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Indecomposable Channels with Side Information 
at the Transmitter* 

FREDERICK JELINEK 

~chool of Electrical Engineering, Cornell University, Ithaca, New Yorlc 

In this paper the direct part and the strong converse of the coding 
theorem for two classes of Finite State Indecomposable Channels 
with Side Information at the Transmitter are proven. The question 
of membership in the first class can always be easily settled; to show 
that a channel belongs to the second class requires in general an in- 
finite number of operations. A finite test is developed that is applic- 
able if the given channel satisfies either of two additional restric- 
tions. Fortunately, the second of these will be met by any "practical" 
indecomposable channel. 

A PARTIAL LIST OF SYMBOLS AND ABBREVIATIONS 

FSI  channels Finite state channels with side information at the 
transmitter 

MISI  channels Finite state Markovian indecomposable channels with 
side information at the transmitter 

SISI channels Strongly indecomposable channels with side informa- 
tion at the transmitter 

SIA matrix Stochastic, indecomposable, aperiodic matrix 
~ The set of all strategy letters f of order m 
K, J Channels with side information 
K ~, jm Corresponding associated channels of order m 
e A set of states in a Markov chain 
8 A set of subchannel output sequences 
E A subset of subehannel output sequences 

I. INTRODUCTION 

The main purpose of this paper is to prove the direct and the strong 
converse parts of the coding theorem for Finite State N[arkovian In- 

* This work was supported, in part, by a Ford Foundation grant made through 
the Cornell College of Engineering. 
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decomposable Channels with Side Information at  the Transmit ter  
( M I S I  channels), and for Finite State Strongly Indecomposable Chart- 
nels with Side Informat ion at  the Transmit ter  (8 ISI  Channels).  Since 
it is in general not possible to carry out the test  for SISI  character in a 
finite number  of steps, we give in Section VI  two simple sufficient con- 
ditions, the second of which any indeeomposable channel will meet 
"in practice."  

Both M I S I  and 8181 channels form an interesting subclass of Finite 
State Channels with Side Informat ion at  the Transmit ter  (FSI  channels) 
characterized by a set of transmission probabil i ty matrices [p~(y/x)] 
where y 4 { 0 , - . . , b -  1} are the possible output  signals, z E 
{0, . . . ,  a -- 1} are the possible input signals, and s C {0, . . . ,  h - 11 
is an index specifying the channel state. The lat ter  is allowed to change 
f rom one t ime interval to the next according to some statistical rule, 
and its identi ty is made known to the t ransmit ter  prior to the selection 
of the signal to be transmitted.  Shannon (1958) gave a solution to the 
capaci ty problem for tha t  subclass of FSI  channels in which the states 
s, were selected at  t ime i ( =  1, 2, . - .  ) with constant probabil i ty r(s ,) ,  
independently of proceeding states s~(/~ < i) and of the channel inputs 
z~ and outputs  Yi (J = 1, 2, - - -, i, i 9- 1, - •. ). 

II. DEFINITION OF FINITE STATE MARKOVIAN INDECOM- 
POSABLE CHANNELS WITH SIDE INFORMATION AT THE 

TRANSMITTER 

The M I S I  channels we consider here are a generalization of the chan- 
nels considered by  Shannon (1958) in tha t  their successive states are 
selected b y  an indecomposable aperiodic t Markov  chain. 

Consider the channel of Fig. 1 having inputs x C {0, . . . ,  a -  1}, 
outputs  y E {0, • . . ,  b -- 1}, and states s ~ {0, . - . ,  h -- 1}. I ts  opera- 
tion at  any t ime is specified by  the probabilities w(s,+~ , y~/s~ , x~) tha t  
the letter y~ will be received and tha t  the next state will be s~+~, given 
tha t  the present state was s~ and tha t  x~ was transmitted.  The identi ty 
of the state s, is to be made known to the t ransmit ter  which can then 
base the selection of the input x~ on this knowledge. The channel will 
be a M I S I  channel if its w ( - ,  . / .  ,. ) satisfies the following restriction: 

b--1 

W(Si+I/Si , 231) = E W(8~nt-1, y l / s i  , Xl) = T(81+1/81) 
yi~O 

A chain is indecomposable if in the terminology of Feller (1957), p. 355, it con- 
tains at most one closed state se~ other than the whole chain itself For the defini- 
tion of aperiodicity see Feller (1957), p. 353. 
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FIO. 2. Exampl e  of an M I S I  channel .  I n  p a r t  (b), 

PIss'+1 = O/sl = O} = P l s ~ + I  = Ol~i  = l l  = o~ 

P{~+I  = 1/s~  = OI = P { s ~ + l  = 1/~i = 1} = 1 -- 
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for all 

x~ C { O , . - - , a - -  1} 

s~,s~+~ ~ { 0 , . - . , h -  1} (1) 

i = 1, 2, . . .  

and r(s~+~/s~) is the transition matrix of an indecomposable, aperiodic 1 
Markov chain. 

Restriction (1) states that  the channel inputs do not influence the 
selection of channel states, m~d justifies the diagramatie form of Fig. 1. 

