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for systems of nonlinear fractional differential equations.
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1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of
systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer
rheology, etc. (see [1–4] and references therein). Since, as cited in [2], a number of works have appeared, especially
in the theory of viscoelasticity and in hereditary solid mechanics, where fractional derivatives are used to do a better
description of material properties, some basic theory for fractional differential equations involving the Riemann–Liouville
differential operator has been discussed by many authors [5–16]. On the other hand, the study of systems involving
fractional differential equations is also important as such systems occur in various problems of applied nature, for example,
see [17–25].

In this paper, we discuss some existence results for systems of nonlinear fractional differential equations. In order
to obtain the solutions of systems of nonlinear fractional differential equations, we also develop the monotone iterative
technique. It is well known that the method of upper and lower solutions coupled with its associated monotone iteration
scheme is an interesting and powerful mechanism that offers theoretical as well constructive existence results for nonlinear
problems in a closed set, generated by the lower and upper solutions, for instance, see [26,27]. To the best of our knowledge,
this technique has not been applied yet to the systems of nonlinear fractional differential equations.

Consider the following system of nonlinear fractional differential equationsDαu(t) = f (t, u(t), v(t)), t ∈ (0, T ],
Dαv(t) = g(t, v(t), u(t)), t ∈ (0, T ],

t1−αu(t)|t=0 = x0, t1−αv(t)|t=0 = y0,
(1.1)
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where 0 < T < ∞, f , g ∈ C([0, T ] × R × R, R), x0, y0 ∈ R and x0 ≤ y0,Dα is the standard Riemann–Liouville fractional
derivative of order 0 < α ≤ 1, see [1]. It is worthwhile to indicate that the nonlinear terms in the system involve the
unknown functions u(t) and v(t).

We organize the rest of this paper as follows. In Section 2, the existence and uniqueness of solutions for a linear problem
for systems of differential equations is discussed and a differential inequality as a comparison principle is established. In
Section 3, by use of the monotone iterative technique and the method of upper and lower solutions, we prove the existence
of extremal solutions of system (1.1). Finally, an example is given to illustrate our results.

2. Preliminaries

In this section, we deduce some preliminary results that will be used in the next section to attain existence results for
the nonlinear system (1.1).

First, consider the set C1−α([0, T ]) = {u ∈ C(0, T ]; t1−αu ∈ C([0, T ])}. Since we look for solutions that belong to this
set, we need to present some existence and uniqueness results for linear problems together with comparison results for
functions in this space.

Now we enunciate the following existence and uniqueness results for initial linear equations.

Lemma 2.1 ([1]). Let 0 < α ≤ 1 be fixed, then the linear initial value problem
Dαu(t) + Mu(t) = σ(t), t ∈ (0, T ],

t1−αu(t)|t=0 = u0,
(2.1)

where M is a real constant and σ ∈ C1−α([0, T ]), has a unique solution which is given by the following integral representation of
solution

u(t) = Γ (α)u0tα−1Eα,α(−Mtα) +

 t

0
(t − s)α−1Eα,α(−M(t − s)α)σ (s)ds, (2.2)

where Eα,α(·) is the Mittag-Leffler function [1], defined as

Eα,β(z) =

∞
k=0

zk

Γ (α k + β)
, α, β > 0, z ∈ R.

Lemma 2.2. Let 0 < α ≤ 1 be fixed, M,N ∈ R and σ1, σ2 ∈ C1−α([0, T ]), then the problemDαu(t) = σ1(t) − Mu(t) − Nv(t), t ∈ (0, T ],
Dαv(t) = σ2(t) − Mv(t) − Nu(t), t ∈ (0, T ],

t1−αu(t)|t=0 = x0, t1−αv(t)|t=0 = y0,
(2.3)

has a unique system of solutions in C1−α([0, T ]) × C1−α([0, T ]).

