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Learning juntas in the presence of noiseI
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Abstract

We investigate the combination of two major challenges in computational learning: dealing with huge amounts of irrelevant
information and learning from noisy data. It is shown that large classes of Boolean concepts that depend only on a small fraction
of their variables – so-called juntas – can be learned efficiently from uniformly distributed examples that are corrupted by
random attribute and classification noise. We present solutions to cope with the manifold problems that inhibit a straightforward
generalization of the noise-free case. Additionally, we extend our methods to non-uniformly distributed examples and derive new
results for monotone juntas and for parity juntas in this setting. It is assumed that the attribute noise is generated by a product
distribution. Without any restrictions of the attribute noise distribution, learning in the presence of noise is in general impossible.
This follows from our construction of a noise distribution P and a concept class C such that it is impossible to learn C under
P-noise.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

Learning in the presence of huge amounts of irrelevant information and learning in the presence of noise have
attracted considerable interest in the past. In this paper, we investigate what can be done if both phenomena occur:
How can we learn n-ary Boolean concepts that depend on only a small number d of unknown attributes – so-called
d-juntas – under the unpleasant effects of attribute and classification noise?

Efficient learning in the presence of irrelevant information is considered to be among the most important and
challenging issues in machine learning (see Mossel, O’Donnell, and Servedio [22]) with a wide range of applications
(see Akutsu, Miyano, and Kuhara [1] and Blum and Langley [8]). The goal is to design fast algorithms that learn
from a number of examples that may depend exponentially on d (since the output hypotheses are represented by their
truth tables being of size 2d ) but only logarithmically on the number n of all attributes. While this goal has been
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achieved for various junta subclasses and learning models (see e.g. Littlestone [19]), it is an open question whether
the class of all n-ary d-juntas can be PAC-learned efficiently under the uniform distribution. The fastest algorithm to
date was proposed by Mossel et al. [22] and runs in time n0.704d

· poly(n, 2d , log(1/δ)), where δ is the confidence
parameter. Their algorithm combines two methods: the Fourier method infers relevant variables via estimating Fourier
coefficients, and the parity method learns the concept via solving linear equations over GF(2). The Fourier method
yields an algorithm for learning the class of monotone d-juntas in time poly(n, 2d , log(1/δ)). Learning juntas is also
closely related to other highly important open questions in learning theory: learning ω(1)-sized decision trees or DNF
formulas in polynomial time is equivalent to learning ω(1)-juntas in polynomial time; see Mossel et al. [22] for more
details on this issue. While learning arbitrary k-term DNFs in polynomial time might be a too hard goal to achieve,
there are positive results for learning monotone juntas. This may indicate that efficiently learning monotone DNF in
polynomial time might indeed be possible. See Servedio [24] for a survey on results concerning the latter problem.

As coping with irrelevant information has been identified as a core challenge in many machine learning
applications, it is most natural to take into account that real-world data are often disturbed by noise. Angluin and
Laird [3] were the first to investigate PAC learning in the presence of classification noise, whereas attribute noise
was first considered for the class of k-DNF formulas by Shackelford and Volper [25] and later by Decatur and
Gennaro [12]. Bshouty, Jackson, and Tamon [11] introduced the notion of noisy distance between concepts and
showed how this quantity relates to uniform-distribution PAC learning in the presence of attribute and classification
noise.

1.2. Our contribution

Our main contribution is a method that efficiently learns large classes of juntas despite the presence of almost
arbitrary attribute and classification noise. Thus, we manage to cope with both problems: irrelevant information and
noise. More precisely, we assume that a learning algorithm receives uniformly distributed examples (x1, . . . , xn, y) ∈
{0, 1}n × {−1,+1} in which each attribute value xi is flipped independently with probability pi and the sign of the
label y is switched with probability η. To avoid that the noise-affected data is turned into completely random noise,
we require that there be constants γa, γb > 0 such that for all attribute noise rates pi , |1 − 2pi | ≥ γa and for the
classification noise rate η, |1 − 2η| ≥ γb. We call such noise distributions (γa, γb)-bounded noise. We show that
the class of Boolean functions we call τ -low d-juntas is exactly learnable from poly(log n, 2d , log(1/δ), γ−d

a , γ−1
b )