We may also define a transmission probability matrix [p~(y/x)] by the 
expression 

h--1 

Psi(Y~/Xl) -~ ~ w(s~+l, yl/si, x~) (2) 
81+1~0 

× I 

! 
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FIG. 3. E q u i v a l e n t  r e p r e s e n t a t i o n  of t h e  M I S I  c h a n n e l  of F ig .  2. I f  s~ = 0 
t h e n p  = 1 -- a ,  if  s2 = 1 t h e n p  = a .  
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FIG. 4. A MIS1 channel constructed from a two-state binary symmetric 
nel with noiseless feedback. The boolean additive noise consists of the 
of the Markov source whose transition probabilities are indicated in (b). 

chan- 
states 

Figure 2 is an example of a channel satisfying restriction (1). The 
binary noise source (b) is actually memoryless, but the probability of 
noise is different in the two different states. The initial state can be made 
known to the receiver as follows: If s1 = 0, the transmitter sends XI* = 0; 
if sl = 1, the transmitter sends x1* = 1. Then whenever y1 = 0, s2 = 0, 
and whenever y1 = 1, a2 = 1. Once the initial state is established, the 
channel is “hooked up” as in Fig. 3 (a), and this gives rise to the over- 
all binary symmetric channel of Fig. 3 (b). In Fig. 3 (b) if s2 = 0 (and 
the receiver knows whether this is so!!) then p = 1 - 01, while if s2 = 1 
then p = (Y. 

The second example, given in Fig. 4 (a), is a binary channel with 
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feedback in which the Boolean additive noise is generated by the ~,farkov 
source of Fig. 4 (b).  Also here, restriction (1) is satisfied. 

III .  A SUMMARY OF RESULTS 

We shall first prove the coding theorem and its strong converse for 
MISI  channels. In Section IV we will construct out of FfISI  channels a 
sequence of ruth order associated finite state channels without side 
information and find the capacity of the latter by showing that  they are 
indecomposable (see Blackwell et al. (1958)). In Section V we will 
derive the capacity expression for the MISI  channels by showing that  
any code for an associated channel can be translated into a code for the 
underlying MISI  channel and vice versa. 

The above manner of proof will lead naturMly to the question of 
whether the coding theorem could be generalized to cover the entire 
class of Finite State Indecomposable Channels when side information 
about their current state is made available to the transmitter. This is 
possible only if all the channels in the sequence of ruth order associated 
channels are indecomposable. Channels which satisfy this condition are 
termed Strongly Indeeomposable (SISI chatmels), and for them we 
derive the appropriate capacity expression in Section VI. 

I t  is then of interest to see whether perhaps all indecomposable 
channels are strongly indecomposable as well. In  Section VII  we pro- 
vide a eounterexample. We also specify two different and simple to check 
sufficient conditions under which an indecomposable channel is strongly 
indeeomposable. I t  will be seen that  the second of these will be naturally 
met by  all "practical" indecomposable channels. In general, of course, 
to check for strong indecomposability is out of the question, since this 
would involve an infinite sequence of operations. 

IV. ASSOCIATED MISI CHANNELS AND THEIR CAPACITY 

We will find the capacity of MISI  channels by an approach similar to 
the one used by  the author on two-way channels. 2 

Let  {f} -- f~ be the complete set of order a ~ of functions, called strat- 
egy letters, whichmap sequences (sl~-~+~, • • • , s~), s~ E {0, • • • , h - 1}, 
into the set {0, • • • , a -- 1} of channel inputs. Using the strategy letters, 
a transducer, and the given MISI  channel denoted by K, one can con- 
struct an associated channel K m as in Fig. 5. The inputs to K ~ are 
letters f E fro, and the outputs are signals y C {0, . . .  , b -- 1}. The 

2 See Jelinek (1963), section 3. 
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FIQ. 5. (a) The associated MISI channel K% (b) The schematie diagram of the 
transducer. 

transducer contains two shift registers: the first has one stage and con- 
tains one of the letters f E ~ ,  the other has m stages, each containing 
indices s E {0, . - .  , h - 1}. The channel operates as follows: at time k, 
both transducer registers shift one step to the right, rejecting the con- 
tents of their rightmost stages. The first register is then filled with a 
particular K ~ input f,  and the first stage of the second register with the 
present state s~ of K. The transducer then puts  out the K-input  
f ( s k ,  • • • , sk-~+l), which is transmitted through K under the probability 
law p ~ ( . / . )  and received as some signal y C {0, . . - , b -  1}. The 
next time intervM is then ready to start. 

I t  is clear tha t  the channel K ~ has a well-defined transmission prob- 
ability law 

V ( y l  , . . .  , y ~ / f l  , " "  , f ~  , s l  , s o ,  . . .  , s 2 - , ~ )  

= p ~ l ( y l / f l ( s ~ ,  s o ,  . . .  , s 2 _ , ~ ) ) .  (3) 
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n 

82, ,  - , , 8  n i~2 

specifying the output sequence given the input sequence and the initial 
K~-channel state. 