Proof. The proof follows from the fact that the pair (u, v) is a solution of problem (2.3) if and only if

u(t) =
p(t) + q(t)

2
and v(t) =

p(t) − q(t)
2

, t ∈ [0, T ],

where p and q solve the problems
Dαp(t) = (σ1 + σ2)(t) − (M + N)p(t), t ∈ (0, T ],

t1−αp(t)|t=0 = x0 + y0
(2.4)

and 
Dαq(t) = (σ1 − σ2)(t) − (M − N)q(t), t ∈ (0, T ],

t1−αq(t)|t=0 = x0 − y0.
(2.5)

By Lemma 2.1, we know that both problems (2.4) and (2.5) have a unique solution in C1−α([0, T ]). In consequence, u and v
are unique too. �

In the sequel, we prove a comparison result for the initial linear problem (2.1). The result is the following:

Lemma 2.3. Let 0 < α ≤ 1 and M ∈ R be given. Then, if w ∈ C1−α([0, T ]) satisfy the relations,
Dαw(t) + Mw(t) ≥ 0, t ∈ (0, T ],

t1−αw(t)|t=0 ≥ 0.

Then w(t) ≥ 0, ∀t ∈ (0, T ].
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Proof. In [10, Lemma 2.1], it is shown that if M > −
Γ (1+α)

Tα , then w(t) ≥ 0, ∀t ∈ (0, T ]. In particular, the result holds for
allM ≥ 0.

The case M < 0 follows from the fact that every function w that satisfies the assumptions of the enunciate is a solution
of problem (2.1) for some nonnegative σ ∈ C1−α([0, T ]) and a real number u0 ≥ 0. As a consequence, the expression of the
function w is given by the equality (2.2), which is nonnegative. �

Now we are in a position to prove the following comparison result for system (2.3).

Lemma 2.4 (Comparison Theorem). Let 0 < α ≤ 1,M ∈ R and N ≥ 0 be given. Assume that u, v ∈ C1−α([0, T ]) satisfy
Dαu(t) ≥ −Mu(t) + Nv(t), t ∈ (0, T ],

Dαv(t) ≥ −Mv(t) + Nu(t), t ∈ (0, T ],

t1−αu(t)|t=0 ≥ 0,
t1−αv(t)|t=0 ≥ 0.

(2.6)

Then u(t) ≥ 0, v(t) ≥ 0, ∀t ∈ (0, T ].

Proof. Put p(t) = u(t) + v(t), ∀t ∈ (0, T ]. Then, by (2.6), we have
Dαp(t) ≥ −(M − N)p(t), t ∈ (0, T ],

t1−αp(t)|t=0 ≥ 0.
(2.7)

Thus, by (2.7) and Lemma 2.3, we have that

p(t) ≥ 0, ∀t ∈ (0, T ], i.e., u(t) + v(t) ≥ 0, ∀t ∈ (0, T ]. (2.8)

Next, we show that u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ (0, T ].
In fact, by (2.6) and (2.8), we have that

Dαu(t) ≥ −(M + N)u(t), t ∈ (0, T ],

t1−αu(t)|t=0 ≥ 0
(2.9)

and 
Dαv(t) ≥ −(M + N)v(t), t ∈ (0, T ],

t1−αv(t)|t=0 ≥ 0.
(2.10)

By (2.9) and (2.10), using the same method as above, it is easy to show that

u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ (0, T ].

The proof of Lemma 2.4 is complete. �

Remark 2.1. Note that the previous result is not valid in general for N < 0. It is enough to consider problem (2.3) with
σ2 = 0 on (0, T ] and y0 = 0. In consequence, for all N < 0, since u(t) ≥ −v(t) for all t ∈ (0, T ], we deduce that

Dαv(t) ≤ −(M + N)v(t), t ∈ (0, T ], t1−αv(t)|t=0 = 0,

which implies, from Lemma 2.3, that v(t) ≤ 0 for all t ∈ (0, T ].

