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R. Janczewski ∗, M. Kubale, K. Manuszewski, K. Piwakowski1

Technical University of Gda�nsk Foundations of Informatics Department, G. Narutowicza 11=12,
80-952 Gda�nsk, Poland

Received 28 October 1997; revised 4 September 1998; accepted 5 March 2000

Abstract

For a given approximate coloring algorithm a graph is said to be slightly hard-to-color (SHC)
if some implementation of the algorithm uses more colors than the chromatic number. Similarly,
a graph is said to be hard-to-color (HC) if every implementation of the algorithm results in
a non-optimal coloring. In the paper, we study the smallest of such graphs for the DSATUR
vertex coloring algorithm. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

As a rule, the performance of graph coloring heuristics is studied by giving asymp-
totic results. These are usually the worst-case performance guarantee and the worst-case
time complexity. Both functions tell us what one can face at worst when using a given
graph coloring algorithm if the number of vertices n goes to in=nity. However, we do
not know what is going on at the other end of the scale, say when n¡10. Therefore,
Hansen and Kuplinsky [5] introduced the concept of the smallest hard-to-color graph
and slightly hard-to-color graph. These are the smallest graphs which cannot be col-
ored optimally by some approximation algorithms. The aim of studying such graphs
is twofold. First, analyzing hard-to-color graphs makes it possible to obtain improved
algorithms which avoid hard instances as far as possible. Second, it enables us to
search for small benchmarks for comprehensive families of graph coloring algorithms
(cf. [4]). These are the graphs which are hard to color for every algorithm in a given
family.
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Fig. 1. The smallest graphs for algorithm DSATUR: (a) slightly HC; (b) HC.

A graph G is said to be slightly hard-to-color (SHC) with respect to an algorithm
A if for some instance of it the number A(G) of colors used satis=es A(G)¿�(G),
where �(G) is the chromatic number of G. We similarly de=ne a hard-to-color (HC)
graph as one for which every application of the algorithm (i.e. no matter what choice
is made to break ties) results in a non-optimal coloring. Moreover, we de=ne smallest
graphs for which a given algorithm produces non-optimal colorings. More precisely,
in the case of SHC graphs among all graphs G = (V; E) we are looking for a graph
G′ = (V ′; E′) which realizes

|E′|= min{|E|: for some instance of A; A(G)¿�(G); and |V |= n0};

where

n0 = min{|V |: for some instance of A; A(G)¿�(G)}:

HC graphs are de=ned in the same way with words ‘for which’ instead of ‘for some’.
So far, the only heuristics with the known smallest HC and SHC graphs have been

the largest-7rst (LF) and the smallest-last (SL) sequential algorithms. Namely, Hansen
and Kuplinsky [6] proved that path P6 and the so-called envelope are the unique
smallest SHC and HC graphs, respectively, for algorithm LF. Recently, Kubale et al.
[8] showed that the prism and prismatoid are the unique smallest SHC and HC graphs,
respectively, for algorithm SL. Babel and Tinhofer [1] studied a general connected
sequential algorithm and proved fan F5 to be the smallest SHC graph (a smallest HC
graph for this method is unknown). These and some other smallest SHC=HC graphs
were computationally veri=ed in [7] and the problem of chromatic sum coloring was
considered from a SHC=HC viewpoint in [4].

The remainder of this paper is organized as follows. In Section 2 we give preliminary
results. In particular, we review the classes of graphs which are colored optimally by
DSATUR. In Section 3, we introduce a concept of algorithm SLF and consider its
SHC and HC graphs. The SLF algorithm is much easier to analyze than DSATUR and
has the property that every graph which is SHC for DSATUR remains SHC for SLF
and every HC graph for SLF is also HC for DSATUR. The main results of this paper
are given in Section 4. We give there a proof that the graphs in Fig. 1 are the smallest
SHC and HC graphs for algorithm DSATUR. Note that both graphs were mentioned
as hard to color in [5,7] without giving a formal proof of their minimality.
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2. Preliminary results

Throughout the paper G = (V; E) is a simple connected graph. By �(G); �(G); m(G)
and n(G) we denote the maximum degree, minimum degree, size, and order of G,
respectively. We shall drop the reference to the graph, if G is clear from the context.