Let Q be a probability distribution over sequences of t letters f { #= 
(sometimes, for clarity, we may write Q t instead). Define the conditional 
probability measure PQ over sequences of t signals y C {0, . . .  , b -- 1} 
given the initial state sequence @1, so, . . .  , s2_,,) by 

P Q ( y l  , " '" , y t / s l  , . . .  , s2_,~) 

= ~ V ( y l ,  " . .  , y t / f l ,  "'" , f t , s l ,  " . .  , s2-~) Q ( k ,  
f l , ' "  ' , f t  

yj < { 0 , . . - , b -  1} 

s~ ~ {O, . . .  , h -  1} 

• . .  

j = l , . . . , t  

i = 2 - - m , . . . , 1  

(4) 

v(YTF')  = r(& v(Y'/F',  
~1 m 

p Q ( y t )  = ~ r(&,,~) p Q ( y t / s , ~ )  
B l  rn 

In (6) r(&"*)  stands for the stationary probability of the sequence 
&~ of states of the underlying Markov chain (1). We will always write 
Eo for expectation with respect to the probability distribution Q given 
in the subscript. 

We will now prove three lemmas. We will use them to prove Theorem 
1 giving the capacity of the channel K. 

and 

where 

In the following we will adopt the capital letter notation (5) for se- 
quences of symbols of length t ending at time i: 

Z ~  ~ = z ~ - ~ + l ,  - "  , z ~  ( 5 )  

where the letter z stands throughout (5) for a symbol taken from the 
same alphabet (e.g., X~ t = x~-t+l , • • • , x~). We will also write Z t = Z J  

(e.g., y t  = Y*, " " ,  y t ) .  Define the quantity 

1 V ( y t / F t )  
R ( t ,  re~Q) = EQ y log p Q ( y , )  (6) 
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LEM•• 1. For all positive integers m, K m is an indecomposable channel. ~ 
PRooF: Consider the sequences S ~ =  ( s~_m+l , . . . ,  s~) as h-ary 

numbers and represent them by their decimal equivalent 

o~ = h°s~ + hls~_~ + . . .  + hm-~s~_m+~ , sj ~ {0, - . .  , h -- 1} (7) 

Thus o can take on values in the set {0, . . -  , h ~ - l } .  Let {D(f)}, f ~ ~m, 
be the set of bh ~ X bh ~ matrices whose entries, specified by the pair 
(3, ~), ?) ~ {0, . . .  , b - 1}, are given in (8). The row (column) (o', y ' )  
will precede the row (column) ( J ,  y") if either J < o" or if o' = o" 
and y' < y". The entries of the matrix D ( f )  are 

= ~ and o~ represents a possible state 
d((o~, y~-l) ; (a~+l, y~) / f )  | sequence with respect to the (8) 

| matrix [r(s~+l/s~)] 
~0 otherwise 

Thus if ~ represents the sequence (~-~+1,  s~_~_2, -.-  , s~) the element 
d((o~, y~-l); (o~+1, y~) / f )  can be nonzero only if oi+1 represents the 
sequence (s¢-,~-2, " ' "  , S i ,  O/i+1); O! i - -m+l  , O//+1 , s3' C {0, " "  , h -- 1}, 
j = i - - m + 2 , . . . , i .  

I t  is clear from (8) that  {D(f)}, f ~ ¢~ is a set of stochastic matrices 
which fully specifies K ~. 

Blackwell et al. (1958) start  with a rather complicated definition of 
indecomposable channels and in their Theorem i show that  the following 
simple one is completely equivalent. 

A channel specified by a set of stochastic matrices {D(f)} de- 
fines an indecomposable channel if and only if every finite 
product D ( f l ) . D ( f = ) . . .  D(fk)  = L is an indecomposable (9) 
Markov matrix, ]c = 1, 2, . . .  ;f~ C ~ .  

We will show that  our set, whose entries are given by (8), satisfies this 
condition. 

For every k = 1, 2, • - • the matrix product L must be stochastic, in- 
decomposable, and aperiodic (SIA) since, as pointed out by Thomasian 
(1963), if L is indecomposable and has period v > 1, L ~ is decompos- 

Indecomposable channels were first discussed by Blaekwell et al. (1958). 
See also Wolfowitz (1961) and (1964). 



CHANNELS WITH SIDE INFORMATION 45 

able. A matrix L will be SIA if given any two states ( J ,  y ')  and ( J ,  y")  
there exists a third state (z, y) which can be reached from either of the 
two given states in the same number of steps t q- 1. 

The matrix r(s~+l/sl)  defined by (1) is SIA. Hence so is any of its 
/ ! 

powers. Consider any two given sequences @1', s o , - . . ,  s,_~) and 
/ /  / /  

@1", So , . " ,  s l - ~ )  which have a nonzero probability of occurring 
! I !  t f !  

(i.e. sy ( s j )  can be reached from sy_ l ( s j_ , )  in one step, j -- 2 - rn, 
- . .  , 1). There is an integer a ~ . { 1 ,  2, . .-} and a state s* which can 
be reached from both s,' and s~ m a steps. Therefore, for each integer 

! ! 

l =  a q - r n ,  a q - m - k l , - . ,  there is a sequence ( s * * , s 0 , . . . , s , _ ~ )  
which can be reached from both given sequences in the same number of 
steps I. 