3. Main result

In this section, we prove the existence of extremal solutions of nonlinear system (1.1). We list the following assumptions
for convenience.
(H1) There exist u0, v0 ∈ C1−α([0, T ]) and u0(t) ≤ v0(t), such that

Dαu0(t) ≤ f (t, u0(t), v0(t)), t ∈ (0, T ],

t1−αu0(t)|t=0 ≤ x0,
Dαv0(t) ≥ g(t, v0(t), u0(t)), t ∈ (0, T ],

t1−αv0(t)|t=0 ≥ y0.

(H2) There exist constantsM ∈ R and N ≥ 0, such that
f (t, u, v) − f (t, u, v) ≥ −M(u − u) − N(v − v),
g(t, u, v) − g(t, u, v) ≥ −M(u − u) − N(v − v),

where u0(t) ≤ u ≤ u ≤ v0(t), u0(t) ≤ v ≤ v ≤ v0(t), and

g(t, v, u) − f (t, u, v) ≥ M(u − v) + N(v − u), with u0(t) ≤ u ≤ v ≤ v0(t).
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Theorem 3.1. Suppose that conditions (H1) and (H2) hold. Then, there is (u∗, v∗) ∈ [u0, v0] × [u0, v0] an extremal solution of
the nonlinear problem (1.1). Moreover, there exist monotone iterative sequences {un}, {vn} ⊂ [u0, v0] such that un → u∗, vn →

v∗(n → ∞) uniformly on t ∈ (0, T ], and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗
≤ v∗

≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.1)

Proof. First, for any un−1, vn−1 ∈ C1−α([0, T ]), n ≥ 1, we consider the linear system
Dαun(t) = f (t, un−1(t), vn−1(t)) + Mun−1(t) + Nvn−1(t) − Mun(t) − Nvn(t), t ∈ (0, T ],
Dαvn(t) = g(t, vn−1(t), un−1(t)) + Mvn−1(t) + Nun−1(t) − Mvn(t) − Nun(t), t ∈ (0, T ],

t1−αun(t)|t=0 = x0, t1−αvn(t)|t=0 = y0.
(3.2)

From Lemma 2.2, we know that (3.2) has a unique system of solutions in C1−α([0, T ]) × C1−α([0, T ]).
Next, we show that {un(t)}, {vn(t)} satisfy the property

un−1 ≤ un ≤ vn ≤ vn−1, n = 1, 2, . . . . (3.3)

Let p = u1 − u0, q = v0 − v1. From (3.2) and (H1), we have that

Dαp(t) = Dαu1(t) − Dαu0(t)
≥ −Mp(t) + Nq(t),

Dαq(t) = Dαv0(t) − Dαv1(t)
≥ −Mq(t) + Np(t),

t1−αp(t)|t=0 ≥ x0 − x0 = 0,
t1−αq(t)|t=0 ≥ y0 − y0 = 0.

Thus, by Lemma 2.4, we have that p(t) ≥ 0, q(t) ≥ 0, ∀t ∈ (0, T ].
Let w = v1 − u1. By condition (H2) and (3.2), we obtain

Dαw(t) = Dαv1(t) − Dαu1(t)
= g(t, v0(t), u0(t)) + Mv0(t) + Nu0(t) − Mv1(t) − Nu1(t)

− f (t, u0(t), v0(t)) − Mu0(t) − Nv0(t) + Mu1(t) + Nv1(t)
≥ −M(v0 − u0)(t) − N(u0 − v0)(t) + Mv0(t) + Nu0(t) − Mv1(t)

−Nu1(t) − Mu0(t) − Nv0(t) + Mu1(t) + Nv1(t)
= −(M − N)w(t),

t1−αw(t)|t=0 = y0 − x0 ≥ 0.

