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Indecomposable Channels with Side Information

at the Transmitter™

FREDERICK JELINEK

School of Electrical Engineering, Cornell University, Ithaca, New York

In this paper the direct part and the strong converse of the coding
theorem for two classes of Finite State Indecomposable Channels
with Side Information at the Transmitter are proven. The question
of membership in the first class can always be easily settled; to show
that a channel belongs to the second clags requires in general an in-
finite number -of operations. A finite test is developed that is applic-
able if the given channel satisfies either of two additional restric-
tions. Fortunately, the second of these will be met by any “practical”
indecomposable channel.

A PARTIAL LIST OF SYMBOLS AND ABBREVIATIONS

ST channels
MISI channels
SISI channels
STA matrix

((m

K, J

Km’ Jm

Finite state channels with side information at the
transmitter

Finite state Markovian indecomposable channels with
side information at the transmitter

Strongly indecomposable channels with side informa-
tion at the transmitter

Stochastic, indecomposable, aperiodic matrix

The set of all strategy letters f of order m

Channels with side information

Corresponding associated channels of order m

A set of states in a Markov chain

A set of subchannel output sequences

A subset of subchannel output sequences

I. INTRODUCTION

The main purpose of this paper is to prove the direct and the strong
converse parts of the coding theorem for Finite State Markovian In-

* This work was supported, in part, by a Ford Foundation grant made through
the Cornell College of Engineering.
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decomposable Channels with Side Information at the Transmitter
(MISI channels}, and for Finite State Strongly Indecomposable Chan-
nels with Side Information at the Transmitter (SISI Channels). Since
it i in general not possible to carry out the test for SISI character in a
finite number of steps, we give in Section VI two simple sufficient con-
ditions, the second of which any indecomposable channel will meet
“in practice.”

Both MISI and SISI channels form an interesting subelass of Finite
State Channels with Side Information at the Transmitter (FSI channels)
characterized by a set of transmission probability matrices [p:(y/z)]
where y € {0,---,b — 1} are the possible output signals, z €
{0, -+, a — 1} are the possible input signals, and s € {0, ---, h — 1}
is an index specifying the channel state. The latter is allowed to change
from one time interval to the next according to some statistical rule,
and its identity is made known to the fransmitter prior to the selection
of the signal to be transmitted. Shannon (1958) gave a solution to the
capacity problem for that subelass of FSI channels in which the states
s; were selected at time 7 (= 1, 2, - - -) with constant probability r(s;),
independently of proceeding states s,(& < ¢) and of the channel inputs
z;and outputs y; (j=1,2,---,4,44+ 1, ---).

II. DEFINITION OF FINITE STATE MARKOVIAN INDECOM-
POSABLE CHANNELS WITH SIDE INFORMATION AT THE
TRANSMITTER

The MISI channels we consider here are a generalization of the chan-
nels considered by Shannon (1958) in that their successive states are
selected by an indecomposable aperiodic' Markov chain.

Consider the channel of Fig. 1 having inputs z € {0, ---,a — 1},
outputs y € {0, ---, b — 1}, and states s € {0, ---, A — 1}. Its opera-
tion at any time is specified by the probabilities w(siy1 , ¥:/s: , ;) that
the letter y; will be received and that the next state will be s;,; , given
that the present state was s; and that z; was transmitted. The identity
of the state s; is to be made known to the transmitter which can then
base the selection of the input 2; on this knowledge. The channel will
be a MIST channel if its w(-,-/-,-) satisfies the following restriction:

b—1

w(si1/s:, T:) = Z W(Sipr, Yi/8i, Ti) = 7(8i41/8:)

Yy

! A chain is indecomposable if in the terminology of Feller (1957), p. 355, it con-

tains at most one closed state set other than the whole chain itself. For the defini-
tion of aperiodicity see Feller (1957), p. 353.
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Fic. 2. Example of an MIST channel. In part (b),
Plsip; = 0/s; = 0} = Plsiy1 = 0/s: = 1} = «
P{8¢+1 = 1/8.' = 0} = P{s,’+1 = 1/8,‘ = 1} =1«
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for all
z €40, -, a— 1}
Si, 841 €40, -+ b — 1} (1)
i=1,2, -

and r(s;11/s:) is the transition matrix of an indecomposable, aperiodic’
Markov chaln.
Restriction (1) states that the channel inputs do not influence the
selection of channel states, and justifies the diagramatic form of Fig. 1.
We may also define a transmission probability matrix [p,(y/z)] by the
expression
h—1
s (ys/:) = Zﬂ w(sig1, Yi/si, T:) (2)
§7 417