Algorithm DSATUR, along with LF and SL, belong to the three most popular
vertex-coloring algorithms. In contrast to its two competitors, it is based on a dy-
namic ordering of vertices. More formally, let c be a partial coloring of the vertices
of G and let v be an uncolored vertex. By �(v) we mean the saturation degree of v,
that is, the number of adjacent distinctly colored vertices. By deg(v) we denote the or-
dinary vertex degree. Algorithm DSATUR performs for each i = 1; : : : ; n the following
two steps:

1. Select a vertex vi with maximum saturation degree breaking ties by choosing a vertex
of greater ordinary degree, i.e. �(vi) = max �(Vi) and deg(vi) = max{deg(w): w∈Vi∧
�(w) = max�(Vi)}, where Vi =V \ {v1; : : : ; vi−1}.

2. Color vi greedily, i.e. so that color c(vi) = min{k ∈N+: c(vj) �= k for each j¡i such
that {vi; vj}∈E}.

Algorithm DSATUR, which has become the de facto standard among graph-coloring
algorithms (cf. [9]), was given by BrMelaz [2]. Turner [11] showed how this heuristic
algorithm could be eNciently implemented in time O(m log n). Spinrad and Vijayan
[10] constructed a family of 3-chromatic graphs for which the number of colors used
by some implementation of DSATUR is O(n). It is easy to see that

DSATUR(G) = max{�(vi): 16 i6 n} + 1;

where v1; : : : ; vn is the sequence in which the vertices of G are colored in the course
of the algorithm. We call such a valid sequence a DSATUR sequence. Any DSATUR
sequence for which DSATUR(G) = �(G) is said to be optimal. Also, note that

�(vi)6 degi(vi);

where degi(vi) is the degree of vi in the subgraph of G induced by vertices v1; : : : ; vi.
The DSATUR algorithm has some nice properties. First of all, it optimally colors all

bipartite graphs [2]. Next, it optimally colors the following k-degenerate graphs (i.e.
such that each subgraph G′ ⊂G has �(G′)6 k for a =xed k): cycles, uni- and duocyclic
graphs, cacti, trees of polygons, wheels, and the so-called necklaces. A necklace Ni1 ;:::;ik

is a graph whose edges constitute k¿ 2 chordless paths of lengths i1; : : : ; ik joining the
same pair of vertices. All paths are vertex disjoint except their endpoints. For example,
cycle C5 can be regarded as N2;3 or N1;4. On the other hand, DSATUR optimally colors
almost all k-colorable graphs (see [11] for details).

In the following, we need a notion of the core. The core of G is a subgraph obtained
by pruning away all pendant vertices successively until there are no vertices of degree
1. The following proposition enumerating the main classes of graphs that are colored
optimally is straightforward.
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Proposition 2.1. No graph whose core is:

(1) a single vertex;
(2) a bipartite graph;
(3) a wheel;
(4) a complete multipartite graph;
(5) a cactus and
(6) a necklace

is SHC for algorithm DSATUR (and algorithm SLF of Section 3).

Proposition 2.1(1) and (2) follows from the bipartiteness. Proposition 2.1(3) and
(4) are obvious. Proposition 2.1(5) follows from the fact that cacti are graphs that can
be decomposed into cycles any two of them have at most a vertex in common. If a
vertex v gets color 3 then v is the =nal vertex of an odd cycle colored. Therefore, for
any uncolored v∈V�(v)6 2 and no color 4 need be introduced. Proposition 2.1(6)
follows from the fact that the only vertices of degree greater than 2 are path endpoints
u; v which satisfy �(u)6 16 �(v)6 2, where u is the vertex colored before v, and
�(v) = 2 only if the necklace is 3-chromatic.

