vote’s second most preferred candidate, and so on. And whichever candidate(s) get the most total points are

the winner(s). Among the most important scoring protocols for m candidates are plurality, with α = (1,

m−1︷ ︸︸ ︷
0, . . . , 0), j-veto
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Utility

candidate c1 candidate c2 candidate c5

Position on Taxes
low taxes high taxes
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candidate c3 candidate c4

Fig. 1. Single-Peaked Preference Motivation: Utility Curves for Three Voters.

(j ≤ m), with α = (

m−j︷ ︸︸ ︷
1, . . . , 1,

j︷ ︸︸ ︷
0, . . . , 0), and Borda, with α = (m − 1,m − 2, . . . , 0). For m candidates, j-approval and

(m − j)-veto are the same system. We will also speak of the veto system for an unbounded number of candidates, by which

we mean that on inputs withm candidates, each voter gives 1 point to all candidates other than her least favorite candidate

and 0 points to her least favorite candidate.Wewill similarly also speak of plurality for an unbounded number of candidates,

by which we mean that on inputs with m candidates, each voter gives 0 points to all candidates other than her favorite

candidate and 1 point to her favorite candidate. And the general case of approval voting is always for an unbounded number

of candidates.

Let us fix some notation for the election systems defined above. Let (C, V) be an election and let c be a candidate in C.

By score(C,V)(c) wemean the score of c in election (C, V), i.e., the number of points c receives under plurality, veto, or some

given scoring protocol and the number of c’s approvals under approval voting. It will always be clear from the context which

election system the score refers to. If the candidate set C is clear from the context, we simply write scoreV (c).

2.2. Single-peaked preferences

A collection V of votes, each vote vi being a linear order>i over C, is said to be single-peaked exactly if there exists a linear

order over C, call it L, such that for each triple of candidates c, d, and e, it holds that:

(c L d L e ∨ e L d L c) �⇒ (∀i) [c >i d �⇒ d >i e].
This is simply a formal way of saying that with respect to L, each voter’s degree of preference just rises, just falls, or rises to

a peak and then falls. The loose intuition behind this is captured in Fig. 1. If we imagine an electorate completely focused

on one issue (say taxes), with each person having a single-peaked—in the natural analogous sense of that notion applied to

curves—utility curve, one gets precisely this notion, give or take the issue of ties. Note that different voters can have different

utility curves, as they do in this example. In Fig. 1, the preferences of v1 would be c1 > c2 > c3 > c4 > c5, of v2 would be

c3 > c4 > c2 > c1 > c5, and of v3 would be c4 > c3 > c2 > c1 > c5.

The seminal study of single-peaked preferences was done by Black [9], and that work and many subsequent studies, e.g.,

[10,17,35,37,40], argued that single-peaked preferences (in the unidimensional spatial model) are a broadly useful model

of electoral preferences that captures many important settings. Of course, issues that are multidimensional—as many issues

are—are typically not captured by single-peaked preferences (bywhichwe alwaysmean the unidimensional case). And even

in a society that is completely focused on one issue, some maverick individuals may focus on other issues, so one should

keep in mind that the single-peaked case is a widely studied but extreme model.

Looking again at Fig. 1, let us imagine that each voter has a utility threshold at which she starts approving of candidates.

Then in themodel inwhich votes are approval vectors,wewill have that for some linear order L, each voter either disapproves

of everyone or approves of precisely a set of candidates that are contiguous with respect to L. Formally, we say a collection V ,

made up of approval vectors v1, v2, . . . , vn over the candidate set C, with Approvesi being the set of candidates that vi
approves, is single-peaked exactly if there is a linear order over C, call it L, such that for each triple of candidates c, d, and e,

it holds that:

c L d L e �⇒ (∀i) [{c, e} ⊆ Approvesi �⇒ d ∈ Approvesi].
The reasons that single-peaked approval voting is compellingly natural to study—and the reasons why one should not

go overboard and claim that it is a universally appropriate notion—are essentially the same as those, touched on above,

involving single-peaked voting with respect to preference orders. In many cases it is natural to assume that there is some

unidimensional issue steering society and that each person’s range of comfort on that issue is some contiguous segment

along that issue’s dimension. In such a case, each person’s set of approved candidates will form a contiguous block among
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the candidates when they are ordered by their positions on that issue. To the best of our knowledge, this is the first paper

to study elections based on single-peaked approval vectors.

In our control and manipulation problems, we will for the single-peaked case follow Walsh [43] and take as part of the

input a particular linear order of the candidates relative to which the votes are single-peaked. This is arguably natural—as

we may view candidates’ positions on the issue that defines the entire election as being openly known. However, one may

wonder how hard it is, given a set of voters, to tell whether it is single-peaked. For the case of votes being linear orders,

Bartholdi and Trick ([7], see also [18,22]; a somewhat related paper is [42]) show by a path-based graph algorithm that the

problem is in P. Doignon and Falmagne [18] and Escoffier et al. [22] show how to produce in polynomial time a linear order

witnessing the single-peakedness when such an ordering exists. For the case of votes being approval vectors, the literature

alreadyhas long contained the analogue of both the results justmentioned. In particular, thework of Fulkerson andGross [29,

Sections 5 and 6] and Booth and Lueker [11, Theorem 6] proves, rephrased in our terminology, that in polynomial time—in

a certain natural sense, even in linear time—one can determine whether a set of approval vectors is single-peaked, can in

such a case efficiently find a linear ordering realizing the single-peakedness, and indeed can implicitly represent all linear

orderings realizing the single-peakedness.

Theorem 2.1 ([11,29]). There is a polynomial-time algorithm that, given a collection V of approval vectors over C, produces a

linear order L witnessing V’s single-peakedness or determines that V is not single-peaked.

Note that Theorem 2.1 does not seem to follow from the analogous result for linear orders. For example, extending each

approval vector to form a linear order with all approved candidates preceding all the disapproved ones and then running

the algorithm of Escoffier et al. [22] on the thus transformed input does not work.

2.3. Control and manipulation problems

For an election system E , the Constructive Control by Adding Candidates problem is the set of all (C, V, p, k, C′), where V

consists of votes over C ∪ C′, p ∈ C, and C ∩ C′ = ∅, such that there is a set C′′ ⊆ C′ with ‖C′′‖ ≤ k for which candidate p is

the unique winner under election system E when the voters in V vote over C ∪ C′′ (i.e., we restrict each voter down to her

induced preferences over C ∪C′′). TheDestructive Control by Adding Candidates problem is the same except now the question

is whether there is such a C′′ ensuring that p is not a unique winner.

The Constructive/Destructive Control byDeleting Candidates problems are analogous,with inputs of the form (C, V, p, k),
where k is a limit on howmany candidates from C can be deleted, and it is forbidden to delete p. The Constructive/Destructive

Control by Adding/Deleting Voters problems are analogous, with inputs, respectively (C, V, p, k, V ′) and (C, V, p, k), where

V ′, V ′ ∩ V = ∅, is a pool of “unregistered” voters, and k denotes the bound on howmany voters from V ′ we can add (Adding

case) or how many voters from V we can delete (Deleting case).

Constructive/Destructive Control by Unlimited Adding Candidates is the same as Constructive/Destructive Control by Adding

Candidates except there is no “k”; one may add any or all of the members of C′.
Most of these problems were introduced in the seminal control paper of Bartholdi et al. [6], and the remaining ones

were introduced in [24,33]. These problems model such real-world situations as introducing a candidate to run to split off

another candidate’s support; urging an independent candidate towithdraw; spreading rumors that peoplewith outstanding

warrants who try to vote will be arrested; and sending vans to retirement homes to drive car-less members of one’s party

to the voting place.

In each case, the inputs we specified are for the “general” case. For the single-peaked case there will be an additional

input, a linear order L over the candidates such that relative to L the election is single-peaked (with respect to all voters

and candidates—even those in C′ and in V ′ in problems having those extra sets). If L is not such a linear order, the input is

immediately rejected; L’s goodness can be easily tested in polynomial time, simply by looking at each vote. As mentioned

previously, in assuming that L is given we are following Walsh’s [43] natural model—L is the broadly known positioning of

the candidates.

Both for linear-order votes ([18], see also [7,22]) and for approval-vector votes (Theorem 2.1) it holds that even if L is not

given one can find a good L in polynomial time if one exists. This factmay be comforting to thosewhowould prefer that L not

be given. But we caution that a given vote set V may havemany valid L’s. And for some problems, which valid L one usesmay

affect the problem and its complexity. Indeed, not having L as part of the input might even open the door to time-sequence

issues, e.g., in deletion of candidates/voters, shouldwe ask insteadwhether single-peakedness should only have to hold after

the deletion? (We’d say, ideally, “no.”) These issues are reasonable for further control/manipulation-related study (and the

issue of whether L is known a priori is much studied in the political economy literature already, see, e.g., [1, Section 2.4]).

However, we find theWalsh [43] model to be the most natural and compelling. In many cases our proofs work fine if L is not

part of the input, and at times we will mention that.

The (constructive coalition weighted) manipulation problem was introduced by Conitzer et al. ([16] and its conference

precursors, building on the seminal manipulation papers [4,5]) and takes as input a list of candidates C, a list of nonmanip-

ulative voters each specified by preferences (as a linear order or as an approval vector, depending on our election system)

over C and a nonnegative integer weight, a list of theweights of the voters in ourmanipulating coalition, and the candidate p

that our coalition seeks tomake a winner. The set of all such inputs for which there is some assignment of preferences to the
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manipulators that makes p a winner is the Constructive Coalition Weighted Manipulation problem for that election system.