examples in time nτ · poly(n, 2d , log(1/δ), γ−d
a , γ−1

b ) under (γa, γb)-bounded noise. Roughly speaking, a concept is
τ -low if it suffices to check all Fourier coefficients up to the τ th level in order to find all relevant attributes. As a main
application, the class of monotone d-juntas, for which τ = 1, is learnable in time poly(n, 2d , log(1/δ), γ−d

a , γ−1
b )

under (γa, γb)-bounded noise.
How much do our algorithms have to know about the noise distributions? To infer the relevant attributes, lower

bounds on γa, γb suffice. In order to additionally output a matching hypothesis, the attribute noise distribution has to
be known exactly (or at least approximated reasonably well, see [11]). For the classification noise parameter γb, it
still suffices to have some lower bound. Miyata et al. [20] showed how to learn the class AC0 in quasipolynomial time
under product attribute and classification noise with p1 = · · · = pn = η without any prior knowledge of η < 1/2. On
the other hand, Goldman and Sloan [14] proved that under unknown product attribute noise, learning any non-trivial
concept class with accuracy ε (which is 2−d for exactly learning d-juntas) is only possible if pi < 2ε for all i . If the
noise distribution can be arbitrary and is unknown to the learner, then learning non-trivial classes is impossible; see
[11].

1.3. Our techniques

We now briefly describe how we solve the manifold problems that occur when trying to extend results from
the noise-free case to the noisy case. In the noise-free setting, it is trivial to achieve the time bound nd

·

poly(n, 2d , log(1/δ)) for the whole class of n-ary d-juntas by testing for all subsets of d variables whether these
are relevant. This is accomplished by checking whether the examples restricted to these variables do not contain
any contradictions. In the noisy case, however, there is no obvious way to check whether a subset of the variables is
relevant. We solve this problem by adapting the Fourier method presented by Mossel et al. [22]. For this it is necessary
to approximate Fourier coefficients of Boolean functions from highly disturbed data.
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Also, in the noise-free setting, once the relevant variables are inferred, one can simply read off a truth table from the
undisturbed examples. This is impossible in the case of unreliable data. To overcome this problem, we apply a learning
algorithm for arbitrary concepts to the examples restricted to the relevant variables. This restriction is essential since,
in this way, the number of examples needed to build a hypothesis does not depend on n but only on d. The learning
algorithm uses the Fourier-based learning approach originated by Linial, Mansour, and Nisan [18] and extended to
the noisy scenario by Bshouty, Jackson, and Tamon [11]. A direct application of the algorithm of Bshouty et al. yields
a sample complexity of nd+O(1). By first applying our procedure to detect all relevant attributes, we significantly
improve this sample complexity to depend only polylogarithmically on n (and exponentially on d).

So far all results are valid for uniformly distributed attribute vectors—the only case for which positive noise-tolerant
learning results have previously been obtained in the literature (as far as we are aware). We extend our methods to
non-uniform attribute distributions, i.e., the oracle first draws an example according to a product distribution D with
rates d1, . . . , dn ∈ [γc, 1−γc] for some γc > 0 and then applies (γa, γb)-bounded noise. We show that, in this setting,
monotone d-juntas are learnable from m = poly(log n, log(1/δ), γ−d

a , γ−1
b , γ−d2

c ) examples in time poly(m, n), and
parity d-juntas are learnable from m = poly(log n, log(1/δ), γ−d

a , γ−1
b , γ−1

c , θ−d) examples in time poly(m, n),
provided that |1 − 2di | ≥ θ > 0 for all i ∈ {1, . . . , n}. It turns out that the extension is not as straightforward
as one might first think: while the method for the case of uniformly distributed attributes relies on the fact that the
orthonormal basis of parity functions is compatible with the exclusive or operation used in the noise model, this is
no longer the case for the biased orthonormal bases that are appropriate for non-uniform distributions. We solve this
problem by combining unbiased parity functions with biased inner products. As a consequence, the analysis becomes
a lot more intricate since in order to approximate a biased Fourier coefficient f̂ (I ), I ⊆ {1, . . . , n}, one already has
to have good approximations to all coefficients f̂ (J ), J ( I . In addition, we have to provide a lower bound on the
absolute value of nonzero biased Fourier coefficients for monotone juntas and parity juntas.