Let p and n1; : : : ; np be integers satisfying p¿ 1 and n1¿ n2¿ · · · ¿ np¿ 3. Let
G be the class of graphs de=ned recursively by the rules: the ni-cycle is in G for each
i = 1; : : : ; p and if G1 and G2 belong to G then so does any graph that can be formed
from G1 and G2 by identifying an edge of G1 with an edge of G2. The graphs in G
are called (n1; : : : ; np)-gon trees or simply trees of polygons.

Proposition 2.2. No tree of polygons is SHC for algorithm DSATUR (and algorithm
SLF of Section 3):

Proof. Let G be a tree of polygons. First of all observe that G is 2-degenerate and thus
�(G)6 3. For the need of the proof, we introduce a random saturation largest-7rst
(RSLF) algorithm. It repeatedly chooses an uncolored vertex v such that its saturation
degree is maximum and puts v in any color class 1, 2 or 3 where it =ts. If, however,
none of them is available to v then the color is chosen according to the smallest-=rst
principle.

To prove that RSLF(G)6 3, we use induction on the number k of polygons in G.

1. If k = 1 then G =Cn and RSLF(G)6 3, since �= 2.
2. Assume that the thesis is true for k = 1; : : : ; p− 1 and let us check whether it holds

for k =p.

Let G have p polygons. Then G can be represented as a graph H of p − 1 poly-
gons and a path (w1; : : : ; wr), where only w1; wr ∈V (H) and {w1; wr}∈E(H). Let
s= ((v1; c(v1)); : : : ; (vn; c(vn)) be any RSLF sequence of coloring G (v1 is colored
with c(v1), etc.) and let s′ be the sequence obtained from s by deleting the ver-
tices w2; : : : ; wr−1 along with their colors. We prove that s′ is a valid RSLF sequence
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of coloring H . To do this it is enough to show that in the moment of coloring any
vertex vi ∈V (H) the following two conditions are satis=ed: (a) vi is a vertex with
maximum �(vi) among all yet uncolored vertices of H and (b) assignment of color
c(vi) is consistent with the rule of RSLF. Without loss of generality, we assume that
w1 is followed by wr in s (and so in s′). Let us consider three cases.
Case 1: vi �=w1 and vi �=wr .

(a) Vertices w2; : : : ; wr−1 are not adjacent to vi in G so in the moment of coloring the
degree �(vi) is the same for the sequence s′ of graph H and for the sequence s
of graph G. The same concerns all uncolored vertices of H except w1; wr whose
saturation degree in s′ can be less than or equal to that in s of G. Since vi has
the maximal saturation degree while coloring G according to s, it has the maximal
saturation degree while coloring H according to s′ as well.

(b) Consistency of coloring vi with the rules of RSLF follows from the fact that in
the moment of assigning a color to vi this vertex has exactly the same adjacent
vertices colored identically in both cases.

Case 2: vi =w1.

(a) Let us consider two cases.
(a.1) v1 ∈V (H). Then in the moment of coloring vi according to s of G the ver-

tices yet uncolored in G have saturation degrees identical in s to that in s′

of H . Since vi has the maximal saturation degree while coloring G accord-
ing to s, it has the maximal saturation degree while coloring H according
to s′.

(a.2) v1 �∈V (H). Then vi is the =rst vertex in sequence s′ and �(v) = 0 for all
v∈V (H).

(b) If v1 ∈V (H) then the argument of Case 1(b) applies. If v1 =∈V (H) then the con-
sistency is obvious.

Case 3: vi =wr .

(a) Let us consider two cases.
(a.1) wr−1 precedes wr in s and c(w1) �= c(wr−1). Two subcases are possible.

(a.1.1) wr−1 is followed by w1 in s. Then {w1; : : : ; wr−1} is the exact set
preceding vi in s. Thus in the beginning of s′, we have w1 and
vi. Hence in coloring according to s′ vertex vi has �(vi) = 1 (in
the moment of coloring) and the remaining uncolored vertices have
�(v)6 1.