The Constructive Size-k-Coalition UnweightedManipulation problem is defined analogously, except with all voters having unit

weight and with k being the number of manipulators.

We follow the convention from [4–6] of focusing on the unique-winner case for control and the winner case (i.e., asking

whether the candidate can be made awinner or be prevented from being awinner; following the literature, we will some-

times refer to that as the “nonunique-winner model/case”) for manipulation. In many cases we’ve shown a given result in

both models and will sometimes mention that in passing. All of the results of Conitzer, Sandholm, and Lang of relevance to

us hold in both models (see Footnote 7 of [16]).

For the single-peaked case, a linear order L is given as part of the input and the manipulating coalition’s votes must all

be single-peaked with respect to L (as must all other voters) for the input to be accepted.

2.4. Complexity notions for control and manipulation problems

If by a given type of constructive control action we can never change p from not unique winning (not winning) to unique

winning (winning) we say the problem is immune to that control type. Otherwise we call it susceptible to that control type.

The destructive case is analogous. If a susceptible problem is in P we call it vulnerable. If it is NP-hard we call it resistant. A

manipulation problem is said to be vulnerable if it is in P and resistant if it is NP-hard. In each control/manipulation case in

this paper where we assert vulnerability (or membership in P), not only is the decision problem in P but also in polynomial

time we can produce a successful control/manipulation action if one exists (i.e., the problem is what [33] calls certifiably

vulnerable). Most of these notions are taken in detail from, or are in the general spirit of, the work of Bartholdi, Orlin, Tovey,

and Trick [4–6], as in some cases naturally modified or extended in [33,34].

Almost all NP-hardness proofs of this paper follow via reductions from thewell-knownNP-complete problem PARTITION

(see, e.g., [31]). Specifically,weuse the variant of theproblemwhere our input contains a set {k1, . . . , kn}ofndistinct positive
integers that sum to 2K , and we ask: does there exist a subset A ⊆ {1, . . . , n} such that

∑
i∈A ki = K?

3. Control

3.1. Results

We now turn to our results on control of elections. The theme of this paper is that electorates limited to being single-

peaked often are simpler to control and manipulate. Intuitively speaking, we will show that the more limited range of vote

collections allowed by single-peaked voting (as opposed to general voting) is so restrictive that the reductions showing

NP-hardness fall apart. In particular, unless P = NP those reductions centrally need complex collections of votes to work.

We will show this by proving that our single-peaked control problems are in P. The techniques we use to prove them in P

vary from easy observations to smart greedy schemes to dynamic programming.

The control complexity of approval voting is studied in detail by Hemaspaandra et al. [33] (see [21] regarding limited

adding of candidates, see also the survey [8] for an overview of computational properties of approval voting). Among all

the adding/deleting control cases defined in this paper (10 in total), precisely two are resistant, and the other eight (all

five destructive cases and the three constructive candidate cases) are immune or vulnerable. The two resistant cases are

Constructive Control by Adding Voters and Constructive Control by Deleting Voters.

The following theoremshowsthatbothof thesecomplexity shieldsevaporate for societieswithsingle-peakedpreferences.

Briefly put, the challenge here is that the set V ′ of voters to add may be filled with “incomparable” voter pairs—pairs such

that regarding their interval with respect to the linear order defining single-peakedness, neither is a subset of the other. So

it is not immediately obvious what voters to add. We solve this by a “smart greedy” approach. This involves breaking votes

first into broad groups based on where their intervals’ right edges fall with respect to just a certain “dangerous” subset of

the candidates, and then re-sorting those based on their left edges, and we argue that if any strategy will reach the control

goal then this one will.

Theorem3.1. For the single-peaked case, approval voting is vulnerable to constructive control by adding voters and to constructive

control by deleting voters, in both the unique-winner model and the nonunique-winner model, for both the standard input model

and the succinct input model.

This result holds in our settled model in which the linear order specifying the society’s order on the candidates is part of

the input, and also holds in the model in which the linear order is not part of the input but rather the question is whether

there exists any valid linear order relative to which there is a way of achieving our control goal.

Proof. We will cover the unique-winner cases only. From these it will be completely clear how to handle the nonunique-

winner cases. We will cover just the succinct-input cases, as each implies the corresponding standard-input case. Suscepti-

bility is immediately clear by easy examples.

First, let us speak of the societal linear order. In the model in which the (purported) linear order is part of the input, start

by doing the obvious polynomial-time check to see whether this linear order truly is valid with respect to the voters V , the
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Fig. 2. Bar chart of approvals from V , plus intervals indicating the votes in V ′ and their multiplicities. The candidates are ordered in the societal linear order and

the “dangerous” candidates are marked with shaded bars.

unregistered voters V ′, and the candidates C. That is, check to ensure that each member of V and V ′ approves either of no
candidates or approves of exactly a collection of candidates that are contiguous with respect to the input linear order. If so,

the votes of V ∪V ′, which are approval vectors over C, are single-peakedwith respect to the input societal linear order over C.

If not, output “invalid societal linear order” and halt. This very easy observation in effect shows that, for the approval-vector

case, checking a given purported societal linear order is in P. That is equally obviously true for the votes-are-linear-orders

setting, of course.

If we’re in the model in which a linear order must be found, if one exists, relative to which the problem is single-peaked

and the given control action is possible, simply use Theorem 2.1 to efficiently find some linear order relative to which our

input is single-peaked. If none exists, state that and terminate. If Theorem 2.1 gives us some valid order, it is not hard to

see that the algorithm we are going to give in this proof will find a successful control action if and only if there exists any

valid societal linear order relative to which a successful control action exists. That is basically because if π1 and π2 are valid

societal linear orders, the votes are the same either way, and in each case the algorithm we are about to give will succeed

exactly if there exists a legal-cardinality collection of unregistered voters that achieves the control goal.

So let us take it that we have the societal linear order, which we will refer to as L. We start with the case of adding voters.

This proof will be done rather visually. And although we will implicitly be sketching a general proof, we will keep close to

heart an example, as that will make the idea of the proof clearer. Let p be the preferred candidate—the onewe seek tomake a

unique winner. Fig. 2 shows a representation of the initial state. In this figure, for display purposes we have renamed all the

candidates in a way that echos the societal linear order L, i.e., the candidates are each labeled with respect to whether they

are left or right of p in L, and are ordered following the societal order. The bars represent the total number of approvals each

candidate gets over all the votes contained in V . Since we’re in the succinct-input case, we of course in computing that take

into account the multiplicities, e.g., if candidate r10 is approved of in one ordering that occurs with multiplicity 4 and one

that occurs withmultiplicity 3, and in no others, then the bar for r10 would show that it gets 7, not 2, approvals. The intervals

below the bar graph reflect the votes in V ′. Note that each vote type in V ′ either approves of no candidates (in which case

we won’t even display it; it is of no help toward meeting our control goal) or, necessarily, is an interval (although perhaps a

degenerate one that contains exactly one candidate) with respect to L. Since we’re handling the succinct case, votes of the

same vote type are in the figure listed together along with their multiplicity to their right. We do this because in the input

to the problem votes come in by type and with a listed-in-binary multiplicity, in the succinct case.

The number of vote types is O(‖C‖2), since each vote type, except for disapproving of everyone, is defined by its left and

right endpoints. And, evenmore to the point, the number of vote types is trivially at most linear in the size of the input, since

each vote type cast by at least one voter has to appear in the input. So the number of vote types certainly is not so large as

to cause any challenges (about having enough time to consider the vote types occurring in V ′) regarding remaining within

polynomial time.

Now, at first, things might seem worrisome. How can we decide which votes to add, especially between “incomparable”

vote types such as, in our figure, the vote type with multiplicity 2 and the vote type with multiplicity 7? Those two vote

types each help p and some other candidates. However, the sets of other candidates helped are incomparable—neither is a

subset of the other.

We handle this worry by giving a “smart greedy” algorithm that only makes moves that are clearly at least as safe as any

other move, e.g., that will never close down the last path to success if any path to success exists.
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Let us look again at the figure. Note that although there aremany candidates, we can ignore all candidates except p herself

and the candidates that are shaded—l6, l3, l2, r3, r6, and r10. Why?Well, in our algorithm, we will never add any vote from V ′
that does not approve of p. In fact, let us from now on consider V ′ to be redefined to have removed from it every vote that

does not approve of p. So in the figure, the V ′ vote types shownwithmultiplicity 5 and 9 go, as do any votes inside “etc.” that

do not approve of p. Now, since we will never add a vote from V ′ that does not approve of p (indeed, we redefined V ′ to drop

such votes), and since each added vote will be an interval that includes p, notice that, for example, if we add some votes from

V ′ that cause p to have (in total, between the original votes from V and added votes from V ′) strictly more approvals than r3,

then p necessarily will have strictly more approvals than r1 and r2, since each will have received from the added votes from

V ′ nomore additional approvals than p received from those added votes. By the same reasoning, if by adding votes from (our

redefined) V ′ we ensure that p has strictly more approvals than r6, clearly p will have strictly more approvals than r4 and

r5. And the same argument applies to the case of r10 and, in mirror image, the shaded left-side bars. So these are the only

“dangerous” contenders that we have to worry about regarding p. This observation will guide our choice of which votes to

add and which candidates to ignore.