Concerning the probabilities di , we assume that these are exactly known to the learner, even though close
approximations to these rates would certainly suffice (but would make the analysis even more technical). Such
approximations could be obtained by sampling (unlabeled) examples from a noise-free source (or even from a noisy
source, concluding the noise-free rates by a short calculation that involves the known noise parameters).

Finally, we prove that without restricting the attribute noise distributions (for example to product distributions),
noise-tolerant learning is in general impossible, even if the noise distribution is completely known: we construct an
attribute noise distribution P (that is not a product distribution) and a concept class C such that it is impossible to learn
C under P-noise. In particular, this shows that our results cannot be extended to arbitrary noise distributions.

Our proofs have three main ingredients: standard Hoeffding bounds [15], harmonic analysis of Boolean functions
under uniform [7] and non-uniform [4,13,24] distribution, and a noise operator. The latter is a generalization of the
Bonami–Beckner operator, which plays an important role in various contexts [10,5,16,6].

1.4. Organization of this paper

In Section 2, we introduce basic notation, definitions, and tools. The learning and noise models under consideration
are introduced in Section 3. After reviewing how to learn juntas in the noise-free case in Section 4, we provide
in Section 5 the main tools used to derive results in the noisy scenario: the noise operator and the approximation
of Fourier coefficients from noisy examples. In addition, that section contains two upper learning bounds and an
impossibility result. In Section 6, we show how to learn the relevant variables in the noisy case. The construction of
a suitable hypothesis from noisy examples is described in Section 7. Section 8 deals with the extension of the model
and tools to non-uniformly distributed attributes. In Section 9, we show how to learn the relevant variables from non-
uniformly distributed noisy samples. Subsequently, in Section 10, we show how to construct a hypothesis under these
conditions.

2. Preliminaries

We consider Boolean functions f : {0, 1}n → {−1,+1}, also called concepts. The variables of f are also referred
to as attributes. A concept is monotone if for all x, y ∈ {0, 1}n such that x ≤ y, we have f (x) ≥ f (y) (note that
for variables, the value 1 for “true” is larger than the value 0 for “false”, whereas for function values −1 (true) and 1
(false), it is the other way round). For I ⊆ [n] = {1, . . . n}, we define the parity function χI : {0, 1}n → {−1,+1}
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by χI (x) = (−1)
∑

i∈I xi . For x, y ∈ {0, 1}n , x ⊕ y denotes the vector obtained from componentwise exclusive or.
We denote probabilities by Pr and expectations by E. The uniform distribution on {0, 1}n is denoted by Un , i.e.,
Un(x) = 2−n for all x ∈ {0, 1}n . We indicate by X ∼ D that the random variable X is distributed according to the
distribution D. Moreover, if X only takes values −1 and +1 with Pr[X = −1] = p, we write X ∼ p. The sign
function sgn : R→ {−1,+1} is defined by sgn(x) = −1 if x < 0 and sgn(x) = +1 if x ≥ 0. In particular, we define
sgn(0) = +1 for technical reasons. The functions log and ln denote the binary and the natural logarithm, respectively.

A concept class is a set of concepts f : {0, 1}n → {−1,+1}. Let C be a concept class and f ∈ C. A vector
(x1, . . . , xn, y) ∈ {0, 1}n × {−1,+1} is called an example. It is consistent with f if f (x1, . . . , xn) = y. A sequence
of m examples is called a sample of size m.

Consider the space R{0,1}n of real-valued functions on the hypercube. The inner product 〈 f, g〉 = Ex∼Un [ f (x)g(x)]
induces the norm ‖ f ‖2 =

√
〈 f, f 〉 and turns R{0,1}n into a Hilbert space of dimension 2n with orthonormal basis

(χI | I ⊆ [n]); see for example Bernasconi [7].
Let f : {0, 1}n → R and I ⊆ [n]. The Fourier coefficient of f at I is

f̂ (I ) = Ex∼Un [ f (x) · χI (x)] = 2−n ∑
x∈{0,1}n f (x) · χI (x).