(a.1.2) w1 is followed by wr−1 in s. Then while coloring G in the moment
of coloring vertex wr−1 has �(wr−1) = 1. It is the maximal saturation
degree, so the remaining uncolored vertices v∈V (H) have �(v)6 1.
After coloring vertex wr−1, the new value of saturation degree of vi
is 2 (since w1 is before vi in s). Thus, vi is the immediate successor
of wr−1 in s. This implies that vi has �(vi) = 1 in s′ (in the moment
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of coloring), but the remaining uncolored vertices v∈V (H) have
�(v)6 1.

(a.2) wr precedes wr−1 in s or c(w1) = c(wr−1). Then, similar to (1:a), in both
colorings according to s and s′ in the moment of coloring vi the saturation
degrees of all vertices in V (H) are identical except w1, whose saturation
can be less in s′ than in s (but for sure not greater). Since vi has maximal
saturation degree while coloring G according to s, it has maximal saturation
while coloring H according to s′ (in the moment of coloring).

(b) If wr−1 precedes wr and c(w1) �= c(wr−1) then by Case 3(a.1) c(vi)∈{1; 2; 3}:
Otherwise see Case 1(b).

We have shown that s′ is an RSLF sequence for H . So by induction hypothesis
RSLF(H)6 3. Since s and s′ color H in the same way, any RSLF sequence for
G uses colors 1, 2, 3 for w2; : : : ; wr−1, because each of them is of degree 2. Therefore
RSLF(G)6 3. Obviously, if �(G)6 2 then SLF(G) = �(G) and DSATUR(G) = �(G).
If �(G) = 3 then RSLF(G) = 3. Since any SHC graph for SLF and DSATUR remains
SHC for RSLF, Proposition 2.2 follows.

3. Algorithm SLF

Algorithm saturation largest-7rst (SLF) is a simpli=cation of DSATUR. It starts
with coloring an arbitrary vertex, say v1, with color 1 and then keeps the following
invariant for each i = 2; : : : ; n:

1. The vertex to color in step i is an uncolored vertex with maximum saturation degree;
if there are at least two such vertices then the next vertex to color is selected at
random.

2. The chosen vertex, call it vi, is colored greedily.

The only diPerence from DSATUR is in the way ties are broken. Therefore the SLF
algorithm has the following property.

Proposition 3.1. Any HC graph for SLF is HC for DSATUR. Any SHC graph for
DSATUR is SHC for SLF.

Moreover, it colors optimally the same graphs that are listed in Proposition 2.1. For
this reason Proposition 2.1 holds true for algorithm SLF as well. However, SLF yields
arbitrarily bad results on 3-partite graphs shown in Fig. 2.

Proposition 3.2. If G is SHC for the SLF algorithm then

(i) 36 �(G)6 n(G) − 2;
(ii) �(G)¿ 3.

Proof. Property (i) follows from Proposition 2.1(2) and the fact that SLF uses n colors
only on Kn. Property (ii) is obvious.
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Fig. 2. Graph Gk for which SLF(Gk) = k + 1.

The following corollary is a straightforward consequence of Brooks’ bound [3].

Corollary 3.3. If G is SHC for the SLF algorithm then �(G)6�(G).

Proposition 3.4. No graph with a spanning star is smallest SHC for the SLF
algorithm.

Proof. Suppose G is a smallest SHC graph for SLF with �= n − 1. Let (v1; : : : ; vn)
be a non-optimal SLF sequence for G and let deg(vk) = n − 1. Then the sequence
(v1; : : : ; vk−1; vk+1; : : : ; vn) is non-optimal for graph G − vk , a contradiction to the hy-
pothesis that G is the smallest.

Proposition 3.5. Let G be a graph with bridge e. If G is SHC for the SLF algorithm
then at least one of connected components of G − e is SHC for SLF.