MARKOV
SOURCE

(a)

(b)

Fia. 3. Equivalent representation of the MISI channel of Fig. 2. If s, = 0
thenp=1— e,if s = 1thenp = a.
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Fic. 4. A MISI channel constructed from a two-state binary symmetrie chan-
nel with noiseless feedback. The boolean additive noise consists of the states
of the Markov source whose transition probabilities are indicated in (b).

Figure 2 is an example of a channel satisfying restriction (1). The
binary noise source (b) is actually memoryless, but the probability of
noise is different in the two different states. The initial state can be made
known to the receiver as follows: If s; = 0, the transmitter sends 2,* = 0;
if sy = 1, the transmitter sends z,* = 1. Then whenever y; = 0, s, = 0,
and whenever ¢ = 1, s; = 1. Once the initial state is established, the
channel is ‘“hooked up” as in Fig. 3 (a), and this gives rise to the over-
all binary symmetric channel of Tig. 3 (b). In Fig. 3 (b) if s; = 0 (and
the receiver knows whether this is so!!) then p = 1 — o, while if s, = 1
then p = .

The second example, given in Fig. 4 (a), is a binary channel with
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feedback in which the Boolean additive noise is generated by the Markov
source of Fig. 4 (b). Also here, restriction (1) is satisfied.

JII. A SUMMARY OF RESULTS

We shall first prove the coding theorem and its strong converse for
MISI channels. In Section IV we will eonstruct out of MISI channels a
sequence of mth order associated finite state channels without side
information and find the capacity of the latter by showing that they are
indecomposable (see Blackwell ef al. (1958)). In Section V we will
derive the capacity expression for the MISI channels by showing that
any code for an associated channel can be translated into a code for the
underlying MISI channel and vice versa.

The above manner of proof will lead naturally to the question of
whether the coding theorem could be generalized to cover the entire
class of Finite State Indecomposable Channels when side information
about their current state is made available to the transmitter. This is
possible only if all the channels in the sequence of mth order associated
channels are indecomposable. Channels which satisfy this condition are
termed Strongly Indecomposable (SISI channels), and for them we
derive the appropriate capacity expression in Section V1.

It is then of interest to see whether perhaps all indecomposable
channels are strongly indecomposable as well. In Section VII we pro-
vide a counterexample. We also specify two different and simple to check
sufficient conditions under which an indecomposable channel is strongly
indecomposable. It will be seen that the second of these will be naturally
met by all “practical” indecomposable channels. In general, of eourse,
to check for strong indecomposability is out of the question, sinee this
would involve an infinite sequence of operations.

IV. ASSOCIATED MISI CHANNELS AND THEIR CAPACITY

We will find the capacity of MISI channels by an approach similar to
the one used by the author on two-way channels.”

Let {f} = {" be the complete set of order ¢*” of functions, called strat-
egy letters, whichmap sequences (Si—m41, -+ , Su), 8: € {0, -+, h — 1},
nto the set {0, - - - , @ — 1} of channel inputs. Using the strategy letters,
a transducer, and the given MISI channel denoted by K, one can con-
struct an associated channel K™ as in Fig. 5. The inputs to K™ are
letters f € {, and the outputs are signals y € {0, --- ,b — 1}. The

2 See Jelinek (1963), section 3.



42 JELINEK

(a}

£
TRANSDUCER X ;
- CHANNEL K
o
(6] SHIFT REGISTER
ﬁONTAINING ONE STAGE
f
— f,
i X
S5 Si-1 j Sie2 |7 Sl
s 7
SHIFT REGISTER

CONTAINING m STAGES

Fic. 5. (a) The associated MISI channel K™. (b) The schematie diagram of the
transducer.

transducer contains two shift registers: the first has one stage and con-
tains one of the letters f € §, the other has m stages, each containing
indices s € {0, --- , h — 1}. The channel operates as follows: at time ,
both transducer registers shift one step to the right, rejecting the con-
tents of their rightmost stages. The first register is then filled with a
particular K™ input f, and the first stage of the second register with the
present state s, of K. The transducer then puts out the K-input
f(se, **+ , Sx_my1), which is transmitted through K under the probability
law P, (-/+) and received as some signal y € {0, ---,b — 1}. The
next time interval is then ready to start.