I t  follows from (8) tha t  if ( J ,  j )  and ( J ' ,  y")  are possible states of 
L (i.e., their respective columns have at least one nonzero entry)  there 
will be a state (0*, y~) ((z*, y2)) such that  L t will have a nonzero ele- 
ment [(z', V'); (z*, Yl)] ( [ ( J ' ,  Y"); (0*, Y2)]) provided tk > l. Since in 
any L the rows (¢, y), y = 0, . - .  , h - i are identical for any fixed ¢ 
(see (8))  then for some (~, 9) the matrix L t+~ will have nonzero entries 
in both positions [ ( J ,  y ' ) ;  (~, {7)] and [ ( J ,  y") ; (a, 9)]. QED. 

Let M be a finite, say D X D, indecomposable iWiarkov matrix and 
let 6 be a function from {0, . . .  , D - 1} to ~ .  We say that  a source 
driving a channel K ~ of Fig. 5 is governed by  a pair (M, 6),  if it operates 
as follows: at given time intervals an underlying Markov chain 
characterized by M changes from some state a to some state 5 
(a, 15 ~ {0, "" , D - i}) and the source then puts out a letter ~(5) 
and feeds it into the channel. Since ~I is indecomposable there exists a 
unique distribution rn( . )  over the set of states {0, . - . ,  D - 1} such 
that  if the chain is started in state a with probability re(a) ,  then the 
probabili ty that  the chain will be found at any time i in state 5 is ~n(5) 
irrespective of i; a, 5 C {0, . -. , D -- 1}. If  this is the way M operates, 
we say that  the source ( M ,  ~)  is stationary. Given any integer t, a 
source (M, Ca) has associated with it a probability distribution Or(. ) 
over sequences (fl  , f~ , • " , f , ) ,  f~ ~ ~"~, of source outputs. We say that  a 
distribution p t ( .  ) over finite sequences ( f , ,  - • • , ft) ,  f~ d ~" is s ta t ionaw 
if and only if it is associated with some stationary source (M, Ca). 

DEFINITION: Let ~0, t be the set of all stationary distributions Q~(. ). 
DEFINITION: G(t, ~*Z) = max R(t, ~n/Q) 

QC~8 t 
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LEMMA 2. The strong capacity 4 of the channel K m is given by 

C(m)  = lira G(t, m) = sup G(t, m) 
t ~ oO t 

(11) 

That is, given any e and ~, e > 0, 0 < ~ < 1, for n su~ciently large there 
exists for K ~ a code (n, 2 ~(~('~)-~), ~)4 and there does not exist a code 
(n, 2 "(c(m)+~), ~).5 

PnOOF: Since K m is indecomposable the direct and strong converse 
coding theorems proven by  Blackwe]l, Breiman, and Thomasian (1958) 
and by  Wolfowitz, 6 respectively, apply. Actually, Wolfowitz states the 
strong converse only for tha t  class of indecomposable channels where 
the outputs  determine the channel state uniquely. The generalization 
to the full class of indecomposable channels considered by  Blackwell 
et al. (1958) (where a not necessarily invertible function ~ is defined 
which when applied to the channel states s C {0, " ' "  , h - 11 produces 
the channel output)  is obvious and easy, and we will not bother to spell 
it out. 

With the help of an additional theorem by  Wolfowitz (1963b) the 
capacity expression would normally be given by  

Y~/F t S "~ 1 V( / 1 , 1 J  
C*(m) = limt~ maxQt min~m t- E ~  Iog p ~ t ( y t / s m  ) (12) 

where the expectation is, unlike in (6), taken with a fixed $1 m. Now 
Theorem 2 of Blackwell et al. asserts tha t  for a fixed Q 

1 V(  Y'/FltS1 "~) 1 log V ( Y t / F ' )  
rain ~- log 
s l , ~  P~(Y*/SI ~) t pe (y t )  

--* 0 a.e. and LI(Q) 

We will say throughout this paper that a channel has strong (weak) capacity 
if and only if both the direct and the strong (weak) converse parts of the coding 
theorem can be proven for it. For discussion of the strong and weak converses see 
Wolfowitz (1961), section 7.6. The strong converse implies the weak one but not 
vice versa. 

5 We are using here the notation of Wolfowitz (1961), p. 15. Thus (n, N, k) is a 
block code using channel input sequences of length n and accommodating N 
messages which when sent are each correctly decoded with probability exceeding 

6 The original version of the proof is in Wolfowitz (1963b), however there is a 
slight gap in the argument which is fully corrected in the indecomposable channel 
section of Wolfowitz (1964). 
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(c.f. (6) ) .  Hence we m a y  replace (11) by  7 

v( Y~/F ~) 
l im m a x  - EQt log .  (13) 
t ~  Qt t PQt(YO 

Blackwell et al. in their  Theorem 3 prove this capaci ty  expression with 
the help of sources (M, ¢)  defined above. T h e y  show tha t  the limit 
C*(m)  is independent  of the initial state distr ibution of the chain M.  
We are, therefore, free to insist on the s ta t ionary  distribution. This 
proves (11).  Q. E.  D. 

V. THE CAPACITY OF MISI CHANNELS 

We are now ready  to use the results of the preceding section to derive 
the  capaci ty  expression for the  M I S I  channels. 

LEMMA 3. A n y  code for the channel K m is a code for the channel K 
(see Fig. 5) ;  the transmission rate and the probability of error remain the 
same. Conversely, any code for the channel K is a code for a channel K ~ for 
some su~cient ly  large integer it. 