Proof. Let (v1; : : : ; vn) be a non-optimal SLF sequence for G and let H1 and H2 denote
the two connected components of G obtained after the deletion of edge e. Withouts loss
of generality assume that v1 ∈V (H1). Since coloring of H1 is independent of coloring
of H2, we can split (v1; : : : ; vn) into two subsequences (u1; : : : ; uk) and (w1; : : : ; wl) such
that u1; : : : ; uk ∈ (H1) and w1; : : : ; wl ∈V (H2) and (u1; : : : ; uk) is an SLF sequence for
H1. Moreover, the colors assigned to vertices u1; : : : ; uk in both sequences are identical.
Thus, if SLF fails within H1, i.e. uses a color greater than �(G), then H1 is the desired
subgraph. Otherwise, SLF fails within H2. Let us consider this case in more detail. Let
e = {ui; w1}. The following two subcases are possible.
Case 1: Algorithm SLF has assigned color 1 to w1. Then (w1; : : : ; wl) is an SLF

sequence for H2 and the colors assigned to vertices wi are the same as used when
coloring graph G.
Case 2: Algorithm SLF has assigned color 2 to w1. Then (w2; w1; w3; : : : ; wl) is an

SLF sequence for H2 and the colors assigned to vertices wi are the same as used when
coloring graph G, since w2 was colored with 1.

It follows that H2 is SHC for SLF.



158 R. Janczewski et al. / Discrete Mathematics 236 (2001) 151–165

Fig. 3. Graph used in the proof of Proposition 3.7.

Proposition 3.6. If G is SHC for the SLF algorithm then

m(G)¿ (�(G) − 2)(�(G) + 1)=2 + n(G):

Proof. Let G be SHC for SLF. By our assumption G is connected. Since there is
an SLF sequence for which SLF(G)¿�(G), graph G must have a vertex v with
�(v)¿ �(G). Moreover, v must be adjacent to �(G) vertices each of which is col-
ored diPerently. Thus, their degrees degi(vi) must range from at least 0 to at least
�(G) − 1. Taking into account the fact that the saturation degree of the remaining
vertices is at least 1 (in the moment of coloring), we get m(G)¿ 0 + · · · + �(G) +
n(G) − �(G) − 1 = (�(G) − 2)(�(G) + 1)=2 + n(G).

Proposition 3.7. No graph G with n(G)6 5 is SHC for the SLF algorithm.

Proof. Clearly, no graph with at most 4 vertices is SHC for SLF. By Proposition 3.6
if n= 5 and G is SHC then m¿ 7. All graphs K5 without one or two edges have a
spanning star. The only graph K5 without three edges and a spanning star is shown in
Fig. 3. It is easy to see that every SLF sequence for this graph is optimal.

Lemma 3.8. The graph shown in Fig. 4(a) is the unique smallest SHC graph for
the SLF algorithm.

Proof. By Propositions 2.1(2), 3.6, 3.7 and the fact that the graph in Fig. 4(a) is
SHC for SLF it follows that a smallest SHC graph must have m= 8 and n= 6. By
Proposition 3.5 it cannot have a vertex of degree 1. There are only 4 graphs with
degree sequence (3; 3; 3; 3; 2; 2), 4 graphs with degree sequence (4; 3; 3; 2; 2; 2) and 2
graphs with degree sequence (4; 4; 2; 2; 2; 2). They are shown in Fig. 4. One can easily
check that the graph of Fig. 4(a) is the only SHC graph for SLF.

The reader can verify that all 6-vertex SHC graphs for algorithm SLF contain the
smallest SHC graph, that is, each of them is a supergraph of the graph shown in Fig.
4(a). There are only 3 such graphs and they are all shown in Fig. 5.
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Fig. 4. Possible candidates for the smallest SHC graph for SLF: (a) SHC graph; (b) bipartite; (c) (4; 3; 3)-gon
tree; (d) non-SHC; (e) (4; 3; 3)-gon tree; (f) (4; 3; 3)-gon tree; (g) non-SHC; (h) non-SHC; (i) bipartite; (j)
necklace.