If I = {i}, we write f̂ (i) instead of f̂ ({i}). Intensively used features of Fourier analysis are the Fourier expansion

f (x) =
∑

I⊆[n] f̂ (I ) · χI (x) (1)

for all x ∈ {0, 1}n and Parseval’s equation∑
I⊆[n]

f̂ (I )2 = ‖ f ‖22 = 2−n
∑

x∈{0,1}n
f (x)2. (2)

The following is a well-known technical tool to bound the probability of deviations of the statistical mean from the
expected value in sufficiently large samples; see also Alon and Spencer [2]:

Lemma 2.1 (Hoeffding Bound [15]). Let X i , i ∈ [n], be mutually independent random variables taking values in the
real interval [a, b], a < b. Then for any ε ∈ [0, 1],

Pr

[∣∣∣∣∣ n∑
i=1

X i −

n∑
i=1

E[X i ]

∣∣∣∣∣ ≥ εn
]
≤ 2 exp

(
−2nε2

(b − a)2

)
.

Given a sample S = (xk, yk)k∈[m] ∈ ({0, 1}n×{−1,+1})m , define the empirical Fourier coefficient of f at I given
S by

f̃S(I ) =
1
m

m∑
k=1

χI (x
k) · yk . (3)

By Lemma 2.1, if yk
= f (xk) for all k ∈ [m], then f̃S(I ) approximates f̂ (I ) up to an additive error of ε with

probability at least 1− δ, provided that m ≥ 2 · ln(δ/2) · (1/ε2) uniformly distributed examples are given.
A function f : {0, 1}n → {−1,+1} depends on variable xi (and xi is relevant to f ) if the (n− 1)-ary subfunctions

fxi=0 and fxi=1 with xi set to 0 and 1, respectively, are not equal. Equivalently, xi is relevant to f if and only if there
exists an x ∈ {0, 1}n such that f (x) 6= f (x ⊕ ei ), where ei ∈ {0, 1}n denotes the vector with a one at the i th position
and zeros at all other positions. Denote the set of relevant variables of f by rel( f ). A function that depends on at
most d variables is called a d-junta, and the class of n-ary Boolean d-juntas is denoted by J n

d . The class of monotone
d-juntas is denoted by MONn

d , and the class of juntas such that the function restricted to its relevant variables is
symmetric is denoted by SYMn

d . A parity function χI with |I | ≤ d is called a parity d-junta. The class of parity
d-juntas defined on n variables is denoted by PARn

d .

3. Learning and noise models

Fix a target concept f : {0, 1}n → {−1,+1}, an attribute noise distribution P : {0, 1}n → [0, 1], and a
classification noise rate η ∈ [0, 1].
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Definition 3.1 ((P, η)-Noisy Sample). Let x ∼ D, a ∼ P , and b ∈ {−1,+1} with b ∼ η. The pair (x ⊕ a, f (x) · b)
is called a D-distributed (P, η)-noisy example for f . A sequence S of m independent D-distributed (P, η)-noisy
examples for f is called a D-distributed (P, η)-noisy sample for f of size m.

In other words, a (P, η)-noisy example is obtained from a noise-free example (x, y) by adding a noise-vector a ∼ P
to the attribute vector x (componentwise modulo 2) and flipping the classification y according to the classification
noise bit b ∼ η.

A (P, 0)-noisy example is corrupted only by attribute noise but not by classification noise. Note that noise-free
examples are a special case of noisy examples: choose P(0n) = 1 and P(x) = 0 for x 6= 0n and η = 0.

Definition 3.2 (Learning Algorithm). Let δ ∈ (0, 1] and ε ∈ [0, 1], called the confidence parameter and the accuracy
parameter, respectively. An algorithmA learns the class C with confidence 1−δ and accuracy 1−ε from D-distributed
(P, η)-noisy samples of size m if the following is satisfied. For all target concepts f ∈ C, given a D-distributed (P, η)-
noisy sample S of size m as input, A outputs a concept h : {0, 1}n → {−1,+1} such that with probability at least
1− δ (taken over the set of D-distributed (P, η)-noisy samples of size m), h is ε-close to f , i.e.,

Pr
x∼D
[h(x) 6= f (x)] ≤ ε.