It is clear that the channel K™ has a well-defined transmission prob-
ability law

V(yla e yyn/fly :fn,‘Sl)SOy 782——m)
= Do, (11/H1(81, 80, 5 S2-m) ). (3)
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Z IIZPsi(yi/fi(Si sty Sieman) ) T(8i/8is)
00 s, i
specifying the output sequence given the input sequence and the initial
K™-channel state.

Let @ be a probability distribution over sequences of ¢ letters f € {
(sometimes, for clarity, we may write Q' instead ). Define the conditional
probability measure P over sequences of ¢ signals y € {0, --- ,b — 1}
given the initial state sequence (81,8, -+, $2-m) by

PQ(yls"')yt/SI)"',82——m)

= Z V(yla"')yt/f17"'7fi781a"')82—"”)Q(f17"'7fi)
FATERR £ (4)
yJE{07’b_1} le,;t

50 €40, h—1 i=2—m,---,1

In the following we will adopt the capital letter notation (5) for se-
quences of symbols of length ¢ ending at time 3:

Z”Jt = i1y "t 4R (5)
where the letter z stands throughout (5) for a symbol taken from the
same alphabet (e.g., X\’ = x;op1, -+, 2:). We will also write 2 = Z,°
(eg, Y =y, - ,y:). Define the quantity

o L V(YY)
R(t,m/Q) = Eot—logw (6)
where
V(Y/F') = 2 r(8™) V(Y'/F, 8™)
87
and

Py(Y') = SZ: 7(8:") Po( Yi/Slm)
X

In (6) r(S™) stands for the stationary probability of the sequence
8™ of states of the underlying Markov chain (1). We will always write
I, for expectation with respect to the probability distribution @ given
in the subseript.

We will now prove three lemmas. We will use them to prove Theorem
1 giving the capacity of the channel K.
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Lemma 1. For all positive integers m, K™ is an indecomposable channel.®
Proor: Consider the sequences S;™ = (Si—py, -+ ,8:) as h-ary
numbers and represent them by their decimal equivalent

oi=Rsi +h'siad o R S, S €40, h—1) (7)

Thus ¢ can take on values in the set {0, «-- , A"—1}. Let {D(P)}, f € 47'”,
be the set of bA™ X dA™ matrices whose entries, specified by the palr
(&,9),7 € {0, , b — 1}, are glven 1n (8). The row (eolumn) (cr Y )
will precede the row (column) (¢”,y") if either ¢’ < ¢” or if ¢ = o”

and y < y”. The entries of the matrix D(f) are

D (Yi/f(0:)) r(8:31/5:)
if Tiy1 = ho; — hm8«:—m+1 + Sip1
and o, represents a possible state

d((oe, yia); (o0, ) /) = sequence with respect to the (8)
matrix [r(siy1/s:)]
0 otherwise
Thus if ¢; represents the sequence (@i—m1, Si—m—2, - - , 8;) the element
d((os,yia); (¢ipn, ¥:)/f) can be nonzero only if ;41 represents the
sequence  (Siom-, **°,Si, 0i1); Qimi1, @iga,8 €10, -+, b — 1},

j=i—m+2 -4

It is clear from (8) that {D(f)}, f € §" is a set of stochastic matrices
which fully specifies K™,

Blackwell et al. (1958) start with a rather complicated definition of
indecomposable channels and in their Theorem 1 show that the following
simple one is completely equivalent.

A channel specified by a set of stochastic matrices {D{f)} de-
fines an indecomposable channel if and only if every finite
product D(f)-D(f2) +-- D(fi) = L is an indecomposable
Markov matrix, k = 1,2, -+ ; fi € {™

We will show that our set, whose entries are given by (8), satisfies this
condition,

For every k = 1,2, - - - the matrix product I must be stochastic, in-
decomposable, and aperiodic (SIA) since, as pointed out by Thomasian
(1963), if L is indecomposable and has period » > 1, L” is decompos-

&)

3 Indecomposable channels were first discussed by Blackwell et al. (1958).
See also Wolfowitz (1961) and (1964).
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able. A matrix L will be SIA if given any two states (¢, %) and (¢”, ")
there exists a third state (o, y) which can be reached from either of the
two given states in the same number of steps ¢ -+ 1.