The reader may worry that the “by the same reasoning” statement four sentences ago is not a valid claim. In particular,

onemayworry that since r5 starts above p in score, wemay by adding votes that approve of both p and r5 (but not r6) end up

with p having strictly more approvals than r6 and yet with r5 having more approvals than p, contrary to what our sentence

above is asserting. The reason this reasonable worry is not actually a problem is that we will, as will be made clearer later

in the proof, use a particular step-by-step process. The process we follow will, before even thinking of adding any votes

approving r5, first have (if there is any path to ensuring this; if not, control is impossible) ensured via adding votes that give

approval to p but not to r3 (and thus not to r5) that p has more approvals than r3. But note that after doing that, our “by the

same reasoning” does cleanly apply to the case of r4, r5, and r6. This point is not identical to, but rather works hand-in-hand

with, the point of the next paragraph.

Before going on, let us mention why we two paragraphs ago did one step of what will be a step-by-step process, rather

than simply trying to handle everything in one sweeping action. In particular, onemight ask whywe did not simply say that

if p by adding votes from (our redefined) V ′ could be made to defeat r10 then it necessarily would defeat all of r1 through

r9. But that claim in fact does not hold. Consider the case of adding 6 of the vote type having multiplicity 7 in the figure.

Doing so boosts p to 8 approvals, passing r10’s 7 approvals. But in the process, r3 was boosted to 9, and so p does not beat

r3. That is, the argument used two paragraphs before the present one worked because the candidates we argued we could

ignore were strictly less approved, currently, than the “dangerous” voter we left in that outflanked them. Just to be utterly

specific, the first dangerous candidate to the right of pwill be the leftmost candidate to the right of p that from V gets at least

as many approvals as p (if we were in the nonunique-winner model, we would have said “strictly more approvals than p”).

In the figure, that is r3. And the next dangerous candidate is whichever candidate is the next candidate to the right of that

candidate that from V has strictly more approvals than that candidate. In our figure, that is r6. And so on. And analogously

on the left.

So, now that we’ve set out who the dangerous rivals are, let us see if there is a choice of control action that can let us beat

them. In this proof, we will show just how to beat the very first of them, and then will mention how to continue the process

to (attempt to) defeat the rest of them. Crucially, the path we will take to defeat our first rival will be carefully chosen so

that it is the safest possible path. That is, if there is any overall successful control action, then there will be one consistent

with the actions we take to beat the first rival. And the iterative repeating of the scheme we outline in this proof will in fact

then find such actions.

So let us focus on the first dangerous rival. In our figure, that would be r3. (Note: If there are no dangerous rivals, then

p is already a unique winner, and we’re done. If the only dangerous rivals we have are on the left, then mirror image the

universe, i.e., reverse L, and now all our dangerous rivals are on the right.) Now, to become the uniquewinner, pmust strictly

beat r3. But note that among all the votes in V ′, the only ones that can possibly make that happen are (keeping in mind that

we consider V ′ to now have in it only votes that approve of p) those votes in V ′ whose right endpoint falls in the half-open

interval [p, r3). Call this set B. These are the only votes in V ′ that let p gain approvals relative to r3. So, in any control action

at all that causes p to strictly beat (and we mention that if we were in the nonunique-winner model, we’d here say “tie or

beat”) r3, we must put enough votes from that collection, B, in to make that happen. So our only question is which of these

votes to add, if there even are enough of them to add to lead to success. We do so as follows. We will add votes from among

these starting first with the rightmost left endpoint. This is a perfectly safe strategy, as that choice helps the same or strictly

fewer “left” dangerous candidates thanwould choosing a vote with a left endpoint that goesmore to the left. As to theworry

that by within B looking only at the left endpoint we may favor some right-side candidates that we might have otherwise

slighted, that is so, but it is not a worry. We indeed are treating all endpoints between p and just before r3 as a big blurred

class. However, the differences among those endpoints affect just the (necessarily nondangerous) candidates in-between,

namely, in our figure, candidates r1 and r2, andwe already argued that by handling r3 wewill handle both of those. So giving

extra approvals to one or both of those (that we could have avoided by making another choice within B) is not an issue. In

short we’ve intentionally smeared our right-end finickiness because it doesn’t matter, but left-end details matter a lot. So,

in our figure, we need p to gain two approvals relative to r3. Using the scheme/ordering just mentioned, we will among the

votes in B keep eating through votes until we either achieve this or until we’ve hit the control problem’s limit on the total

number of votes we are allowed to add from V ′. In this case, in our figure’s example, the votes belonging to B (let us assume

that the “etc.” members of V ′ contain nomembers of B) are those votes contained inside the types [l4, p], [l3, r1], and [l1, r2].
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The first vote type to draw on among these is (not withstanding that doing so helps r2, unlike the case for the other two

members of B) [l1, r2], as it has the rightmost left endpoint. That vote type is of multiplicity 1, so we take that one vote. The

next vote type to draw on is [l3, r1]. Even though that vote type is of multiplicity 2, p only needs one more approval to beat

r3, so we add to our election just one of the two of the votes of type [l3, r1].
And so we have defeated our first dangerous rival, and in the safest possible way—a way that preserves a path to success

if any exists.

The completion of the algorithm is basically to do this iteratively as long as candidates remain that, relative to the current

state of the votes, are dangerous. So, after we remove a rival, we can consider all the added votes as if they are part of V

now, and can redraw the figure, and can move forward, and do all the above against the next dangerous candidate on the

right (of course, decreasing the limit on how many votes we are allowed to add by the number we just added), or if we

run out of candidates on the right, we can mirror image L and start eating through any remaining dangerous candidates.

(Regarding who the dangerous candidates are, the recomputation just mentioned is natural. But we mention in passing

that the set of right-side dangerous candidates we will deal with in the algorithm is in fact the same as the set initially

identified—the picture updating won’t change it. However, while handling those candidates, it is possible that some of the

additional approvals given to pwill help it defeat some of the original left-side rivals, as a free side effect.) If we achieve our

control goal before burning through the k allowed additional votes from V ′ (recall that k is part of the problem’s input) then

we have achieved our control goal, and otherwise it holds that our control goal cannot be achieved.

Let us now turn to the case of deleting voters. This case can be handled essentially symmetrically to the adding-voters

case, except that we now have a very different choice of which voters to focus on and how to sort them in order to decide

which to delete. So we merely highlight the differences between the two cases.

In the deleting-voters case, a picture showing our initial state would show just the bar chart of Fig. 2, i.e., the number of

approvals from V each candidate gets initially. After deletion, the deleted votes would show up below the bar chart, each

again as an interval corresponding to the candidates approved of by this voter. However, since it would be pointless to delete

a voter approving of p, all such intervals do not include p.

Now, we try to make p strictly beat the next dangerous rival to the right, starting with r3 in the example shown in Fig. 2—

ignoring, of course, the intervals indicating the votes inV ′ and theirmultiplicities, as there is noV ′ in the deleting-voters case.

To do so,wenowconsider all the (remaining, i.e., not yet deleted in the current iteration of our algorithm) voteswith intervals

whose left endpoint falls in the half-open interval (p, r3] (in the first iteration in our example). Nowwe sort these votes from

the rightmost right endpoint to the leftmost right endpoint. As in the adding-voters case (except there we added votes), we

now delete, following the sorted order, just enough votes so that p has one more approval than r3. If that is impossible, we

cannot control. But if it is possible, we’ve succeeded inmaking p defeat r3 in the safest possible way. Recomputing the figure

(where, in the redrawn picture, updating the number of the candidates’ approvals implies that r3 no longer is a dangerous

candidate for p), we try to keep defeating p’s remaining dangerous rivals. When we run out of dangerous candidates to the

right of p, we again mirror image the universe by reversing L and try to make p defeat any remaining dangerous candidates.

Eventually, this process ends whenwe either succeed inmaking p the unique winner by defeating all of p’s dangerous rivals,

or we exceed the deletion limit k before reaching this goal. All details not discussed here are obvious from the adding-voters

proof. �

We turn from approval voting to plurality voting. Plurality voting’s constructive control complexity was studied in detail

in the seminal control paper of Bartholdi et al. [6]. The destructive caseswere added byHemaspaandra et al. [33] (see [24] for

the limited adding of candidates cases). For plurality, the case-by-case situation is close to the opposite of that for approval.

Regarding all the adding/deleting control cases defined in this paper, the four voter cases are vulnerable but all six candidate

cases are resistant. However, our results here again are in keeping with our paper’s theme: all six of these cases become

vulnerable for single-peaked societies.

Theorem 3.2. For the single-peaked case, plurality voting is vulnerable to constructive and destructive control by adding candi-

dates, by adding unlimited candidates, and by deleting candidates, and these results hold in both the unique-winner model and

the nonunique-winner model.

This result holds in our settled model in which the linear order specifying the society’s order on the candidates is part of the

input, and also holds in the model in which the linear order is not part of the input but rather the question is whether there

exists any valid linear order relative to which there is a way of achieving our control goal.

Our proofs of the different parts of this theorem vary greatly in approach. One approach that is particularly useful is

dynamic programming. We defer the proof of Theorem 3.2 to Section 3.2.

For two very important voting systems, plurality and approval, we have seen that in every single adding/deleting

case where they are known to have NP-hardness complexity shields, the complexity shield evaporates for societies with

single-peaked preferences. In the coming manipulation section we will also see a number of cases where NP-hardness

shields melt away for single-peaked societies. However, we will also see some cases—and earlier such a case was found by

Walsh [43]—where existing NP-hardness shields remain in place even if one adds the restriction to a single-peaked society.

The previous paragraph raises the following natural question: given that restricting to single-peaked preferences can

sometimes remove complexity shields, e.g., Theorem 3.1, and can sometimes leave them in place, e.g., Theorem 4.3, can
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restricting to single-peaked preferences ever erect a complexity shield? It would be very tempting to hastily state that

such behavior is impossible. After all the single-peaked case, if anything, thins out the flood of possible control-actions/

manipulations. But we’re talking about complexity here, and fewer options doesn’t always mean a less complex problem.