The concept h is called the hypothesis of A on input S. Algorithm A is a distribution-free learning algorithm if it
learns C for arbitrary attribute distributions D, without any a priori knowledge about D. This is the original definition
of PAC learnability introduced by Valiant [26]. Learning with accuracy ε = 0 is referred to as exact learning. The
sample size m needed by A to learn (with a certain confidence and a certain accuracy) is called the sample complexity
of A. It is a function of the parameters δ, ε, P , η, C, and n.

Definition 3.3 (Learnability of a Concept Class). A concept class C is learnable (with confidence 1−δ and accuracy
1 − ε from D-distributed (P, η)-noisy samples of size m in time t) if there exists an algorithm A that learns C (with
confidence 1− δ and accuracy ε from D-distributed (P, η)-noisy samples of size m in time t). It is exactly learnable
if it is learnable with accuracy 1.

For the time being, we restrict ourselves to uniformly distributed attribute values. The case of non-uniform
distributions is discussed in Sections 8–10.

Since arbitrary attribute noise distributions often turn out to make learning impossible, we also study the more
restricted product random attribute noise considered by Goldman and Sloan [14]. Here, each attribute xi of an example
is flipped independently with some probability pi ∈ [0, 1], called the (attribute) noise rate of xi . Thus, we have

P(a1, . . . , an) =
∏

i :ai=1

pi ·
∏

i :ai=0

(1− pi ) =

n∏
i=1

pai
i · (1− pi )

1−ai .

Naturally, such product distributions P induce product distributions on the subcubes {0, 1}I , I ⊆ [n], which we denote
by P again. In general, given a product distribution P on {0, 1}n , we refer to the probabilities pi = Pr[xi = 1] as the
rates of P . In many situation, it is desirable to bound the rates away from 1/2:

Definition 3.4 (γa-Bounded Product Distribution). Let P be a product distribution with rates p1, . . . , pn and γa > 0.
P is called a γa-bounded product distribution if for all i ∈ [n], |1− 2pi | ≥ γa .

If η = 1/2, then the corrupted classifications are purely random and thus not at all correlated with f . Hence,
in this situation, learning is impossible. Consequently, we assume that there exists some bound γb > 0 such that
|1− 2η| ≥ γb.

4. Review of the noise-free case

In this section, we review the “Fourier algorithm” for the noise-free scenario, as described by Mossel et al. [22].
We first look at how one can learn monotone juntas and then show how to extend the method to learn larger subclasses
of juntas. This will be helpful to make clear why we are interested in τ -low juntas and to understand the methods
presented in Section 5.



J. Arpe, R. Reischuk / Theoretical Computer Science 384 (2007) 2–21 7

Algorithm 1 τ -FOURIERd

1: input S = ((xk
1 , . . . , xk

n ), yk)k∈[m]
2: R← ∅
3: for I ⊆ [n] with 1 ≤ |I | ≤ τ do
4: β ← 1

m ·
∑m

k=1 χI (xk) · yk

5: if |β| ≥ 2−d−1

6: then R← R ∪ {xi | i ∈ I }
7: output τ-FOURIERd(S) = R

Let f : {0, 1}n → {−1,+1} be a monotone d-junta. It is well known (cf. [22]) that f is correlated with
all of its relevant variables, i.e., the probability that xi and f (x) take the same value differs from 1/2, and thus
f̂ (i) = Prx∼Un [ f (x) = xi ] − Prx∼Un [ f (x) 6= xi ] 6= 0. This fact may be exploited to infer the relevant variables of f
from (uniformly distributed) random examples (xk, f (xk)), xk

∈ {0, 1}n , k ∈ [m], as follows: simply approximate the
Fourier coefficients f̂ (i) by the empirical coefficients f̃ (i) defined in (3). If sufficiently many independent examples
are available, then with high probability, the relevant variables are exactly those for which f̃ (i) is sufficiently far away
from zero, i.e., | f̂ (i)| ≥ τ for some threshold τ > 0.

Once we have correctly inferred the relevant variables, it is easy to derive a consistent hypothesis: we obtain an
appropriate truth table by restricting the given examples to the relevant variables. With high probability (see Blumer et
al. [9]), there is only one hypothesis having the same set of relevant variables and being consistent with the examples,
namely the target concept f .