Fig. 5. Six-vertex SHC graphs for SLF with at least 9 edges.

4. Algorithm DSATUR

By Proposition 3.1 and Lemma 3.8 no graph smaller than that of Fig. 4(a) is SHC
for the DSATUR algorithm. The reader can verify that the graph of Fig. 4(a) is not
SHC for DSATUR either.

Proposition 4.1. If G is SHC for the DSATUR algorithm with �(G) = n(G)− 3 and
�(G)6 n(G) − 2; then

(i) �(G)¿ n(G) − 3
(ii) G has n(G) − 3 vertices of degree at least n(G) − 3; which generate a clique or

a clique without one edge.

Proof. Property (i) follows from Proposition 3.1 and Corollary 3.3. To prove (ii) =rst
observe that DSATUR will use at least �(G) + 1 = n− 2 colors on G. It cannot use n
or n− 1 colors, since otherwise it would have a clique on at least n− 2 vertices and
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consequently �(G) �= n−3. So DSATUR uses exactly n−2 colors. Obviously, no three
vertices can be assigned the same color. Hence, two vertices will be colored with color
1, another two vertices will be colored with a color from 2; : : : ; n−2 and the remaining
vertices will be colored with unique colors. Let c(v1) = c(vk) = 1; c(vi) = c(vj)¿1; and
let S = {v2; : : : ; vn}\{vi; vj; vk}. The vertices of S form a clique of order n−4, because
they are colored uniquely. Moreover, each of them is adjacent to at least one of v1; vk
and one of vi; vj. Therefore, the degree of any vertex from S is at least n − 3. This
clearly concerns vertex v1 as well. Thus n− 3 vertices of S ∪ {v1} all have degree at
least n− 3 and constitute a clique or a clique without an edge (at v1).

Proposition 4.2. If G is SHC for the DSATUR algorithm and �(G) = n(G)−2; then
there is an SHC graph for SLF of order n(G) − 2:

Proof. Let (v1; : : : ; vn) be a non-optimal DSATUR sequence for G. Obviously v1 is
the =rst vertex of degree n− 2 and let vk be the only vertex non-adjacent to v1. Then
(v2; : : : ; vk−1; vk+1; : : : ; vn) is a non-optimal SLF sequence for graph G − vk − v1, since
in G all vertices except vk are adjacent to v1, and v1; vk are the only vertices which
receive color 1.

Corollary 4.3. If G is SHC for the DSATUR algorithm and n(G)6 7; then
36 �(G)6�(G)6 n(G) − 3:

Proposition 4.4. Let G be SHC for the DSATUR algorithm. If G is 2-edge-connected
then either �(G)¿ 3 or there is a vertex v of degree 2 such that G−v is SHC for
SLF.

Proof. Let G be a bridgeless SHC graph for DSATUR. If �¡3 then �= 2; since G
has no pendant edges. Let H1; : : : ; Hk be connected components obtained from G by
removing all vertices of degree 2. Consider two cases.
Case 1: k = 1: Let v be any vertex of degree 2 in G and let u; w be the two neighbors

of v. If at least one of u; w is of degree 2 then there is a non-optimal DSATUR
sequence (v1; : : : ; vn−1; v) for G and (v1; : : : ; vn−1) is a non-optimal SLF sequence for
G − v. If u; w∈V (H1) then deg(u)¿ deg(w)¿ 3 in G and both neighbors will be
colored before v. Therefore G − v is SHC for SLF.
Case 2: k¿1: Let S1; : : : ; Sl be the set of paths obtained after deleting the edges

of H1; : : : ; Hk from G. We assume that subgraphs H1; : : : ; Hk are indexed in order
in which DSATUR begins their coloring, and paths S1; : : : ; Sl are indexed in order
in which DSATUR completes their coloring. Since G is bridgeless so l¿ k. Notice
that DSATUR begins coloring of G starting from a vertex of H1, and completes its
coloring before choosing a vertex of some Sj. Then it completes the coloring of S1

before processing H2 to which this path is adjoined to, etc. The last path colored Sl

has a vertex v which is colored after its two neighbors have been colored. Therefore,
as previously, G − v is SHC for SLF.