In particular, one of those manipulation/control-action options that single-peakedness takes off the table might have been

a single, sure-fire path to victory under some election system. In fact, using precisely that approach, and a few other tricks,

we have built an artificial election system for which unweighted constructive manipulation by size-3 coalitions is in P in the

general case but is NP-complete for the single-peaked case. The system’s votes are approval vectors. The system is highly

unnatural and would never be considered for real-world use. However, its goal is merely to show that restricting to single-

peakedness can, perhaps surprisingly, raise complexity. We conjecture that this strange behavior will never be seen for any

existing, natural election system. We summarize this paragraph in the following theorem.

Theorem 3.3. There exists an election system E , whose votes are approval vectors, for which constructive size-3-coalition un-

weighted manipulation is in P for the general case but is NP-complete in the single-peaked model.

This result holds both in our settled model where L, the society’s ordering of the candidates, is part of the input and in the

model where L is not given and the question is whether there is any societal ordering of the candidates that allows the

manipulators to succeed.

See Footnote 8 of the technical report version [26] for a discussion of whether the election system itself should be allowed,

in the single-peaked case, to have its actions depend on the input permutation relative to which V is single-peaked. Our

construction and proof hold regardless of which approach one takes to this.

Proof. Let C = {c1, . . . , cm} be a set of candidates that is lexicographically ordered. That is, c1 is the smallest candidate

in this ordering. Note that this lexicographical ordering is not necessarily related to the society’s ordering in single-peaked

electorates. Let V be a collection of approval vectors over C. Given C and V , election system E works as follows. If ‖C‖ ≤ 2,

all candidates win. Otherwise (i.e., if ‖C‖ ≥ 3) we have two possibilities:

1. If there exists no permutation making the given votes single-peaked (which, by Theorem 2.1, can be tested in poly-

nomial time) then all candidates win. This feature of the system allows a manipulating coalition to in the general

(single-peakedness not required) case cast votes precluding single-peakedness, an attack the single-peaked case does

not allow.

2. Otherwise (i.e., if there is some permutation witnessing single-peakedness of the votes), if the lexicographically

smallest candidate, c1, when viewed as encoding a boolean formula encodes a satisfying one and the lexicographically

smallest approval vector is all zeros, then all candidates win, else all candidates lose.

For the general case, the constructive size-3-coalition unweighted manipulation problem is in P: always have the three

manipulators cast the following votes, with respect to the lexicographic ordering of C = {c1, . . . , cm}:

(1, 1, 0, 0, . . . , 0)

(0, 1, 1, 0, . . . , 0)

(1, 0, 1, 0, . . . , 0)

ensuring that the electorate is not single-peaked, and so all candidates win, including the distinguished candidate.

For the single-peaked case, however, the constructive size-3-coalitionunweightedmanipulationproblem isNP-complete.

The problem is clearly in NP. To show NP-hardness we reduce the well-known NP-complete boolean formula satisfiability

problem to it. Given a boolean formula ϕ, encoded as a string in {0, 1}∗, map it to the instance (C, V, ϕ) of the constructive

size-3-coalition unweighted manipulation problem, where C = {ϕ, 1|ϕ|+1, 1|ϕ|+2}, V consists of one nonmanipulator who

approves of all candidates and three manipulators, and where ϕ is the distinguished candidate the manipulators want to

make win. We claim that the manipulators can succeed in doing so exactly if ϕ is satisfiable. Indeed, if ϕ is satisfiable then

ϕ can be made a winner by one of the manipulators casting the vote (0, 0, 0). On the other hand, if ϕ is not satisfiable and

the electorate is restricted to being single-peaked, then ϕ cannot win, no matter which votes the manipulators cast. �

3.2. The deferred proof of Theorem 3.2

In this section we provide, as a series of lemmas that cover appropriate cases, our proof of Theorem 3.2. One of the

reasons why candidate-control problems for plurality are hard in the general case (i.e., when the voters are not restricted

to be single-peaked) is that adding or deleting even a single candidate can affect the scores of all the other candidates.

However, in the single-peaked case adding or deleting a candidate can affect at most two other candidates. This observation,

formalized in the next lemma, is at the heart of the vulnerability proofs of this section.
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Lemma 3.4. Let (C, V) be an election where C = {c1, . . . , cm} is a set of candidates, V is a collection of voters whose preferences

are single-peaked with respect to a linear order L, and where c1 L c2 L · · · L cm. Within plurality, if m ≥ 2 then

1. score(C,V)(c1) = score({c1,c2},V)(c1),
2. for each i, 2 ≤ i ≤ m − 1, score(C,V)(ci) = score({ci−1,ci,ci+1},V)(ci), and
3. score(C,V)(cm) = score({cm−1,cm},V)(cm).

Proof. Let (C, V), L, and m be as in the statement of the lemma. We prove the second case, 2 ≤ i ≤ m − 1. The proofs of

the boundary cases are analogous. Fix an integer i, 2 ≤ i ≤ m − 1. Each voter v in C that ranks ci as her top choice clearly

still prefers ci to both ci−1 and ci+1 when limited to the choice between ci, ci−1, and ci+1. On the other hand, consider a

voter v in V who ranks some candidate cj , ci �= cj , as her most preferred candidate. If j ≤ i − 1 then, keeping in mind the

single-peakedness of the preferences, clearly this voter prefers ci−1 to ci. If j ≥ i + 1 then, for the same reason, this voter

prefers ci+1 to ci. In either case, this voter does not give her point to ci. As a result, score(C,V)(ci) = score({ci−1,ci,ci+1},V)(ci). �

Using Lemma 3.4, we show that in the single-peaked case plurality is vulnerable to constructive control by adding

candidates.

Lemma 3.5. For the single-peaked case, plurality voting is vulnerable to constructive control by adding candidates both in the

unique-winner model and in the nonunique-winner model.

Proof. We give a polynomial-time algorithm for the single-peaked variant of the constructive control by adding candidates

problem. We focus on the unique-winner case. However, the proof can easily be adapted to the nonunique-winner model,

and we will be pinpointing the necessary changes throughout the proof. As per this problem’s definition in Section 2, our

input is (C, V, p, k, A) and a linear order L over C ∪ A, 1 where C = {p, c1, . . . , cm′ }, A = {a1, . . . , am′′ }, k is a nonnegative

integer, and the preferences in V are over C ∪ A. After checking that the voters in V are single-peaked with respect to L, we

ask whether it is possible to find a subset A′ of A such that (a) ‖A′‖ ≤ k and (b) for each c ∈ C ∪ A′, c �= p, it holds that

score(C∪A′,V)(c) < score(C∪A′,V)(p) (score(C∪A′,V)(c) ≤ score(C∪A′,V)(p) in the nonunique-winner case). Let D = C ∪ A and

let us rename the candidates so that D = {d1, . . . , dm}, where m = 1 + m′ + m′′ and d1 L d2 L · · · L dm. Without loss of

generality we can assume that p is neither d1 nor dm. If this p were d1 or dm, we could add to C two dummy candidates, d′
and d′′, that each voter ranks as the least desirable ones and such that d′ L d1 L · · · L dm L d′′.

Before we describe the algorithm formally, let us explain it intuitively. Let us assume that our instance is a “yes” instance

and that A′ is a subset of Awitnessing this fact. There must be two candidates in C ∪ A′, d� and dr , that are direct neighbors

of p with respect to L restricted to C ∪ A′, i.e., d� L p L dr and there is no di ∈ C ∪ A′ such that di �= p and d� L di L dr . By

Lemma 3.4, the score of p is “fixed” by d� and dr in the sense that score(C∪A′,V)(p) = score({d�,p,dr},V)(p). Also, given such d�

and dr we can view C ∪ A′ as partitioned into a left part, C� ∪ A′
�, containing d� and the candidates preceding her, a right

part, Cr ∪ A′
r , containing dr and the candidates succeeding her, and a middle part, containing p. The candidates in the left

part and the candidates in the right part all have scores lower than p.

The idea of the algorithm is to try all possible pairs of candidates d� and dr that can be direct neighbors of p and to test,

for each such pair, whether it is possible to add candidates so that (a) each of the candidates in the left part has a score lower

than p, (b) each of the candidates in the right part has a score lower than p, and (c) the number of candidates added is at

most k. This approach is formalized in the algorithm below.

1. For each pair of candidates, d� and dr , such that

(a) d� L p L dr and

(b) there is no i, 1 ≤ i ≤ m′, such that d� L ci L dr ,

execute Steps 2 through 5 below. If after trying all pairs (d�, dr) we have not accepted, then reject.

2.

(a) Set b′ = score({d�,p,dr},V)(p) − 1.

(b) Set C� = {ci|ci L d�} ∪ {d�} and Cr = {ci|dr L ci} ∪ {dr}. (Note that we put d� in C� and dr in Cr even if either or

both of them belong to A.)

(c) Set A� = {ai|ai L d�} and Ar = {ai|dr L ai}.
(d) V� is the collection of those voters in V who, among the candidates in C� ∪ Cr ∪ A� ∪ Ar ∪ {p}, rank first either

d� or a candidate di such that di L d�. Vr is the collection of those voters in V who, among the candidates in

C� ∪ Cr ∪ A� ∪ Ar ∪ {p}, rank first either dr or a candidate di such that dr L di.