P R o o s :  A code for the  channel K m maps  integers {1, . . . ,  N} into 
sequences of the  form ( f t , f 2 , . . .  , f~) ,  f~ ~ fro, and maps  sequences 
(y~, y2, " "  , y~), y~ C {0, - . .  , b - 1 / into integers {1, . - .  , N}. Hence 
it maps  integers {1, - . .  , N} into sequences 

(fl(Sl '~),f2(S2"~), " . .  , f ,~(S ,~)  ) = (x~ , x2,  " "  , x~) 

of input  signals depending on the ident i ty  of the sequence 

(S1TM, S2 m, " ' "  , S n  m) ~--- (S2--m , " ' "  , 81 ,  " ' "  , 8n) 

of successive states of the channel K.  This proves the first assertion, 
provided tha t  it is assumed tha t  the t ransmit ter ,  before s tar t ing its 
opera t ion at t ime I has knowledge of the  preceding m or more K-channel  
states. I f  m < n, this is certainly satisfied after the  t ransmission of the  
first message. A n y  necessary ad jus tments  in our a rgument  if m > n are 
trivial. 

N o w  consider any  block code for the channel  K (other  kinds of codes 

7 It  is clear that there was nothing to prevent Wolfowitz (1963b) to give the 
capacity in the form of (13). However, the form of (12) was preferable since in the 
general case the distribution of the state S1 "~ depends on Q. Condition (1) assumes 
that this is not so in our case, and if it holds, form (12) and especially (11) makes 
the evMuation of C(m) easier, since the convergence to the limit is faster. 
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transmitting at constant rate can always be regarded as special eases of 
block codes). If possible decision errors at the receiver are not to carry 
over from one message to another, then the signals transmitted during a 
given block interval may depend, if need be, on some channel states of 
a preceding block interval, but not on signals transmitted during a 
preceding block interval. ~[oreover, even the past channel state de- 
pendence, if any, must be finite. Thus there will exist an integer v such 

that the code will map a message i C {i, "" , N1 into a function ¢/~ 
which itself maps state sequences 

(s2-~, " . -  , s l ,  - . .  , s~) , s~  C {0, . . .  , h  - 1} 

into signal sequences (x l ,  . - .  , x , ) ,  x~ 5 {0, . - -  , a - 1}. Moreover ,  
the  m a p p i n g  ~b~ mus t  be nonant ic ipa tory ,  t h a t  is, the  selection of the  
signal xj  cannot  depend on the  iden t i ty  of a n y  s ta te  s~, 1 > j .  T h u s  it 
m u s t  be  possible to  wri te  ~ as a sequence of funct ions gl ~, g2 ~, - . .  , g~  
where  g j  m a p s  s ta te  sequences ( s 2 _ , , . . . , s l , " .  sk) into channel  
inputs  xk E {0, • • • , a --  1}, k = 1, 2, • • • n. I t  follows, therefore,  t h a t  
such a code for K is also a code for  the  channel  l("+~ which proves  the  
l emma.  Q. E.  D. 

THEOREM 1. The strong capacity 5 of a Finite Markovian Indecomposable 
Channel with Side Information at the Transmitter whose operation is 
defined in (1) and (2) is given by the expression 

C = lira C(m) = sup C(m) (14) 

That is, given any e and ~, e > O, 0 < ~ < 1, for n su~ciently large there 
exists a code (n, 2 ~(c-~), h) 4 and there does not exist a code (n, 2 ~(c+~), h).~ 

PnooF :  I t  follows direct ly  f rom L e m m a s  1, 2, and  3 t h a t  the  capac i ty  
is given b y  the  expression s u p ~ C ( m ) .  However ,  for any  posi t ive integers 

< ~, a code for the  channel  K ~ can be direct ly  t r ans la ted  into a code 
for the  channel  K" which would have  the  same p robab i l i t y  of error. 
Hence  C(u)  _~ C ( , ) ,  and  (14) holds. Q. E.  D. 

At  this poin t  we should like to r e m a r k  t h a t  it is real ly quest ionable  
whe the r  one ought  to  speak  abou t  the  capac i ty  of channels  wi th  under-  
lying indecomposable iV~arkov chains (1) .  I m b e d d e d  in the  set of s ta tes  
of such a chain is a smal les t  closed subset  of states,  s Such a chain then  
contains  one irreducible subchain,  and  it is the  la t te r  only which is used 
to  compu te  R(t, re~Q) (see (6 ) )  and  hence the  capac i ty  C. We  are 

s See Feller (1957), p. 349. 
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dealing here with an asymptotic theory and thus all our results pertain 
to block lengths large enough to assmne essentially stationary operation 
of the underlying chain for an overwhehning fraction of the transmission 
process. 

Consider two channels K and K', with underlying chains M and M t 
such that  M'  is the unique irreducible subchain of the indecomposable 
chain M. Let the collection of states of M ~ be denoted by e '  and let the 
corresponding subset of states of M be denoted by  C. If K has the trans- 
mission matrices [ply~x)], and K'  the matrices [p~'(y/cc)], and if the 
corresponding states in e and e ~ are given the same label, then we will 
call K' the irreducible channel imbedded in K, provided 

p~'(y/x) = p~(y/x) for all s C e 

z ~ { 0 , . - . , a -  1} (15) 

y~ { 0 , - - - , b -  1} 

We then have the 
COROLLA_RY. The capacities of a Finite Markovian Indecomposable 

Channel with Side Information at the Transmitter, and of the irreducible 
channel imbedded in it are identical. 