By Lemma 2.3, we obtain w(t) ≥ 0, ∀t ∈ (0, T ]. Hence, we have the relation u0 ≤ u1 ≤ v1 ≤ v0.
Now, we assume that uk−1 ≤ uk ≤ vk ≤ vk−1, for some k ≥ 1, and we prove that (3.3) is true for k + 1 too. Let

p = uk+1 − uk, q = vk − vk+1, w = vk+1 − uk+1. By (H2) and (3.2), we have that
Dαp(t) ≥ −Mp(t) + Nq(t),
Dαq(t) ≥ −Mq(t) + Np(t),
t1−αp(t)|t=0 = 0,
t1−αq(t)|t=0 = 0

and 
Dαw(t) ≥ −(M − N)w(t),
t1−αw(t)|t=0 ≥ 0

and so, by Lemmas 2.3 and 2.4, we have that uk ≤ uk+1 ≤ vk+1 ≤ vk.
From the above, by induction, it is not difficult to prove that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.4)

Applying the standard arguments, we have

lim
n→∞

un(t) = u∗(t), lim
n→∞

vn(t) = v∗(t)

uniformly on compact subsets of (0, T ], and the limit functions u∗, v∗ satisfy (1.1). Moreover, u∗, v∗
∈ [u0, v0]. Taking the

limits in (3.2), we know that (u∗, v∗) is a system of solutions of (1.1) in [u0, v0] × [u0, v0]. Moreover, (3.1) is true.
Finally, we prove that (1.1) has an extremal solution. Assume that (u, v) ∈ [u0, v0] × [u0, v0] is any system of solutions

of (1.1). That isDαu(t) = f (t, u(t), v(t)), t ∈ (0, T ],
Dαv(t) = g(t, v(t), u(t)), t ∈ (0, T ],

t1−αu(t)|t=0 = x0, t1−αv(t)|t=0 = y0.
(3.5)
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By (3.2), (3.5), (H2) and Lemma 2.4, it is easy to prove that

un ≤ u, v ≤ vn, n = 1, 2, . . . . (3.6)

By taking the limits in (3.6) as n → ∞, we have that u∗
≤ u, v ≤ v∗. That is, (u∗, v∗) is an extremal solution of system (1.1)

in [u0, v0] × [u0, v0].
This completes the proof. �

4. Example

Consider the following problem:Dαu(t) = 2t3[t − u(t)]3 − t4v2(t),
Dαv(t) = 2t3[t − v(t)]3 − t4u2(t),
t1−αu(t)|t=0 = t1−αv(t)|t=0 = 0,

(4.1)

where t ∈ J = [0, 1],Dα is the standard Riemann–Liouville fractional derivative of order 0 < α ≤ 1.
Obviously,

f (t, u, v) = 2t3[t − u]3 − t4v2,

g(t, v, u) = 2t3[t − v]
3
− t4u2.

Take u0(t) = 0, v0(t) = t , then

Dαu0(t) = 0 ≤ t6 = f (t, u0(t), v0(t)),

Dαv0(t) =
t1−α

Γ (2 − α)
≥ 0 = g(t, v0(t), u0(t)),

t1−αu(t)|t=0 = t1−αv(t)|t=0 = 0.

It shows that condition (H1) of Theorem 3.1 holds.
On the other hand, it is easy to verify that condition (H2) holds for M = 6 and N = 0.
Thus, all conditions of Theorem 3.1 are satisfied. In consequence, the nonlinear system (4.1) has the extremal solution

(u∗, v∗) ∈ [u0, v0] × [u0, v0], which can be obtained by taking limits from the iterative sequences:

un(t) =

 t

0
(t − s)α−1Eα,α(−6 (t − s)α)(2s3[s − un−1(s)]3 + 6 un−1(s) − s4v2

n−1(s))ds, n ≥ 1,

and

vn(t) =

 t

0
(t − s)α−1Eα,α(−6 (t − s)α)(2s3[s − vn−1(s)]3 + 6 vn−1(s) − s4u2

n−1(s))ds, n ≥ 1.
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