Clearly, the approach also works for non-monotone functions with the property that all relevant variables are
correlated with the function value. Moreover, we can use the following lemma (implicitly used in Mossel et al. [22])
to extend the method to larger classes of Boolean concepts by looking beyond the first level of Fourier coefficients.
Intuitively, the lemma says that a variable xi is relevant to a concept f if and only if f has nonzero correlation with at
least one of the parity functions χI with i ∈ I .

Lemma 4.1. Let f : {0, 1}n → {−1,+1}. Then for all i ∈ [n], xi is relevant to f if and only if there exists I ⊆ [n]
such that i ∈ I and f̂ (I ) 6= 0.

Hence, whenever we find a nonzero Fourier coefficient f̂ (I ), we know that all variables xi , i ∈ I , are relevant to f .
Moreover, all relevant variables can be detected in this way, and we only have to check out subsets of size at most
d = |rel( f )|. However, there are Θ(nd) such subsets, an amount that we would like to reduce. This leads us to:

Definition 4.2 (τ -lowness). Let f ∈ J n
d , xi ∈ rel( f ), and τ ∈ [d]. Variable xi is τ -low for f if there exists an

I ⊆ [n] such that i ∈ I , |I | ≤ τ , and f̂ (I ) 6= 0. The concept f is τ -low if all xi ∈ rel( f ) are τ -low for f . The set of
τ -low d-juntas is denoted by J n

d (τ ).

In these terms, monotone juntas are 1-low, i.e., MONn
d ⊆ J n

d (1). Even more: all unate juntas are 1-low; these are
juntas that can be turned into a monotone function by negating some input variables. This includes all monomials
and clauses of arbitrary literals. Actually, the vast majority of juntas belongs to J n

d (1) since a random junta fulfills
f̂ (i) 6= 0 for all xi ∈ rel( f ) with overwhelming probability; see Blum and Langley [8] and Mossel et al. [22].

Also for other subclasses C of J n
d , finding the smallest τ such that C ⊆ J n

d (τ ) has recently attracted considerable
interest. The class of all unbalanced d-juntas is contained in J n

d ((2/3) · d) (see Mossel et al. [22]), and the class
SYMn

d \ PARn
d of symmetric d-juntas that are not parity functions is now known to be contained in J n

d (O(d/ log d))
(see Kolountzakis et al. [17]).

The algorithm for inferring the relevant variables of τ -low d-juntas (which we call τ -FOURIERd ) described by
Mossel et al. [22] is presented as Algorithm 1.

Proposition 4.3 ([22]). Let f ∈ J n
d (τ ) be a τ -low d-junta. Then on input S, τ -FOURIERd(S) outputs exactly

the relevant variables of f from a sample of size poly(log n, 2d , log(1/δ)) in time nτ · poly(n, 2d , log(1/δ)) with
probability at least 1− δ.
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5. Tools for the noisy case: Uniformly distributed attributes

Now let us see what we can do if the examples contain errors. Throughout the remainder of this section, we fix an
attribute noise distribution P : {0, 1}n → [0, 1] and a classification noise rate η ∈ [0, 1].

For I ⊆ [n] and a ∼ P , let pI be the probability that an odd number of bits ai with i ∈ I is set to one, i.e.,

pI = Pr
a∼P
[χI (a) = −1], (4)

and let λI = Ea∼P [χI (a)] = 1− 2pI .
Furthermore, for the rest of this section, we fix a confidence parameter δ ∈ (0, 1], an accuracy parameter ε ∈ (0, 1],

and a target concept f : {0, 1}n → {−1,+1}. Let S denote a uniformly distributed (P, η)-noisy sample of size m
for f . All probabilities are taken over the possible outcomes of S for a fixed sample size m.

5.1. The noise operator

We now introduce a mathematical tool that will be used to prove upper and lower sample bounds:

Definition 5.1 (Noise Operator). Let P : {0, 1}n → [0, 1] be an attribute noise distribution. We define the noise
operator TP : R{0,1}

n
→ R{0,1}n by

TP ( f )(x) = Ea∼P [ f (x ⊕ a)] (5)

for f : {0, 1}n → R and x ∈ {0, 1}n .