VI. THE CAPACITY OF FINITE STATE STRONGLY INDECOM- 
POSABLE CHANNELS WITH SIDE INFORMATION AT THE 

TRANSMITTER 

We found the capacity expression of MISI  channels by showing that  
the associated channels are indeeomposable. This brings up the question 
of whether it would be possible to handle the general Indeeomposable 
Channels (Blaekwell et al. (1958)) when side information about their 
state would be available at the transmitter. Such channels are shown 
schematically in Fig. 6, and their operation is as follows: 

The channel consists of inputs x C {0, . - .  , a -  1}, states s 
{0, . . .  , h - 1}, and of a function ¢ which maps the states s onto the 
channel outputs y C {0, . --  , b - 1}, b < h. At discrete t ime intervals 
i = 1, 2, . . .  the transmitter  selects, with knowledge of the present 
subchannel state st ,  the input x ; .  The subehannel then puts out, with 
probability w(s~+l/x~, st), its next state s;+l which is simultaneously 
made known to the transmitter and fed h~to the output transducer. The 
latter finally puts out the chalmel output y~ = ¢(s~+~) and the next time 
interval is ready to start. 
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Si+l < 

SUB- I CHANNEL 
w( $i+i/s i ,xi) 

~+i OUTPUT I TRANSDUCER 

FIo. 6. The general indecomposable channel with side information at the trans- 
mitter. 

I t  is clear tha t  the MISI  channels can be formulated so that  they would 
appear to be essentially a subclass of the channels of Fig. 6. All one must 
do is to let states of the present channel be designated by pairs (s~+l, Y0, 
where m+l are the states and y~ are the outputs of the MISI  channel, 
and let the function ¢~ be defined by ~b(s, y) = y. Then the present and 
MISI  channels would be completely equivalent except tha t  in the latter 
the transmit ter  is told only s and not the pair (s, y).  But  this is an in- 
significant detail. 

Now a general code for the channel of Fig. 6 would be a mapping of 
messages into sequences of functions f ~ ~ for some m, and a mapping 
of sequences of outputs y onto the set of messages, exactly as described 
in the proof of Lemma 3. One would again construct an associated 
channel J ~  from the channel of Fig. 6, designated by J ,  just as K ~ of 
Fig. 5 was constructed from K of Fig. 1. The cruciM step then would be 
to prove an analogue of Lemma 1---with this done the capacity expression 
would be at hand. 

Let {Gin(f)} ,  f C ~'~ be a set of h " X h "~ matrices whose entries 
g~(~., ; ~+l / f )  are given in (16). The numbers ~ are defined as in (7). 

[~J)(S'a+l/Si, f (o ' / )  ) 
= ~ if o'~+i = h¢~ -- h'~se-m+l (16) 

[0 otherwise 

The associated channel J'~ will be indecomposable if con- 
(17) 

dition (9) is met when the letter D is replaced by G~.  
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DEFINITION. The class of Strongly Indecomposable Chau- 
nels with Side Information (SISI channels) consists of those 

(18) 
channels J which meet (17) for all positive integers m = 
1, 2, . . . .  

The suggested method of finding channel capacity works only for SISI 
channels and it will be shown in Section VI that not all indecomposable 
channels J of Fig. 6 are 8ISI. 

The associated channel jm has a well-defined transmission probability 
l&w 

V'(Y~/F~, $1 '~) = E f l  w(s~+,/s~,f(8/~)), (19) 
Sn b i = l  

[~ (~e),""' ,¢ (*,~+,) ]~Y= 

and given an input probability distribution Q over sequences F ~, f 6 (~', 
there is a conditioned output probability law 

pQ,(y~/&m) = y~ V,(y,,/F~,, Sin) Q(F") (20) 
F n 

It then follows from the results of Sections III  and IV that Theorem 
2 holds. 

TraEOaE~a 2. The capacity 5C of a S IS I  channel is given by 

C = lira lira max rain Ee 1_ log V'(Y'~/F~' &m) (21) 
. . . . . .  eev,~ zl'~ n Po'(Yn/& '~) 

VII. COUNTEREXAMPLES AND SUFFICIENT CONDITIONS FOR 
SISI CHANNEL CHARACTEP~ 

I~ this section we will state two alternate sufficient conditions for 
SISI character, the first of which is quite an obvious one, while the 
second, it is reasonable to assert, will in "practice" be met by all SISI 
channels. We will then introduce an example showing that the second 
sufficient condition cannot be directly weakened. 

Consider the set of a h ~ X h" matrices {F~(x)} whose entries 
"y,~(¢~ ; o-~+l/x) are given by 

0 otherwise 

where the numbers ~ are defined as in (7). The channel is indecomposable 
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if the set [F~(x)} satisfies the condition (9), and it is obvious tha t  in 
tha t  case the set {F~(x)} will satisfy (9) for nil positive integers m. 