1 If we are in the model in which no linear societal order is given simply use, for example, the algorithm of Escoffier et al. [22] to find one relative to which our

input is single-peaked. If none exists, state that and terminate. If the algorithm of [22] gives us some valid order, it is not hard to see that the algorithm we are

about to describe in this proof will find a successful control action exactly if there is any valid societal linear order relative to which a successful control action

exists. In the remaining proofs of Section 3.2, we will handle only the case that the societal order witnessing single-peakedness is given in our polynomial-time

algorithms showing vulnerability claims. Note, however, that this footnote’s argument handles the case of such a societal order not being given analogously in

each such case.
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Note that if B� is some subset of A� and Br is some subset of Ar then in election (C ∪ B� ∪ Br ∪ {d�, dr}, V) it

holds that (a) each voter in V� ranks first some candidate in C� ∪ B� ∪ {d�}, (b) each voter in Vr ranks first some

candidate in Cr ∪ Br ∪ {dr}, and (c) all the remaining voters rank p first.

3. Find the smallest natural number, call it β�, such that there exists a set B�, B� ⊆ A�, ‖B�‖ = β�, such that for each

c ∈ C� ∪ B� it holds that score(C�∪B�,V�)(c) ≤ b′. If β� does not exist, then discard the current pair (d�, dr) and try the

next one.

4. Find the smallest natural number, call it βr , such that there exists a set Br , Br ⊆ Ar , ‖Br‖ = βr , such that for each

c ∈ Cr ∪ Br it holds that score(Cr∪Br ,Vr)(c) ≤ b′. If βr does not exist, then discard the current pair (d�, dr) and try the

next one.

5. If β� + βr + ‖A ∩ {d�, dr}‖ ≤ k then accept.

This algorithm, and statement and proof of Lemma 3.7, are written to show vulnerability. However, at the end of

Section2,wepromised that all ourvulnerability resultswouldalsohold for the stronger caseof certifiablevulnerability.

That latter claim requires us to in polynomial time not just test whether a successful manipulative action exists, but

to produce it if it does. In almost all this paper’s proofs, it is implicitly clear how to produce the successful action.

However, for the current proof and that of Lemma 3.7, it is less clear, and so we now briefly discuss why certifiable

vulnerability holds here. Suppose the condition in the first line of Step 5 holds. Let B� and Br be sets witnessing the

successful β� and βr values. Then the successful action is to use, as our set A′, B� ∪ Br ∪ ({d�, dr} ∩ A). To support

this, the dynamic programming proof we’ll give for Lemma 3.7 must be altered to not just find a integer value, but

to give the set witnessing that value. Briefly put, one can indeed alter it to do that: using standard techniques for

reconstructing solutions of dynamic programming algorithms we modify the forthcoming proof of Lemma 3.7, so

that it in polynomial time even produces the set A′ (of Definition 3.6) whose cardinality its dynamic programming

algorithm is computing.

It is easy to see that the above algorithm is correct and that it also works in the nonunique-winner model if we replace

Step 2a with b′ = score({d�,p,dr},V)(p). We will now show that the algorithm runs in polynomial time. There are at most

quadratically many (with respect to m = ‖D‖) pairs (d�, dr) to try, so each of the above steps will be executed at most

polynomially often. It remains to show that Steps 3 and 4 can each be executed in polynomial time. To this end, we define

the following functional problem.

Definition 3.6. In the DemoteByAddingCandidates problem we are given as input disjoint candidate sets C and A, vote

collection V of linear orders over C ∪ A, nonnegative integer b, and linear order L over C ∪ A, and the votes in V are single-

peaked with respect to L. We ask what the size is of a smallest set A′ ⊆ A such that for each candidate c ∈ C ∪ A′ it holds
that score(C∪A′,V)(c) ≤ b. If such a set A′ does not exist then, by convention, the answer is ∞.

Computingβ� (βr) in Step 3 (Step 4) simply requires solving an instance of DemoteByAddingCandidateswith input values

C�, A�, V�, b
′, and L restricted to the appropriate subset of candidates (Cr , Ar , Vr , b

′, and L restricted to the appropriate subset

of candidates). The following lemma establishes that this can be done efficiently.

Lemma 3.7. DemoteByAddingCandidates is computable in polynomial time.

Proof. We give a polynomial-time algorithm for the DemoteByAddingCandidates problem. Our input consists of disjoint

candidate sets C and A, vote collection V of linear orders over C ∪ A, a nonnegative integer b, and a linear order L over C ∪ A,

where C = {c1, . . . , cm′ }, A = {a1, . . . , am′′ }, and voters in V have single-peaked preferences with respect to the order L.

Note that within the proof of this lemma, C, A, V , b, and L refer to the input to the DemoteByAddingCandidates problem, not

to the input to the Control by Adding Candidates problem.

Let D = C ∪ A and let us rename the candidates so that D = {d1, . . . , dm}, where m = m′ + m′′ and d1 L d2 L · · · L dm.

Without loss of generality, we assume that d1 ∈ C and that m ≥ 3. (If either of these did not hold, we could add to C an

appropriate number of dummy candidates, each ranked by all the voters as less desirable than any of the candidates in C∪A.

Extending L so that for each added dummy candidate d it holds that d L d1 and the voters are single-peaked with respect to

this extended L is easy.) Let i, j, and k be three positive integers such that 1 ≤ i < j < k ≤ m. We define

1. s(i, j, k) = score({di,dj,dk},V)(dj),

2. s(0, j, k) = score({dj,dk},V)(dj), and

3. s(i, j,m + 1) = score({di,dj},V)(dj).

Note that, by Lemma 3.4, if B is a subset of A such that (a) {di, dj, dk} ⊆ C ∪ B and (b) there is no candidate dl (l �= j) such

that di L dl L dk , then s(i, j, k) = score(C∪B,V)(dj).
Let i and j be two positive integers such that 1 ≤ i < j ≤ m. By A(i, j) wemean a family of subsets of A such that a set B,

B ⊆ A, belongs to A(i, j) if and only if (a) di ∈ C ∪ B, (b) dj ∈ C ∪ B, and (c) (C ∪ B) ∩ {di+1, . . . , dj−1} = ∅.



100 P. Faliszewski et al. / Information and Computation 209 (2011) 89–107

We now define a key value for our algorithm. Let i and j be two positive integers such that 1 ≤ i < j ≤ m. We define

f (i, j) = min
B∈A(i,j)

{‖B‖|(∀d� ∈ C ∪ B, 1 ≤ � ≤ i)[score(C∪B,V)(c�) ≤ b]} .

We adopt the convention that min ∅ is ∞. It is easy to verify that the algorithm’s output should be

min
1≤i<j≤m

{
f (i, j)|{dj+1, . . . , dm} ⊆ A ∧ s(i, j,m + 1) ≤ b

}
.

It remains to show that we can compute the values f (i, j), 1 ≤ i < j ≤ m, in polynomial time. The rest of the proof is

devoted to this task.

We compute the values f (i, j) using dynamic programming. Let j be a positive integer 1 < j ≤ m. It is easy to see that

f (1, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if there is some di ∈ C such that 1 < i < j,

∞ if the above does not hold but s(0, 1, j) > b,

‖A ∩ {d1, dj}‖ otherwise.

Given these initial values, 2 we can compute arbitrary values f (j, k), 1 < j < k ≤ m, using the following facts. Let us fix

j and k such that 1 < j < k ≤ m. If there is a dl ∈ C such that j < l < k then f (j, k) = ∞ (because A(j, k) is empty).

Otherwise

f (j, k) = min
1≤i<j

{f (i, j) + χA(dk)|s(i, j, k) ≤ b},
where χA is the characteristic function of A, i.e., χA(dk) is 1 if dk ∈ A and is 0 otherwise. It is easy to see that using standard

dynamic-programming techniques and the above equations we can compute f (i, j) for arbitrary positive integers i and j,

1 ≤ i < j ≤ m, in polynomial time.

This completes the proof of Lemma 3.7. �
This completes the proof that for the case of single-peaked voters, plurality is vulnerable to constructive control by adding

candidates.

This completes the proof of Lemma 3.5. �
As a corollary to Lemma3.5,we obtain the corresponding result for the case of adding an unlimited number of candidates.

This is because for each unlimited case it is sufficient to use the algorithm for the corresponding limited case with the limit

on the number of candidates that can be added set to the number of spoiler candidates.

Corollary 3.8. For the single-peaked case, plurality voting is vulnerable to constructive control by adding an unlimited number

of candidates in both the unique-winner model and the nonunique-winner model.

In the following proofs, both in the destructive adding-candidates cases and in the deleting-candidates cases, we will

need Lemma 3.4 and one additional tool. That tool is the notion of a neighborhood of a candidate c in an order L witnessing

single-peakedness of an electorate.

Definition 3.9. Let (C, V) be an election and let L be an order such that the voters in V are single-peaked with respect

to L. Let c be a candidate in C. We rename the candidates in C such that C = {bm′ , . . . , b2, b1, c, d1, d2, . . . , dm′′ } and

bm′ L · · · L b2 L b1 L c L d1 L d2 L · · · L dm′′ . For each two positive integers i and j we set Dij(C, c) = {b1, . . . , bmin(i,m′)} ∪
{d1, . . . , dmin(j,m′′)}. We define the direct neighborhood of a candidate c to be the set D(C, c) = {Dij(C, c)|0 ≤ i ≤
m′ and 0 ≤ j ≤ m′′}.

The notation of this definition, in essence, ties the order L to the candidate set C. We will sometimes wish to speak of,

e.g., Dij(C
′, c) for some C′ ⊆ C, c ∈ C′, and this notation allows us to naturally, implicitly speak of an order L′ induced by C′.

Clearly, given a single-peaked election (C, V) and a candidate c ∈ C, ‖D(C, c)‖ is polynomial in ‖C‖. We now turn to the

destructive adding-candidates cases in both the unique-winnermodel and the nonunique-winnermodel. The proof is much

simpler than in the constructive cases.