The matrix r(s:31/8) defined by (1) is SIA. Hence so is any of its
powers. Consider any two given sequences (s, s, ---,s1—m) and
(s1",80 )+, 81 _m) which have a nonzero probability of occurring
(i.e. s/ (s;') can be reached from s;_;(s; ;) in one step, j = 2 — m,
«++,1). There is an integer « € {1, 2, ---} and a state s* which can
be reached from both s, and s,” in « steps. Therefore, for each integer
l=a+ma-+m+1, -+ there is a sequence (s 80, -+, S1—m)
which can be reached from both given sequences in the same number of
steps 1.

Tt follows from (8) that if (o', y') and (¢”, 3”) are possible states of
L (i.e., their respective columns have at least one nonzero entry) there
will be a state (¢, 1) ((¢, 12)) such that L’ will have a nonzero ele-
ment [(, 4'); (¢, )] ([(¢", ¥"); (¢F, y2)]) provided ik = I Since in
any L the rows (o, y), ¥y = 0, --- , B — 1 are identical for any fixed o
(see (8)) then for some (&, 7) the matrix L™ will have nonzero entries
in both positions [(¢, ¥'); (7, )] and [(«”, y"); (¢, §)]. QED.

Let M be a finite, say D X D, indecomposable Markov matrix and
let ¢ be a function from {0, --- , D — 1} to . We say that a source
driving a channel K™ of Fig. 5 is governed by a pair (M, ¢), if it operates
as follows: at given time intervals an wunderlying Markov chain
characterized by M changes from some state « to some state 8
(a,8€{0,---,D —1}) and the source then puts out a letter ¢(3)
and feeds it into the channel. Since M is indecomposable there exists a
unique distribution m(-) over the set of states {0, ---, D — 1} such
that if the chain is started in state o with probability m(«), then the
probability that the chain will be found at any time 7 in state 8 is m(3)
irrespective of 7; o, 8 € {0, --- , D — 1}, If this is the way M operates,
we say that the source (M, ¢) is stationary. Given any integer ¢, a
source (M, ¢) has associated with it a probability distribution Q°(-)
over sequences (fy ,fo, -, fi),f: € {7, of source outputs. We say that a
distribution P’(-) over finite sequences (f; , - -+ , fi), f: € {" is stationary
if and only if it is associated with some stationary source (M, ¢).

DrrintTIoN: Let U, be the set of all stationary distributions Q).
DeriNiTiON: G, m) = maxﬂR(t, m/Q)
QcVs
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Lumma 2. The strong capacity’ of the channel K™ is given by

Cim) = }irgG(t, m) = sup G({, m) (11)

That 18, given any e and A, ¢ > 0,0 < X < 1, for n sufficiently large there
exists for K™ a code (n, 2°°"79 M) and there does not exist a code
(7’1,, 2"(C(m)+6), )\)'5

Proor: Since K™ is indecomposable the direct and strong converse
coding theorems proven by Blackwell, Breiman, and Thomasian (1958)
and by Wolfowitz,® respectively, apply. Actually, Wolfowitz states the
strong converse only for that class of indecomposable channels where
the outputs determine the channel state uniquely. The generalization
to the full class of indecomposable channels considered by Blackwell
et al. (1958) (where a not necessarily invertible function ¢ is defined
which when applied to the channel states s € {0, -+ - , A — 1} produces
the channel output) is obvious and easy, and we will not bother to spell
it out.

With the help of an additional theorem by Wolfowitz (1963b) the
capacity expression would normally be given by

V(Y'/F.'8™)

P (Y75 (12)

C*(m) = lim max min 1 Eqt log
ts0 @t gm

where the expectation is, unlike in (6), taken with a fixed S;™. Now
Theorem 2 of Blackwell et al. asserts that for a fixed @

. 1. V(YYFS8&™) 1, V(YYF)
Iglllilt log Po(Y /S ; log Po(TY) —0 a.c. and L1(Q)

¢« We will say throughout this paper that a channel has strong (weak) capacity
if and only if both the direct and the strong (weak) converse parts of the coding
theorem can be proven for it. For discussion of the strong and weak converses see
Wolfowitz (1961), section 7.6. The strong converse implies the weak one but not
vice versa.