Using the set {Fro(x)} we can generate a new set of h ~ X h m matrices 
/A~} of size exp~ h m as follows: 

A ~  lain} if and only if for all i =  0,1,  . - .  , h  ~ - 1  
the ith row of Am is identical with the i th row of some matrix (23) 
r ~ ( x ) ,  x C 0, 1, . - .  , a -- 1. 

Comparing (16), (22), (23) and the definition of the set ~m it follows 
tha t  the set {Gin(f)} is identical with the set {Am}. 

To test  whether any set of matrices {A} guarantees indecomposabili ty 
of its corresponding channel s one proceeds, after Thomasian  (1963), to 
construct the matrix set {A'} by  taking each matr ix  of {A} and replacing 
its positive entries by  ones, and then retaining only those matrices which 
are different. The ehannd  is indecomposable if the matrices {A'} satisfy 
condition (9), and Thomasian 's  test  enables us to determine in a finite 
number  of steps whether this is so. We state the following lemma without 
proof. 

LEMM~ 4. The indecomposable channel J is S I S I  if  whenever the cor- 
responding rows of any two matrices a, ~ e {rl '(x)} are different, one of 
them contains no zeros. 

L~MMa 5. Let the transmission probability distribution of the channel J 
be such that for every pair x', x" ~ {0, . . . ,  a - 1} and every state s there 
exists a state s*( s, s* C {0, . . . ,  h - 1}) such that simultaneously 

w(s*/s, x')  ~ O, w(s*/s, x") ¢ 0 (24) 

Then the necessary and su~cient condition for J to be S I S I  is that j1 be 
indecomposable (i.e. J is indecomposable whenever {&} satisfies (9)) .  

PaooF:  Now J is SISI  if for all m, J ~  is indecomposable. In  turn, J ~  
is indccomposable if the matrix L = G,~(fo) " "  Gm(fk-1) is indecom- 
posable (see (9)) ,  for any sequence (f0, f l ,  "-" , fk-1), where f~ C ~ 
and k = 1, 2, .. • , i.e. if L is a matrix of a ~[arkov chain whose any  two 
J~-s ta tes  S "~' and S ~" have a possible common successor state Sm*. 

7 n  m r ! 

Suppose tha t  from the J -state S one can reach a state (ti-,~+,, • • • , 
m p ~ n  # II 

tj_~ = a , - . - , t j )  = Tj and f r o m S  one can reach a state (t~--m+~, 
1! 

, t l - ~  = a ,  , tz ~ )  "~" . . . . . . .  T~ . Then it follows from the definition of the 
matrices [G~(f)} and of L tha t  if (24) holds, S ~' ~nd S ~" will have a 
possible successor state. 

On the basis of the above observation we will prove the lemma by  
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8 t s h o w i n g  t h a t  w h e n e v e r  J ~  is d e c o m p o s a b l e  so is J~. L e t  S~ ~' ( _,~+~, 

• . .  , so' ~) a n d  S~" = ( s " - ~ + ~ ,  • . .  , So = ~) b e  t w o  J ~ - s t a t e s  which ,  
r e l a t i v e  t o  L ( w h e r e  t h e  s e q u e n c e  ( t o ,  f~ ,  " "  , f~ - l )  is f ixed) ,  h a v e  no  
p o s s i b l e  c o m m o n  successo r  s t a t e ,  a n d  le t  t h e  p e r i o d i c  s e q u e n c e  (f~*, 

f~*, . ) ,  * • . f ~ + j  = f j ,  f~. ~ t7 "~, i = 0, 1, . . .  ; j  = 0, . - -  , /c - -  1, be  a n  
i n p u t  to  J ~ .  D e s i g n a t e  b y  g' t h e  se t  of pos s ib l e  s u b c h a n n e l  o u t p u t  se-  
q uences  [ (s~', s~', • . .  )} (see  F ig .  6)  w h e n  t h e  t r a n s d u c e r  (see  t h e  p a r a -  

• . m t ~ f , '  
g r a p h  p r e c e d m g  ( 1 6 ) )  w a s  s t a r t e d  in  s t a t e  S O , a n d  b y  t h e  se t  

l /  H • . ~q~tt , 

(s~ , s~ , . . .  ) w h e n  ~t w a s  s t a r t e d  m s t a t e  So . D e s i g n a t e  f u r t h e r  b y  
t 

g / ( j  ~ 0, . . -  , /~ - -  1) t h e  se t  of d i f f e ren t  s t a t e s  si~+~ i = 0, 1, . . .  oc-  
! Pt I t  

era ' r ing in  t h e  s equences  g ,  a n d  b y  8j t h e  se t  of d i f f e ren t  s t a t e s  s~+a  
o c c u r r i n g  in  t h e  s equences  $". B y  t h e  r e m a r k  of t h e  p r e c e d i n g  p a r a -  

g r a p h ,  a n d  b y  t h e  a s s u m p t i o n  a b o u t  So' a n d  S0 ~', g /  f) $~'~ m u s t  be  
e m p t y  for  a l l  j = 0, • • • , /c - 1. T h i s  m e a n s  t h a t  for  e v e r y  p a i r  of se-  