Lemma 3.10. For the single-peaked case, plurality voting is vulnerable to destructive control by adding candidates in both the

unique-winner model and the nonunique-winner model.

Proof. Our input is C, A, V , k, and L. (C ∪ A, V) is an election, where C = {d, c1, . . . , cm}, A = {a1, . . . , am′ }, and V is a

collection of voters whose preference orders are single-peaked with respect to a given order L. The candidates from C are

already registered and the candidates from A can be added (i.e., A is the spoiler candidate set). k is a nonnegative integer. We

2 Note that here it is important that d1 ∈ C . If this were not the case, wewould also have to directly compute the values f (i, j) for some i and jwhere 1 < i < j.
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now give a polynomial-time algorithm that tests whether there exists a set A′ ⊆ A such that (a) ‖A′‖ ≤ k and (b) d is not a

unique winner of (C ∪ A′, V).
The algorithm works as follows: if for some at-most-3-element subset A′′ of A, d is not a unique winner of (C ∪ A′′, V)

then accept. And otherwise, reject. This algorithm clearly works in polynomial time. It remains to show that it is correct. If

for each A′ ⊆ A it holds that d is a unique winner of (C ∪ A′, V) then the above algorithm correctly rejects. On the other

hand, let us assume that for some A′ ⊆ A it holds that d is not a unique winner of (C ∪ A′, V) and let us fix one such A′. We

claim that there is an at-most-3-element subset A′′ of A such that d is not a unique winner of (C ∪ A′′, V).
Let B = D1,1(C ∪A′, d), that is, B contains the direct neighbors of d (among the candidates in C ∪A′, with respect to L). By

definition, ‖B‖ ≤ 2 and, from Lemma 3.4, score(C∪A′,V)(d) = score(B∪{d},V)(d). Since d is not a unique winner of (C ∪ A′, V),

there is some candidate c ∈ C ∪ A′, c �= d, such that score(C∪A′,V)(c) ≥ score(C∪A′,V)(d). Define A′′ = (B ∪ {c}) ∩ A. Clearly,

‖A′′‖ ≤ 3 and, since B is a “radius-1” neighborhood of d, we have score(C∪A′′,V)(d) = score(B∪{d},V)(d). On the other hand,

since C ∪ A′′ ⊆ C ∪ A′ and c belongs to both sets, it holds that score(C∪A′′,V)(c) ≥ score(C∪A′,V)(c). It follows that in election

(C ∪ A′′, V) candidate c has a score at least as high as that of d and thus d is not a unique winner of (C ∪ A′′, V).
It is easy to see that the same approach can be used to solve the nonunique-winner case. Our algorithm now tries all

at-most-3-element subsets A′′ of A and accepts if and only if for some such A′′ it holds that d is not a winner of (C ∪ A′′, V).
The proof of correctness is analogous to the unique-winner case. �

As an easy corollary we obtain that in the single-peaked case plurality is also vulnerable to destructive control by adding

unlimited candidates.

Corollary 3.11. For the single-peaked case, plurality voting is vulnerable to destructive control by adding an unlimited number

of candidates in both the unique-winner model and the nonunique-winner model.

We now turn to the constructive and destructive deleting-candidates cases in both the unique-winner model and the

nonunique-winner model. The main idea of our algorithms for the deleting-candidates cases is that it is sufficient to focus

on deleting candidates adjacent to the preferred one (to increase her score) and then to delete those remaining candidates

that still defeat the preferred one.

Lemma 3.12. For the single-peaked case, plurality voting is vulnerable to constructive and destructive control by deleting candi-

dates in both the unique-winner model and the nonunique-winner model.

Proof. We give a polynomial-time algorithm for the single-peaked case of constructive control by deleting candidates for

plurality. We focus on the unique-winner model but it is easy to see how tomodify our algorithm to work in the nonunique-

winner model.

Our algorithm’s input contains an election (C, V), a preferred candidate p ∈ C, a nonnegative integer k (the num-

ber of candidates that we are allowed to delete), and an order L such that the voters in V are single-peaked with respect

to L.

By Lemma 3.4, we see that the only possible scores that p can have after deleting some candidates are in the set

S = {score(C−D,V)(p)|D ∈ D(C, p)} and that each of these scores can be obtained by deleting some subset D ∈ D(C, p)
of the candidates. In consequence, to ensure that p is a unique winner we first need to delete some subset D ∈ D(C, p) of

candidates and then—since it is impossible to decrease a candidate’s score via deleting other candidates—delete all those

candidates that still have more points than p. Of course, we do not know a priori which set D in D(C, p) to delete, but since

‖D(C, p)‖ is polynomially bounded in ‖C‖, we can try all its members.

Formally, our algorithm works as follows:

1. For each D ∈ D(C, p), execute Step 2. If after trying all D’s we have not yet accepted, then reject.

2.

(a) While there exists a candidate c ∈ C − D, c �= p, such that score(C−D,V)(c) ≥ score(C−D,V)(p), add c to D.

(b) If ‖D‖ ≤ k then accept.

Clearly, this algorithmworks in polynomial time and, by the preceding discussion, it accepts if and only if it is possible to en-

sure p’s victory via control by deleting candidates. For the nonunique-winner case, we simply need to change the inequality

in Step 2a from “≥” to “>.”

In the destructive case we are given an election (C, V), a despised candidate d ∈ C, a nonnegative integer k (the number

of candidates we can delete), and an order L such that the voters in V are single-peaked with respect to L. We assume that

d is a unique plurality winner of (C, V); otherwise, we can immediately accept. It is sufficient to find a candidate c and a

subset D ⊆ C − {d} of candidates such that ‖D‖ ≤ k and score(C−D,V)(c) ≥ score(C−D,V)(d). As in the constructive case, by

Lemma 3.4, it suffices to try each candidate c ∈ C − {d} and each set D ∈ D(C, c). That is, if there is a candidate c ∈ C − {d}
and a setD ∈ D(C, c) such that (a) ‖D‖ ≤ k, (b) d /∈ D, and (c) score(C−D,V)(c) ≥ score(C−D,V)(d), thenwe accept. Otherwise

we reject. Clearly, this algorithm works in polynomial time and, by Lemma 3.4 and the fact that deleting candidates does
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not decrease the remaining candidates’ scores, is correct. The algorithm can be modified in the obvious way to work for the

nonunique-winner model. �

4. Manipulation

In this section we study constructive coalition weighted manipulation. Recall that in the single-peaked case the ma-

nipulators must cast votes that are consistent with the linear ordering of the candidates (which is part of the input in the

single-peaked case) that defines the society’s single-peakedness. However, all our “single-peaked case is in P” results in this

section also hold in a model in which the linear order of the candidates is not part of the input, and we will comment on

these cases in our proofs below.

This paper’s theme is that single-peakedness removes many NP-hardness shields. For manipulation we support that

theme with Theorem 4.1 (and its implications within Theorem 4.2) and Theorem 4.4. Note that in the general case, the

election systems of parts 1 and 3 of Theorem 4.1 and the “k1 ≥ 2 ∧ k0 ≥ 1” cases of part 2 of this theorem are known to be

NP-complete [16,32,41], and the remaining part 2 cases are easily seen to be in P [32].

Theorem 4.1. For the single-peaked case, the constructive coalition weighted manipulation problem (in both the nonunique-

winner model and the unique-winner model) for each of the following election systems is in P:

1. The scoring protocol α = (2, 1, 0), i.e., 3-candidate Borda elections.

2. Each scoring protocol α = (

k1︷ ︸︸ ︷
1, . . . , 1,

k0︷ ︸︸ ︷
0, . . . , 0), k1 ≥ k0. (This includes a variety of �-veto and �′-approval protocols, e.g.,

the 3-veto cases for m ≥ 6 candidates in Theorem 4.2.)

3. Veto.

All three of Theorem 4.1’s cases hold both in our settled model where L, the society’s ordering of the candidates, is part of

the input and in the model where L is not given and the question is whether there is any societal ordering of the candidates

that allows the manipulators to succeed.

Proof. For each of the election systems stated in the theorem,wewill give or reference a polynomial-time algorithm solving

the constructive coalition weighted manipulation problem for the single-peaked case. Each of these algorithms takes as

input a list C of candidates, a list S of nonmanipulative voters each specified by a single-peaked preference over C (with

respect to the given linear ordering L on C that defines single-peakedness) and an integer weight, a list of the weights of the

voters in our manipulating coalition T , and the candidate p ∈ C that the manipulators in T seek to make a winner (a unique

winner). Note that all manipulators in T must also have single-peaked preferences with respect to L.

Part 1 is a special case of Theorem 4.4. A direct, simple proof of this part can be found in this paper’s technical report

version [26].

We now prove part 2. Let α = (

k1︷ ︸︸ ︷
1, . . . , 1,

k0︷ ︸︸ ︷
0, . . . , 0), k1 ≥ k0, be a scoring protocol. We will handle the cases k1 > k0

and k1 = k0 separately. As above, we will present algorithms for both the nonunique-winner model and the unique-winner

model.

First, assume k1 > k0. In any election with m = k0 + k1 candidates, if the voters are single-peaked with respect to

some linear order L, 3 then the middle candidate(s) (namely, the �m/2�nd candidate in L if m is odd, and the (m/2)nd and

the (1 + m/2)nd candidate in L if m is even) will always be among the winners. Thus given an instance of the constructive

coalition weighted manipulation problem, our distinguished candidate p can be made a winner in (C, S ∪ T) if and only if p

does not lose a point in S. So our algorithm checks whether p does not lose a point in S and accepts or rejects accordingly.