For f : {0, 1}n → {−1,+1}, TP ( f )(x)may be interpreted as follows. If x is a noise-free attribute vector that is drawn
according to uniform distribution, then TP ( f )(x) is the expected value of the classification of the corrupted attribute
vector x ⊕ a. The function TP ( f ) may be thought of as the bias of a probabilistic concept: on input x ∈ {0, 1}n ,
the outcome is −1 with probability (1 − TP ( f )(x))/2 and +1 with probability (1 + TP ( f )(x))/2. Learning from
noisy examples thus means to learn the target concept f , even though only examples of this probabilistic concept are
available. By linearity of expectation, TP is a linear operator.

For the special case that P is a product distribution with rates p1 = · · · = pn , this operator has been extensively
studied in the literature, e.g., by Kahn, Kalai, and Linial [16], Benjamini et al. [6], Mossel and O’Donnell [21], and
O’Donnell [23].

We show how the Fourier coefficients of TP ( f ) are related to those of f .

Lemma 5.2. Let f : {0, 1}n → R, P be an attribute noise distribution, and I ⊆ [n]. Then

(a) TP (χI ) = λIχI and
(b) T̂P ( f )(I ) = λI f̂ (I ).

Proof. (a) For all x ∈ {0, 1}n , we have

TP (χI )(x) = Ea∼P [χI (x ⊕ a)] = Ea∼P [χI (x) · χI (a)] = λI · χI (x).

(b) By linearity of the Fourier transform and TP , we have

T̂P ( f )(I ) =
∑

J⊆[n]

f̂ (J )T̂P (χJ )(I ) =
∑

J⊆[n]

f̂ (J )λJ χ̂J (I ) = λI f̂ (I ). �

Using the Fourier expansion (1) and Parseval’s equality (2), the following corollary is immediate:

Corollary 5.3. Let f : {0, 1}n → [−1, 1] and P : {0, 1}n → [0, 1] be an attribute noise distribution. Then

(a) ‖TP ( f )‖22 = Ex∼Un [ (Ea∼P [ f (x ⊕ a)])2 ] =
∑

I⊆[n] λ
2
I f̂ (I )2.

(b) ‖TP ( f )‖22 ≤ ‖TP ( f )‖1 ≤ ‖TP ( f )‖2.
(c) ‖TP ( f )‖22 ≥ minI⊆[n] λ

2
I · ‖ f ‖22.
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Proof. Part (a) follows from Lemma 5.2(b) and from Parseval’s equality (2). The first inequality of part (b) follows
since, for all g : {0, 1}n → [−1,+1], we have

‖g‖22 = 2−n
∑

x∈{0,1}n
g(x)2 ≤ 2−n

∑
x∈{0,1}n

|g(x)| = ‖g‖1.

Clearly, |TP ( f )(x)| ≤ 1 for all x ∈ {0, 1}n if | f (x)| ≤ 1 for all x ∈ {0, 1}n . The second inequality of part (b)
follows from E[|X |]2 ≤ E[X2

] for real-valued random variables X . Finally, part (c) is an immediate consequence of
part (a). �

For any ε > 0, Bshouty et al. [11] have defined ∆ε
P (C) to be the minimum noisy distance between ε-far concepts

inside C. In terms of the noise operator, this is

∆ε
P (C) = min

{
1
2 ‖TP ( f − g)‖1 | f, g ∈ C : 1

2 ‖ f − g‖1 > ε
}
.

Thus, ∆ε
P (C) measures how close ε-far concepts in C can become when TP is applied to them.

One of their main results [11, Theorem 3], which is also used in our proofs, easily follows from Corollary 5.3:

Theorem 5.4 ([11]). Let P : {0, 1}n → [0, 1] be a probability distribution and f, g : {0, 1}n → {−1,+1}. Then
1
2‖TP ( f − g)‖22 ≤ ‖TP ( f − g)‖1 ≤ ‖TP ( f − g)‖2.