5 We are using here the notation of Wolfowitz (1961), p. 15. Thus (n, N, \) is a
block code using chanunel input sequences of length n and accommodating N
messages which when sent are each correctly decoded with probability exceeding
1 — A

¢ The original version of the proof is in Wolfowitz (1963b), however there is a
slight gap in the argument which is fully corrected in the indecomposable channel
section of Wolfowitz (1964).
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(c.f. (6)). Hence we may replace (11) by’
V(Y*/F")
Pot(Y?)
Blackwell et al. in their Theorem 3 prove this capacity expression with
the help of sources (M, ¢) defined above. They show that the limit
C™(m) is independent of the initial state distribution of the chain M.

We are, therefore, free to ingist on the stationary distribution. This
proves (11). Q. E. D.

V. THE CAPACITY OF MISI CHANNELS

We are now ready to use the results of the preceding section to derive
the capacity expression for the MISI channels.

Lemva 3. Any code for the channel K™ s a code for the channel K
(see Fig. 5); the transmassion rale and the probability of error remain the
same. Conversely, any code for the channel K is a code for a channel K* for
some sufficiently large infeger p.

lim max tl Eyt log (13)

>0 Q

Proor: A code for the channel K™ maps integers {1, --- , N} into
sequences of the form (fi,fa, -+, fu), fi € ", and maps sequences
(1,92, ,Yn), ¥ €10, -+, b — 1} into integers {1, --- , N}. Hence
it maps integers {1, --- , N} into sequences

<f1(Slm)’f2(S2m)) o ;fn(Snm)) = (xl 1 &a, 32;")

of input signals depending on the identity of the sequence
(‘Slm;‘SZm: ’Snm> = (82—m7 Tty S, e 78n)

of successive states of the channel K. This proves the first assertion,
provided that it is assumed that the transmitter, before starting its
operation at time I has knowledge of the preceding m or more K-channel
states. If m < n, this is certainly satisfied after the transmission of the
first message. Any necessary adjustments in our argument if m = n are
trivial.

Now consider any block code for the channel K (other kinds of codes

7 It is clear that there was nothing to prevent Wolfowitz (1963b) to give the
capacity in the form of (13). However, the form of (12) was preferable since in the
general case the distribution of the state Sy depends on §. Condition (1) assumes
that this is not so in our case, and if it holds, form (12) and especially (11) makes
the evaluation of C(m) easier, since the convergence to the limit is faster.
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transmitting at constant rate can always be regarded as special cases of
block codes). If possible decision errors at the receiver are not to carry
over from one message to another, then the signals transmitted during a
given block interval may depend, if need be, on some channel states of
a preceding block interval, but not on signals transmitted during a
preceding block interval. Moreover, even the past channel state de-
pendence, if any, must be finite. Thus there will exist an integer » such

that the code will map a message < € {1, --- , N} into a function ¢;
which itself maps state sequences

(S2v, 381, 77, %), 8 € {0, -+, — 1}
into signal sequences (z1,---,%,),2: € {0, ---,a — 1}. Moreover,

the mapping ¥; must be nonanticipatory, that is, the selection of the
signal x; eannot depend on the identity of any state s;, 1 > j. Thus it
must be possible to write ¥ as a sequence of functions gi°, g2’ -+ -, g’
where ¢,° maps state sequences (so_,, - ,81, - 8) into channel
inputs 2, € {0, -+, — 1}, k= 1,2, - - n. It follows, therefore, that
such a code for K is also a code for the channel K", which proves the
lemma. Q. E. D.

TueoreM 1. The strong capacity’ of a Finite Markovian Indecomposable
Channel with Side Information al the Tramsmatler whose operation s
defined in (1) ond (2) 1is given by the expression

C = lim C(m) = sup C(m) (14)
That is, given any € and ©, ¢ > 0,0 < N < 1, for n sufficiently large there
exists o code (n, 2"°79, \)* and there does not exist a code (n, 2"°79, \).*

Proor: It follows directly from Lemmas 1, 2, and 3 that the capacity
is given by the expression sup..C'(m). However, for any positive integers
u < v, a code for the channel K* can be directly translated into a code
for the channel K’ which would have the same probability of error.
Hence C(u) = C(»),and (14) holds. Q. E. D.