For the unique-winner case within scoring protocol α = (

k1︷ ︸︸ ︷
1, . . . , 1,

k0︷ ︸︸ ︷
0, . . . , 0), k1 > k0, p can be made a unique winner

if and only if

1. p does not lose a point in S, and

2. for all candidates c that are tied with p in S, it is possible to make c lose a point in T (while keeping T single-peaked

with respect to L).

Since the number of candidates is fixed, our algorithm can easily check whether these two conditions hold and then accepts

or rejects accordingly.

Now, assume k1 = k0. Given an instance of the constructive coalition weighted manipulation problem, it is enough

to consider a linear order L (which witnesses single-peakedness; also, recall Footnote 3) that ranks at least k = k0 = k1

3 If L is not part of the input, we simply try all possible societal orderings. This can be done in polynomial time, since there are only a constant number of

candidates.
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candidates beforep and fewer than k candidates afterp: c1 L c2 L · · · L c� L p L c�+2 L · · · L c2k with� ≥ k. For every candidate

ci, � + 2 ≤ i ≤ 2k, to the right of p, we have scoreS(p) ≥ scoreS(ci), and for every candidate cj , k+ 1 ≤ j ≤ �, to the left of p

and to the right of the middle, it holds that if p gets a point then so does cj . It follows that p can be made a winner if and only

if p is a winner in (C, S ∪ T) when every voter in T ranks the candidates from right to left by c2k > c2k−1 > · · · > c�+2 >
p > c� > · · · > c1.

For the unique-winner case within scoring protocol α = (

k︷ ︸︸ ︷
1, . . . , 1,

k︷ ︸︸ ︷
0, . . . , 0), if p’s right neighbor in L is tied with p in

S (i.e., scoreS(c�+2) = scoreS(p)), then set a voter of lowest weight in T to p > c� > c�−1 > · · · > c1 > c�+2 > · · · > c2k
and set all other voters in T to rank the candidates from right to left by c2k > c2k−1 > · · · > c�+2 > p > c� > · · · > c1.

(Note that T is single-peaked with respect to L.) Our algorithm can easily check whether this makes p a unique winner in

(C, S ∪ T), and if so it accepts, otherwise it rejects.

We now come to part 3, which regards veto elections, i.e., scoring protocols α = (1, . . . , 1, 0) where the number

of candidates varies. Similarly to the proof of part 2, this hinges on the following observation: given an instance of the

constructive coalition weighted manipulation problem, where the votes are single-peaked with respect to the society’s

order L, p can be made a winner if and only if p is the only candidate or p is never last in S.

For the unique-winner case, note that since at most two candidates can be ranked last in single-peaked elections, unique

winners within veto elections can only exist if ‖C‖ ≤ 3. The result for ‖C‖ ∈ {2, 3} follows from the previous part of the

theorem, and the ‖C‖ = 1 case is trivial. �

We now come to an unusual case. For general votes (not limited to single-peaked societies), the constructive coalition

weighted manipulation problem for 3-veto is in P for three or four candidates, and is NP-complete for five or more candi-

dates [32]. Note that 3-veto is not meaningfully defined for two or fewer candidates. In contrast with the general case, for

single-peaked votes 3-veto shows a remarkable behavior: moving from five to six candidates lowers the complexity of this

manipulation problem. In some papers, authors state—e.g., page 9 of [16], in a context in which the claim holds perfectly

well—that if one knows the number of candidates, if any, at which a system switches from easy to manipulate to hard to

manipulate, then it is easy by adding dummy candidates to see that for all larger number of candidates the system remains

hard. The following theorem should stand as a caution to take that view only if one has carefully built and checked a “dummy

candidates” construction for one’s specific case.

Theorem 4.2. For the single-peaked case, the constructive coalition weighted manipulation problem (in both the unique-winner

model and the nonunique-winner model) for m-candidate 3-veto elections is in P for m ∈ {3, 4, 6, 7, 8, . . .} and is resistant

(indeed, NP-complete) for m = 5.

This result holds both in our settled model where L, the society’s ordering of the candidates, is part of the input and in the

model where L is not given and the question is whether there is any societal ordering of the candidates that allows the

manipulators to succeed.

Proof. Consider the following four cases.

m = 3 case. In this case, we are looking at the scoring protocol (0, 0, 0). It is immediate that in this scoring protocol all

candidates are always tied for winner, and so p can always be made a winner. For the same reason, p can never be a unique

winner.

m = 4 case. In this case, we are looking at the scoring protocol (1, 0, 0, 0). It is immediate that p can be made a winner (a

unique winner) if and only if p is a winner (a unique winner) in the election where every manipulator ranks p first.

m = 5 case. In this case, we are looking at the scoring protocol (1, 1, 0, 0, 0). It is immediate that the constructive coalition

weighted manipulation problem is in NP, namely, guess single-peaked votes for the manipulators and verify that p is a

winner of the election.

To show NP-hardness, we reduce from PARTITION. Given an instance of PARTITION, i.e., a set {k1, . . . , kn} of n distinct

positive integers that sum to 2K , construct the following instance of Constructive Coalition Weighted Manipulation: the set

of candidates is C = {a, b, c, d, p} with p being our distinguished candidate. The set of nonmanipulators S consists of two

voters, each of weight K . One of the voters votes c > a > p > b > d and the other voter votes d > b > p > a > c. Note

that these two voters fix the society’s order. We also have a set T of n manipulators. The weights of the manipulators are

k1, k2, . . . , kn. We claim that there is a partition if and only if the manipulators can cast single-peaked votes that make p a

winner.

First suppose that there exists a subset S′ of {k1, . . . , kn} that sums to K . For every i ∈ {1, . . . , n}, we set the weight ki
manipulator to p > a > b > c > d if ki in S′ and to p > b > a > c > d otherwise. In the resulting election, a, b, and p each

score 2K points and c and d score K points. It follows that p is a winner of the election.

For the converse, suppose thevoters inT cast votes that are single-peakedwith respect to the societal order enforcedby the

above construction and that p is awinner of the election. Since for every single-peaked vote, if p gets a point then a or b gets a

point, it follows that scoreT (p) ≤ scoreT (a)+scoreT (b). Sincep is awinner of the resulting election, scoreT (p) ≥ K+scoreT (a)
and scoreT (p) ≥ K + scoreT (b). It follows that scoreT (p) = 2K and that scoreT (a) = scoreT (b) = K . But then the weights of

the voters in T that give a point to a sum to K and so we have found a partition.
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Changing the weights of the voters in S from K to K − 1 handles the unique-winner case.

m ≥ 6 case. This has already been proven as the special case k1 ≥ k0 = 3 of part 2 of Theorem 4.1. �

We now present some cases that are known to be NP-hard in the general case (see [32]) and that we can prove remain

hard even in the single-peaked case.

Theorem 4.3. For the single-peaked case, the constructive coalition weighted manipulation problem (in both the unique-winner

model and the nonunique-winner model) is resistant (indeed, NP-complete) for the following scoring protocols:

1. α = (3, 1, 0).
2. α = (3, 2, 1, 0), i.e., 4-candidate Borda elections.

Both cases of Theorem 4.3 hold both in our settled model where L, the society’s ordering of the candidates, is part of the

input and in the model where L is not given and the question is whether there is any societal ordering of the candidates that

allows the manipulators to succeed.

Part 1 of Theorem 4.3 is a special case of Theorem 4.4. A direct, simple proof of this part can be found in this paper’s

technical report version [26]. Part 2’s proof, although more involved, is similar and for this too we refer the reader to the

technical report.

We can extend the ideas behind the proofs of this section’s theorems to obtain Theorem 4.4, a dichotomy result for 3-

candidate scoringprotocols in the single-peaked case. Supporting our paper’s general theme that single-peakedness removes

many NP-hardness shields, wemention that for the general (i.e., not required to be single-peaked) case, the analogous result

for three-candidate scoring protocols α = (α1, α2, α3), α1 ≥ α2 ≥ α3, is that the constructive coalition weighted manip-

ulation problem (in both the unique-winner model and the nonunique-winner model) is resistant (indeed, NP-complete)

when α2 > α3, and is in P otherwise [16,32,41]. So in the general case, all scoring protocols that are not in essence triviality

or plurality are resistant.

Theorem 4.4. Consider a 3-candidate scoring protocol, namely, α = (α1, α2, α3), α1 ≥ α2 ≥ α3, α1 ∈ N, α2 ∈ N, α3 ∈ N.

For the single-peaked case, the constructive coalition weighted manipulation problem (in both the unique-winner model and the

nonunique-winner model) is resistant (indeed, NP-complete) when α1 − α3 > 2(α2 − α3) > 0 and is in P otherwise.

This result holds both in our settled model where L, the society’s ordering of the candidates, is part of the input and in

the model where L is not given and the question is whether there is any societal ordering of the candidates that allows the

manipulators to succeed.

Proof. Consider a 3-candidate scoring protocol α = (α1, α2, α3), where α1 ∈ N, α2 ∈ N, α3 ∈ N, and α1 ≥ α2 ≥ α3.