R. Janczewski et al. / Discrete Mathematics 236 (2001) 151–165 161

Corollary 4.5. A smallest SHC graph for the DSATUR algorithm contains at least
7 vertices and 9 edges.

Proof. By Proposition 3.7 no 5-vertex graph is smallest SHC for SLF and DSATUR.
Suppose that G is a 6-vertex SHC graph for DSATUR. Then by Corollary 4.3 �(G) =
�(G) = 3. If G is 3-regular then it is the prism (for a de=nition of the prism see e.g.
[8]). However, the prism is not an SHC graph for DSATUR. If G is not 3-regular
then �(G) = 2. Clearly, G cannot have a bridge. So by Proposition 4.4 there is a
vertex v with deg(v) = 2 such that G− v is SHC for SLF. But G− v has 5 vertices, a
contradiction. Thus, n(G)¿ 7 and by Propositions 3.1 and 3.6 m(G)¿ 9.

Proposition 4.6. If G is SHC for DSATUR and n(G) = 7 then �(G)¿ 2:

Proof. Let (v1; : : : ; v7) be a non-optimal DSATUR sequence for G. Suppose that
�(G) = 1 and let v be a vertex with degree 1. Since DSATUR colors pendant vertices
at latest, we may assume that v= v7. Then (v1; : : : ; v6) is a non-optimal SLF sequence
for G−v. However, there exist only four 6-vertex SHC graphs for SLF (Figs. 4(a) and
5) and there is no way to attach a pendant edge (i.e. an edge attached to an existing
vertex whose second endpoint is a new vertex of degree 1) to any of them so that the
resulting graph is SHC for DSATUR.

Now we are ready to prove the following

Theorem 4.7. The graph of Fig. 1(a) is the unique smallest SHC graph for the
DSATUR algorithm.

Proof. Let G be a smallest SHC graph for DSATUR. Since graph of Fig. 1(a) is SHC
for DSATUR, n(G) = 7 and m(G)6 10. Since G cannot be cubic and is bridgeless (by
Proposition 3.5), by Proposition 4.4 it must have a vertex of degree 2 whose deletion
results in a slightly HC graph for SLF. However, the smallest SHC graph for SLF has
6 vertices and 8 edges and there is only one way to attach to it a new vertex adjacent
to two old vertices so that the new graph is SHC for DSATUR. This is just the graph
shown in Fig. 1(a).

Proposition 4.8. If G is a 7-vertex SHC graph for the DSATUR algorithm and
m(G)¿ 11 then �(G)¿ 3:

Proof. Let G be such an SHC graph for DSATUR. Suppose to the contrary that �¡3:
By Proposition 3.5 G contains no bridge so it must have a vertex of degree 2 whose
deletion results in an SHC graph for SLF. However, there is no way to attach a new
vertex adjacent to two old vertices of graphs in Fig. 5 so that the resulting graph is
SHC for DSATUR.
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How many 7-vertex graphs denser than that of Fig. 1(a) are SHC for DSATUR? If
G is such a graph then it must ful=ll the following inequalities 36 �(G)6�(G)6 4
and 36 �(G)6 4: In addition, if G is 4-chromatic then it must have 4 vertices of
degree 4 which generate K4 or K4 − e. There are 14 graphs with �(G) = 3 and 4
graphs with �(G) = 4 satisfying these presumptions. All these graphs are given in the
appendix. None of them appears to be HC for DSATUR, though the =rst two are SHC
for this algorithm. Therefore we claim the following

Corollary 4.9. A smallest HC graph for the DSATUR algorithm contains at least 8
vertices.