At this point we should like to remark that it is really questionable
whether one ought to speak about the capacity of channels with under-
lying indecomposable Markov chains (1). Imbedded in the set of states
of such a chain is a smallest closed subset of states.” Such a chain then
contains one irreducible subchain, and it is the latter only which is used
to compute R(t, m/Q) (see (6)) and hence the capacity C. We are

8 See Feller (1957), p. 349.
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dealing here with an asyraptotic theory and thus all our results pertain
to block lengths large enough to assume essentially stationary operation
of the underlying chain for an overwhelming fraction of the transmission
process.

Consider two channels K and K’, with underlying chains M and M’
such that M’ is the unique irreducible subchain of the indecomposable
chain M. Let the collection of states of M’ be denoted by € and let the
corresponding subset of states of M be denoted by €. If K has the trans-
mission matrices [p,(y/x)], and K’ the matrices [p, (y/z)], and if the
corresponding states in @ and € are given the same label, then we will
call K’ the irreducible chonnel imbedded in K, provided

ps (y/x) = p(y/x) forall s€e

We then have the

Cororrary. The capacities of a Finite Markovian Indecomposable
Channel with Side Informaiion at the Transmiiter, and of the trreducible
channel tmbedded in it are identical.

VI. THE CAPACITY OF FINITE STATE STRONGLY INDECOM-
POSABLE CHANNELS WITH SIDE INFORMATION AT THE
TRANSMITTER

We found the capacity expression of MISI channels by showing that
the associated channels are indecomposable. This brings up the question
of whether it would be possible to handle the general Indecomposable
Channels (Blackwell et al. (1958)) when side information about their
state would be available at the transmitter. Such channels are shown
schematically in Fig. 6, and their operation is as follows:

The channel consists of inputs z € {0, ---,a — 1}, states s &
{0, -+, h — 1}, and of a function ¢ which maps the states s onto the
channel outputs y € {0, --- ;b — 1}, b £ h. At discrete time intervals
i=1,2, .- the transmitter selects, with knowledge of the present
subchannel state s;, the input z; . The subchannel then puts out, with
probability w(s. /%, s:), its next state s;; which is simultaneously
made known to the transmitter and fed into the output transducer. The
latter finally puts out the channel output y. = ¥(s. 1) and the next time
interval is ready to start.
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Fic. 6. The general indecomposable channel with side information at the trans-
mitter.

It is clear that the MISI channels can be formulated so that they would
appear to be essentially a subclass of the channels of Fig. 6. All one must
do is to let states of the present channel be designated by pairs (siy1, ¥:),
where s;y; are the states and y. are the outputs of the MISI channel,
and let the function ¢ be defined by ¢ (s, ¥) = y. Then the present and
MISI channels would be completely equivalent except that in the latter
the transmitter is told only s and not the pair (s, y). But this is an in-
significant detail.

Now a general code for the channel of Fig. 6 would be a mapping of
messages into sequences of functions f € §” for some m, and a mapping
of sequences of outputs y onto the set of messages, exactly as described
in the proof of Lemma 3. One would again construct an associated
channel J” from the channel of Fig. 6, designated by J, just as K™ of
Fig. 5 was constructed from K of Fig. 1. The crucial step then would be
to prove an analogue of Lemma 1-—with this done the capacity expression
would be at hand.

Let {G.(f)}, f€{" be a set of ™ X h™ matrices whose entries
gm0 3 0oq1/f) are given in (16). The numbers ¢ are defined as in (7).

w(8i1/8: , (o))
i i = i—hm@'—m
Gulocsaunlfy =4 1 o T hE T e )
1

0 otherwise

The associated channel J" will be indecomposable if con- a7
dition (9) is met when the letter D is replaced by G .
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DerinitioN. The class of Strongly Indecomposable Chan-
nels with Side Information (SISI channels) consists of those (18)
channels J which meet (17) for all positive integers m =
1,2,--.

The suggested method of finding channel capacity works only for SISI
channels and it will be shown in Section VI that not all indecomposable
channels J of Fig, 6 are SISL.

The associated channel J™ has a well-defined transmission probability
law

n

VI(Y"/F", 8&") = an IIl wsi/8i, F(S™)), (19)
Iy (s> :\P ?&H—l) j=y® ¢
and given an input probability distribution @ over sequences #”, f € ",

there is a conditioned output probability law
PJ(Y"/8™) = 2 VI(T/E", ™) Q") (20)

It then follows from the results of Sections IIT and IV that Theorem
2 holds.