Without loss of generality, we may assume that α3 = 0. If α3 were not 0, we could replace our scoring protocol with

(α1 − α3, α2 − α3, 0). Suppose that α1 − α3 > 2(α2 − α3) > 0, i.e., α1 > 2α2 > 0. We show that in this case

the constructive coalition weighted manipulation problem is NP-complete. Membership in NP is immediate and to prove

NP-hardness we reduce from PARTITION. Given a PARTITION instance, i.e., a set {k1, . . . , kn} of n distinct positive integers

that sum to 2K , we construct an instance of the constructive coalition weighted manipulation problem as follows. Let a, b,

and p be the candidates in C, where p is the distinguished candidate the manipulators want to make win. There are two

nonmanipulators in S, with preferences a > p > b and b > p > a and both having weight (2α1 − α2)K . There are n

manipulators in T , where the ith manipulator has weight (α1 − 2α2)ki, 1 ≤ i ≤ n. Note that, due to α1 > 2α2 > 0, each

voter has a positive integer weight. We fix the society’s order L to be a L p L b. Note that L and its reverse are the only two

orders consistent with the votes in S, so even in the model where L is not part of the input, we will still, in effect, be working

with L as the society’s order.

We claim that there exists a partition if and only if the manipulators can cast single-peaked votes (with respect to L) that

make p a winner of (C, S ∪ T).
Suppose there is a partition, i.e., a set A ⊆ I = {1, 2, . . . , n} such that

∑
i∈A ki = ∑

i∈I−A ki = K . To make p win,

set (α1 − 2α2)K vote weight of T (say, each of the manipulators corresponding to A) to p > a > b and the remaining

manipulators to p > b > a. Note that T is single-peaked with respect to L. We have the following scores:

scoreS∪T (p) = 2α2(2α1 − α2)K + 2α1(α1 − 2α2)K = 2
(
α2
1 − α2

2

)
K,

scoreS∪T (a) = α1(2α1 − α2)K + α2(α1 − 2α2)K = 2
(
α2
1 − α2

2

)
K, and

scoreS∪T (b) = α1(2α1 − α2)K + α2(α1 − 2α2)K = 2
(
α2
1 − α2

2

)
K.

So p is a winner of election (C, S ∪ T).
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Conversely, suppose the votes in T can be cast such that p is a winner of (C, S ∪ T). Note that

∑
c∈C

scoreS∪T (c) = 6
(
α2
1 − α2

2

)
K.

So in order for p to be a winner, p’s score in (C, S ∪ T) needs to be at least 2
(
α2
1 − α2

2

)
K . This can happen only if p is ranked

first by every voter in T . And if we set T ’s votes like that, p’s score is exactly 2
(
α2
1 − α2

2

)
K . In order for p to be a winner, a’s

score and b’s score need to be 2
(
α2
1 − α2

2

)
K each. This means that the vote weight of the voters in T voting p > a > b is

equal to the vote weight of the voters in T voting p > b > a. Thus there exists a partition.

Since the reduction is polynomial-time computable, the constructive coalition weighted manipulation problem for the

scoring protocol α = (α1, α2, 0) is NP-complete, provided that α1 > 2α2 > 0.

The unique-winner case can be handled by multiplying all weights in the above construction by a suitable constant

(depending on α1 and α2) and then subtracting 1 from the weights in S. The idea is that subtracting 1 from the weights in S

ensures that p can become the unique winner if there is a partition, and multiplying the weights, prior to the subtraction,

ensures that the subtraction does not have any side effects that would invalidate the (analogue of the) above correctness

argument in this modified reduction.

Now suppose α1 ≥ α2 ≥ 0 but it is not the case that α1 > 2α2 > 0. We show that in this case the constructive coalition

weighted manipulation problem is in P. If α2 = 0 then our scoring protocol is equivalent to plurality for three candidates,

and we accept if and only if p is a winner (a unique winner) when all the manipulators rank p first. Let us now focus on the

case where α2 > 0, and so, by assumption, α1 ≤ 2α2. Without loss of generality, it is enough to consider the following

two orderings L witnessing the society’s single-peakedness. (Again, if L is not part of the input, we simply try all societal

orderings.) We will handle the nonunique-winner case and the unique-winner case in parallel.

Case 1: a L b L p. In this case, if the goal is to make p a winner (a unique winner), a best vote for all manipulators in T is

clearly p > b > a.

Case 2: a L p L b. To be consistent with L, the only votes allowed in S are p > a > b, p > b > a, a > p > b, and

b > p > a. Due to which votes are allowed in S, we have 2 · scoreS(p) ≥ scoreS(a) + scoreS(b). It follows that

scoreS(p) ≥ scoreS(a) or scoreS(p) ≥ scoreS(b). If we are in the nonunique-winner model, set all voters in T to

p > a > b if scoreS(p) ≥ scoreS(a), and to p > b > a if scoreS(p) ≥ scoreS(b). If we are in the unique-winner

model and α1 > α2, set all voters in T to p > b > a if scoreS(a) ≥ scoreS(b) and to p > a > b otherwise. The

α1 = α2 case follows from part 2 of Theorem 4.1.

In both cases, we accept if the manipulation action described above was successful, i.e., made p a winner in the nonunique-

winner case (a unique-winner in the unique-winner case) in election (C, S ∪ T), and we reject otherwise. �

Finally, wemention that despite the NP-hardness results of Theorems 4.3 and 4.4, in all these cases there are polynomial-

time manipulation algorithms for the case when the candidate the coalition wants to win is either the top or the bottom

candidate in society’s input linear order on the candidates.

5. Related work

The paper that inspired our work is Walsh’s “Uncertainty in Preference Elicitation and Aggregation” [43]. Among other

things, in that paper he raises the issue of manipulation in single-peaked societies. Our paper follows his model of assuming

society’s linear ordering of the candidates is given and that manipulative voters must be single-peaked with respect to

that ordering. However, our theme and his differ. His manipulation results present cases where single-peakedness leaves

an NP-completeness shield intact. In particular, for both the constructive and the destructive cases, he shows that the

coalition weightedmanipulation problem for the single transferable vote election rule for three ormore candidates remains

NP-hard in the single-peaked case. Although our Theorem 4.3 follows this path of seeing where shields remain intact

for single-peaked preferences, the central focus of our paper is that single-peaked preferences often remove complexity

shields on manipulation and control. We mention in passing that for a different, noncontrol issue regarding the effect of

single-peakedness—namely, looking at incomplete profiles and asking whether some/all the completions make a candidate

a winner—Walsh’s paper proves both P results and NP-completeness results. We are much indebted to his paper for raising

and exploring the issue of manipulation for single-peaked electorates.

Asmentioned in themain text, Bartholdi and Trick [7], Doignon and Falmagne [18], and Escoffier et al. [22] have provided

efficient algorithms for testing single-peakedness and producing a valid candidate linear ordering, for the case when votes

are linear orders. For the case of voting by approval vectors, this was achieved even earlier [11,29].

Since with single-peaked preferences there is always a Condorcet winner when the number of voters is odd, every

Condorcet-consistent voting rule has an efficient winner-determination algorithm for the single-peaked case for odd num-

bers of voters [43].
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Other work is more distant from our work but worth mentioning. Conitzer [14] has done an interesting, detailed study

showing that, in the model where votes are linear orders, preferences in single-peaked societies can be quickly elicited

via comparison queries (“Do you prefer candidate i to candidate j?”). He studies the case when the linear order of society

is known and the case when it is not. We mention in passing that we have looked at the issue of preference elicitation

in single-peaked societies (where the linear order is given) of approval vectors via approval queries (“Do you approve of

candidate i?”). It is immediately obvious that single-peakedness gives no improvement for approval vectors and 1-approval

vectors (approval vectors with exactly one 1; this is a vote type and should not be confused with “1-approval” as it would

be used in scoring systems, where the actual vote is a linear order). But for j-candidate k-approval vectors (approval vectors

with exactly k 1’s), k ≥ 1, it is easy to see that the general-case elicitation query complexity is exactly 0 when j = k and

is exactly j − 1 when j > k, but for the single-peaked case, the elicitation query complexity for ik-candidate k-approval

vectors is at most i − 1 + �log2 k�. That is, we get a savings of a multiplicative factor of about k from single-peakedness.

Single-peaked preferences have been studied extensively in political science. We mention just three examples. Ballester

and Haeringer [2] provide a precise mathematical characterization of single-peakedness. Lepelley [36] shows that single-

peakedness removes some negative results about the relationship between scoring protocols and Condorcet-type criteria.

Gailmard et al. [30] discuss Arrow’s Theorem on single-peaked domains. We refer the interested reader also to the coverage

of single-peaked preferences in the excellent textbook by Austen-Smith and Banks [1].

6. Conclusions and future directions

The central point of this paper is that single-peaked preferences remove many complexity-theoretic shields against

control and manipulation. That is, we showed that those shields, already under frequency-of-hardness and approximation

attacks from other quarters, for single-peaked preferences didn’t even exist in the first place. It follows that when choosing

election systems for electorates one suspects will be single-peaked, onemust not rely on results for those systems that were

proven in the standard, unrestricted preference model.

This paper’s work suggests many directions for future efforts. Throughout this paper, single-peaked hasmeant the unidi-

mensional case.Do the shield removals of this paperhold in, for example, anappropriate two-dimensional (or k-dimensional)

analogue? We mention in passing that every profile of n voters voting by linear orders can be embedded into R
n in such a

way that each voter and candidate is a point in R
n and each voter prefers ci to cj if her Euclidean distance to ci is less than

to cj .

In a human society with a large number of voters, even if one issue, e.g., the economy, is almost completely polarizing the

society, there are bound to be a few voters whose preferences are shaped by quite different issues, e.g., a given candidate’s

religion. So it would be natural to ask whether the shield-evaporation results of this paper can be extended even to societies

that are “very nearly” single-peaked (see [22, Section 6] and [14, Section 6] for discussion of nearness to single-peakedness

in other contexts). We are currently looking into this issue.

Finally, we mention that recent work of Brandt et al. [12] further explores single-peaked electorates—looking at bribery

and at control by partition of voters, and generalizing Theorem 4.4 to each fixed number of candidates.
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