' $' " ,, g" 
q u e n c e s  (s~', • . s ~ + j )  ~ a n d  (s~ , , . . . .  s ~ + i )  t h e  s u b c h a n n e l  
i n p u t s  x '  = f ~ ( s ~ + i ,  "" s~+~_,~+~) a n d  x" = fi(si',~+~, "'" , s~,,+~_ + ) 
m u s t  b e  such  t h a t  

if w(ce/s '~+i,  x ' )  > 0 t h e n  w(ce/s;'~+i, x")  = 0 

a n d  

if w(5/sz"k+j, x " )  > 0 t h e n  w ( ~ / s ~ + j ,  z ' )  = 0 (25 )  

w h e r e  a ,  ~ ~ {0, • . .  , h - -  1}. U s i n g  t h e  f u n c t i o n s  t o ,  - • • , fA~-i ~ I '~ we  
wil l  n o w  c o n s t r u c t  f u n c t i o n s  ¢0,  • • • , ¢k-1 C ~1 such  t h a t  L '  = G(¢0) - • • 
G(¢~_1) wi l l  be  d e c o m p o s a b l e :  

l t 
T a k i n g  al l  s t a t e s  ~ ~ $j  in t u r n  se lec t  s o m e  sequence  (si~+~_,~+l, 

! 
• --  , s%+j  = v) ~ $' a n d  l e t  O~(v) = f j ( s ~ + j - ~ + l  , " ' "  , sik+j = v). 

Also,  t a k i n g  al l  s t a t e s  ~ C $y" in t u r n  se lec t  s o m e  sequence  

It i , . . H (suo+~_~,+ . , su~+~ = ~) ~ ~" a n d  le t  
H // 

4)J(u) = f j ( su ,+~- , ,+ l  , " ' "  , sz,~+j = , )  

F i n a l l y  for  a l l  s t a t e s  r C SJ' O g j" ,  le t  a r b i t r a r i l y  C j ( r )  = 0. T h e  p ro -  
c e d u r e ( 2 6 )  is t o  b e  c a r r i e d  o u t  f o r a l l j  = 0, . - - ,  /~ - 1, a n d  t h u s  
t h e  s e q u e n c e  ¢0 ,  • • • , ¢~-~ is fu l l y  def ined .  N o w  cons ide r  t h e  l a s t  s t a t e s  

a n d  ~ of t h e  t w o  s t a r t i n g  J ~ - s t a t e s  S ;  ~' a n d  S~", a n d  le t  t h e  p e r i o d i c  
s e q u e n c e  (~o*, ¢1", • • ") ,  ¢i~+~ = ¢ j ,  i = 0, 1, . • • , j = 0, - - -  , lc - -  1, 
be  a n  i n p u t  to  J~. T h e n ,  d e s i g n a t i n g  b y  2 '  a n d  2 "  t he  poss ib l e  sub -  
c h a n n e l  o u t p u t  s equences  w h e n  v a n d  ~, r e s p e c t i v e l y ,  a re  t h e  s t a r t i n g  
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states, and defining 2j' and Y~/' analogously to S / a n d  S/', it follows 
from (25) and (26) that  2j c S/and r,/' ~ S/'. Hence ~i' N ~/ '  is 
empty for all j = 0, . . .  , k -- 1 and thus j1 is decomposable, which 
proves the sufficiency of the condition. The necessity follows directly 
from (18). Q.E.D. 

We will conclude this section by an example of a non-SISI channel 
whose associated channel J1 is indecomposable. Thus it will be shown 
that  the condition (24) cannot be dispensed with. Nevertheless, it 
should be remarked again that (24) will in "practice" always be met. 

Consider the binary, three state subehannel of Fig. 6 characterized by 
the matrices 

I i  1 !1  I i  1 !1  r ' ( 0 )  = 0 r " ( I )  = 0 
1 1 

Then the matrices {&'} are identical with the matrices {IV(x)}, x = 0, 1. 
Using the terminology of Wolfowitz (1963a) the products r'(0)r'(0), 
r'(0) r'(1), r'(1)r'(0), and 1"(1)I"(1) are all "scrambling" matrices 
and thus j1 is indeeomposable. However, tile set IA2 ~} contains the 
matrix 

-1 1 0 0 0 0 0 0 0- 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 
1 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 
1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 1_~ 

where the row and column numbering scheme (7) was used, and it can 
be seen that  the sets {(0, 0), (0, 1), (1, 0)} and l(1, 2), (2, 1), (2, 2)} 
of states (a~-1, s~) are closed. 8 Thus j2 is not indeeomposable, and 
therefore Y is not SISI. 

VIII. CONCLUSION 

It is perhaps not necessary to point out that the obtained capacity 
expressions are not computable as they stand, and that for the MISI 
channel the trouble is not the limiting procedure (12), but the pro- 
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cedure (14). Equally, for the SISI  channel it is the limit with respect to 
m which causes the difficulty in (21). 

One would be tempted  to conjecture tha t  for SISI  channels which 
satisfy the condition of Lemma 5 the capacity is obtained with m = 1, 
and, even more strongly, tha t  for all 5 i I S I  channels C = C(1) (see (14)) 
and tha t  the optimizing distribution snakes the symbols in the sequences 
F t independent (see (12)).  A forthcoming paper  by  the author  will 
explore the question of capacity computabi l i ty  for M I S I  channels. I t  
will be shown tha t  our conjecture is provable if an additional condition 
is imposed. 
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