TaroreMm 2. The capocity °C of o SISI channel is given by

4 n o m
¢ = lim lim max min F, 1 log w

21
MR p® QEVH S 7 P (Y"/8m™) (21)

VII. COUNTEREXAMPLES AND SUFFICIENT CONDITIONS FOR
SIS CHANNEL CHARACTER

In this section we will state two alternate sufficient conditions for
SISI character, the first of which is quite an obvious one, while the
second, it is reasonable to assert, will in “practice’” be met by all SISI
channels. We will then introduce an example showing that the second
sufficient condition cannot be directly weakened.

Consider the set of a 2™ X h™ matrices {I',(z)} whose entries
vm(oi ; oig1/x) are given by

w(sip1/si, %)

if 6o41 = hoy

—B" Simt1 -+ Siq1
0 otherwise

Ymlos s osp/2) = (22)

where the numbers ¢ are defined as in (7). The channel is indecomposable
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if the set {Iy(x)} satisfies the eondition (9), and it is obvious that in
that case the set {I,,(x)} will satisfy (9) for all positive integers m.

Using the set {I',.(z)} we can generate a new set of A™ X h"™ matrices
{A.} of size exp, h™ as follows:

A, €{A,} ifandonlyifforall ¢=0,1, -+ A" —1
the ¢th row of A,, is identical with the ¢th row of some matrix (23)
Tp(®),z€0,1,---,a0—1.

Comparing (16), (22), (23) and the definition of the set { it follows
that the set {G..(f)} is identical with the set {A,}.

To test whether any set of matrices {A} guarantees indecomposability
of its corresponding channel® one proceeds, after Thomasian (1963), to
construct the matrix set {A'} by taking each matrix of {4} and replacing
its positive entries by ones, and then retaining only those matrices which
are different. The channel is indecomposable if the matrices {A'} satisfy
condition (9), and Thomasian’s test enables us to determine in a finite
number of steps whether this is so. We state the following lemma without
proof.

LemMa 4. The indecomposable channel J is SISI o whenever the cor-
responding rows of any two matrices a, 8 e {Ty (z)} are different, one of
them contains no zeros.

LemMA 5. Let the transmassion probability distribution of the channel J

be such that for every pair &', 2" € {0, ---, a — 1} and every state s there
exists a state s (s, 8 € {0, -+ -, h — 1}) such that simultaneously
w(s /s, &) # 0, w(s /s, 2") # 0 (24)

Then the necessary and sufficient condition for J to be SISI is that J* be
indecomposable (i.e. J is indecomposable whenever {A;} satisfies (9)).

Proor: Now J is SISI if for all m, J™ is indecomposable. In turn, J™
is indecomposable if the matrix L = G,(fy) -+ Gu(fi—) 18 indecom-
posable (see (9)), for any sequence (fo, fi, -+, feu1), where f; € {
andk = 1,2, -+ -, Le. if L is a matrix of a Markov chain whose any two
J™-states 8™ and S™ have a possible common successor state S™ .
Suppose that from the J™-state 8™ one can reach a state (Brmit s = s
tii=a -+, t/) = T" and from 8™ one can reach a state ({/-my ,
=y e ) = 7. Then it follows from the definition of the
matrices {G(f)} and of L that if (24) holds, 8 and 8™ will have a
possible successor state.

On the basis of the above observation we will prove the lemma by
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showing that whenever J"™ is decomposable so is J'. Let S = (8"t

80 = 1) and ST = (8"—my1, -+, S = £) betwo J™-states which,
relative to L (where the sequence (fo, fi, -+, fr—1) s fixed), have no
possible common successor state, and let the periodic sequence (fi*,
f1*7 "')7f;kkr+f =fi’fj€‘fm7i = 0; 17 >.7 = 07 7k - 1; be an
input to J™. Designate by 8 the set of possible subchannel output se-
quences {(s,, 85, - --)} (see Fig. 6) when the transduﬁer {see the para-
graph precedmg (16)) was started in state S0 , and by 8" the set
(sl", sy , ) when it was started in state S§ . Des1gnate further bv
$/(j €0, -,k — 1) the set of different states siz_; ¢ = 0, 1, - c-
curring in the sequences 8, and by $,” the set of different states sf;'kﬂ
oceurring in the sequences 8”. By the remark of the preceding para-
graph, and by the assumption about Sy and 8o, 87 N 8, must be