Now let us focus on hard-to-color graphs for DSATUR.

Lemma 4.10. The graph G of Fig. 1(b) is HC for the DSATUR algorithm.

Proof. At =rst, algorithm DSATUR will color two adjacent vertices of degree 4 with
colors 1 and 2. After that two non-adjacent vertices of degree 2 will have the same
saturation degree 2, so they will be colored next with color 3. Finally, DSATUR will
color the remaining vertices with colors 1, 2, 3 and 4. Consequently, DSATUR (G) is
always 4, though �(G) = 3:

The following proposition is obvious.

Proposition 4.11. If v is pendant in an HC graph G for the DSATUR algorithm
then G − v is SHC for DSATUR.

Proposition 4.12. No graph with a vertex of degree 1 or two adjacent vertices of
degree 2 is smallest HC for the DSATUR algorithm.

Proof. Let G be a smallest HC graph for DSATUR. Let us =rst consider the case
that v is pendant in G. Then by Proposition 4.11 G − v must be SHC. But there are
only 3 SHC graphs with 7 vertices and none of them becomes HC after attachment to
a pendant edge. So let us consider the case that G has an edge e incident with two
vertices of degree 2. Then G − e remains HC for DSATUR, a contradiction to the
hypothesis that G is the smallest.

Proposition 4.13. No graph smaller than that of Fig. 1(b) is HC for the DSATUR
algorithm.

Proof. Suppose by the way of contradiction that G is such a graph. Obviously, it must
have n= 8 vertices and m6 11 edges. Since it cannot have a bridge so by Proposition
4.4 G must have a vertex v of degree 2 such that G−v is SHC for SLF. However, SLF
has only 4 non-isomorphic SHC graphs with 7 vertices and 9 edges: three obtained
by attaching a pendant edge to vertices 1, 2 and 5 of the graph in Fig. 4(a) and the
fourth one shown in Fig. 6(a). Clearly, if a graph has a leaf than any attachment of
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Fig. 6. Sparse 7-vertex SHC graphs for algorithm SLF: (a) with m= 9; (b) with m= 10:

a new vertex adjacent to two old vertices results in a supergraph with a leaf or two
adjacent vertices of degree 2. By Proposition 4.12 such a graph cannot be smallest
HC for DSATUR. Thus the only graph to consider is that of Fig. 6(a). The reader
can verify that no attachment of a vertex of degree 2 to it results in an HC graph for
DSATUR.

Now we present the main result of this paper.

Theorem 4.14. The graph of Fig. 1(b) is the unique smallest HC graph for the
DSATUR algorithm.

Proof. Suppose that the graph of Fig. 1(b) is not unique and let G be a smallest HC
graph for DSATUR which is diPerent from that of Fig. 1(b). Thus, G must have 8
vertices and 12 edges. By Proposition 4.12, there are two cases to consider.
Case 1. �(G) = 2: Since G is bridgeless, by Proposition 4.4 there exists v such that

G− v is SHC for SLF, where deg(v) = 2. However, there are 11 7-vertex SHC graphs
for SLF with at most 10 edges and minimum degree of at least 2. They are shown in
Fig. 6. None of them can be augmented to a graph which is diPerent from that of Fig.
1(b) and HC for DSATUR.
Case 2: �(G) = 3: Such a graph must be cubic, 3-chromatic and Hamiltonian

(a smallest non-Hamiltonian cubic graph is the Petersen graph). There are only four
ways to complete C8 with 4 edges in such a way that the resulting graph meets these
presumptions, as shown in Fig. 7. It is easy to see that no graph of Fig. 7 is HC for
DSATUR.
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Fig. 7. Cubic 3-chromatic graphs for Theorem 4:14.

Appendix

7-vertex graphs satisfying inequalities 36 �(G)6�(G)6 4; 36 �(G)6 4 and the
conditions of Proposition 4.1. The vertices are numbered according to optimal DSATUR
sequences.
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