empty for all j = Ic — 1. This means that for every pair of se-

quences (81’, . sz;H_]) € S and (s, -+, Stpyi) € §” the subchannel
II /4

inputs 7 = f]<81k+.7 y T 81k+1—m+1> andz = f](3170+1 y Tty Slhtjemet1)

must be such that

if wa/spur;, ) >0 then w(a/siei,z’) =0

and

if w(8/sisi, 2 ) >0 then w(B/sui;,z) =0 (25)
where o, 8 € {0, --- , b — 1}. Using the functions fo, - -+ , fis € {" we
will now construct functions ¢o, - - -, ¢r1 € { such that L' = G(¢¢) - - -

G(¢y-1) will be decomposable
Taklng all states » € 8; in turn select some sequence (Strpjm mal
Siipg = v) € 8’ and let di(v) = f:(81k+a—m+17 R z/\-H = ).

Also, taking all states u € 8, in turn select some sequence

(3;,Ic+j-m+l y T S;’Ic+j = ,U-) E 8” and let ()6>
pi(n) = fj(sg,]c+j_m+1 ;T Sg’hﬂ' = p)

Finally for all states r ¢ 8,/ U 8;”, let arbitrarily ¢;(7) = 0. The pro-
cedure (26) is to be carried out for all j = 0, ---, k — 1, and thus
the sequence ¢ , - - - , ¢x-1 1s fully defined. Now consider the last states
7 and £ of the two starting J"-states 87 and St , and let the periodic
sequence (¢0*7¢'1*; "')7¢fk+i = ¢'J‘)i =0, 1; 7j = 07 ] k — 17
be an input to J'. Then, designating by =’ and =" the possible sub-
channel output sequences when 7 and £, respectively, are the starting
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states, and defining =;" and =;” analogously to S, and 8, it follows
from (25) and (26) that =; € S, and 2;” € 8,”. Hence =, N =, is
empty for all j = 0, ---, k — 1 and thus J* is decomposable, which
proves the sufficiency of the condition. The necessity follows directly
from (18). Q.E.D.

We will conclude this section by an example of a non-SISI channel
whose associated channel J' is indecomposable. Thus it will be shown
that the condition (24) cannot be dispensed with. Nevertheless, it
should be remarked again that (24) will in ““practice” always be met.

Consider the binary, three state subchannel of Fig. 6 characterized by
the matrices

1 1 0 1 1 0
ro)=[(1 0 o () ={o0 0 1
0 1 1 0 1 1

Then the matrices {A,"} are identical with the matrices {T"(z)}, z = 0, 1.
Using the terminology of Wolfowitz (1963a) the produets I'(0)I'(0),
I'(0) I'(1), T'(1)T'(0), and T'(1)T'(1) are all “scrambling’”” matrices
and thus J' is indecomposable. However, the set {A,} contains the
matrix

1 1000000 O
00010000 O
000 000GO0 1 1
11000000 0
000100000
0000O0O0UO0 1 1
11 0000GO0O 0O
00000100 0
0 00000 0 1 1

where the row and column numbering scheme (7) was used, and it can
be seen that the sets { (0, 0), (0, 1), (1, 0)} and {(1, 2), (2, 1), (2, 2)}
of states (si1, s:) are closed.” Thus J* is not indecomposable, and
therefore J is not SISI.

VIII. CONCLUSION

It is perhaps not necessary to point out that the obtained capacity
expressions are not computable as they stand, and that for the MISI
channel the trouble is not the limiting procedure (12), but the pro-
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cedure (14). Equally, for the SISI channel it is the limit with respect to
m which causes the difficulty in (21).

One would be tempted to conjecture that for SISI channels which
satisfy the condition of Lemma 5 the capacity is obtained with m = 1,
and, even more strongly, that for all MISI channels ¢ = C'(1) (see (14))
and that the optimizing distribution makes the symbols in the sequences
F' independent (see (12)). A forthcoming paper by the author will
explore the question of capacity computability for MISI channels. It
will be shown that our conjecture is provable if an additional condition
is imposed.
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