5.2. Approximating Fourier coefficients from noisy samples

Given a uniformly distributed (P, η)-noisy sample, the empirical Fourier coefficient f̃S(I ) approximates

Ex∼Un ,a∼P,b∼η[χI (x ⊕ a) · f (x) · b]. (6)

Since χI (x ⊕ a) = χI (x) · χI (a) and since x , a, and b are assumed to be independent, the expectation (6) equals

Ea∼P [χI (a)] · Eb∼η[b] · Ex∼Un [ f (x) · χI (x)] = (1− 2pI ) · (1− 2η) · f̂ (I ),

with pI as defined in (4) (this calculation has also been carried out by Bshouty et al. [11, Proof of Theorem 8]). Using
the Hoeffding bound (Lemma 2.1), we obtain

Lemma 5.5. Let m ≥ 2 · ln(2/δ) · (1/ε2). Then

| f̃S(I )− (1− 2pI )(1− 2η) f̂ (I )| ≤ ε

with probability at least 1− δ.

Thus, we can infer f̂ (I ) by dividing f̃S(I ) by (1 − 2pI )(1 − 2η). This is possible if and only if pI 6= 1/2 and
η 6= 1/2. Requesting η to be different from 1/2 is reasonable, as we have discussed above. Unfortunately, it can
happen that pI = 1/2 for some I (even if Pra∼P [ai = −1] 6= 1/2 for all i ∈ [n]), yielding a concept class C and an
attribute noise distribution P such that C is (information-theoretically) not (P, 0)-learnable:

Theorem 5.6. There is a concept class C and an attribute noise distribution P such that C is not (P, 0)-learnable. In
addition, P may be chosen such that p{i} < 1/2 for all i ∈ [n].

Proof. Let n = 2 and P : {0, 1}2 → [0, 1] be defined by

P(00) = 1/2, P(01) = 1/4, P(10) = 1/4, and P(11) = 0.

Then p{1} = P(10) + P(11) = 1/4 and p{2} = P(01) + P(11) = 1/4. Let f (x) = χ{1,2}(x) = (−1)x1+x2 and
C = { f,− f }. Then for each x ∈ {0, 1}2,

Pr
a∼P
[ f (x ⊕ a) = −1] = 1/2 = Pr

a∼P
[− f (x ⊕ a) = −1],

and f (x ⊕ a) is independent of x . It follows that (x, f (x ⊕ a)) and (x,− f (x ⊕ a)) with x ∼ Un and a ∼ P
are identically distributed. This implies that (x ⊕ a, f (x)) and (x ⊕ a,− f (x)) are also identically distributed since
(x ⊕ a, f (x)) ∼ (x, f (x ⊕ a)). Hence, f and − f are information-theoretically indistinguishable under P-attribute
noise. �
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The proof of the previous theorem demonstrates that it may happen that the parity of x1 and x2 changes with
probability 1/2, although each attribute separately is flipped with probability strictly less than 1/2. In this case, the
uncorrupted value of the parity x1 ⊕ x2 is no longer recoverable from any number of P-noisy attribute vectors.

In contrast, things look much nicer for product distributions P with noise rates pi that are all different from 1/2. It
is easy to prove by induction that γa-bounded product distributions satisfy

∀I ⊆ [n] : |1− 2pI | ≥ γ
|I |
a . (7)

From now on, we restrict ourselves to γa-bounded product distributions. However, all results extend to arbitrary
distributions for which condition (7) holds.

If all pI 6= 1/2 and η 6= 1/2, then all Fourier coefficients are approximable; hence the whole target concept can
be approximated via its Fourier expansion (1). Consequently, all concepts are learnable under these conditions by
computing the hypothesis

h(x) = sgn
∑

I⊆[n]

f̃ (I )

(1− 2pI ) · (1− 2η)
· χI (x). (8)

Precisely, Bshouty et al. [11, Theorem 8] have shown:

Proposition 5.7 ([11]). Let C be a concept class that is closed under complement (in the sense that f ∈ C implies
− f ∈ C) and ε > 0 such that there exists a set Tε ⊆ 2[n] with

∑
I∈Tε f̂ (I )2 ≥ 1 − ε for all f ∈ C and

{χI | I ∈ Tε} ⊆ C. Then for every δ > 0, C is learnable with confidence 1 − δ and accuracy 1 − 2ε from uniformly
distributed (P, η)-noisy samples in time polynomial in |Tε|, 1/∆ε

P (C), log(1/δ), 1/ε, and 1/|1− 2η|.

For learning the class of all n-ary concepts, we obtain a sample and a time complexity as follows:

Proposition 5.8. Let C be the class of all n-ary concepts, P be a γa-bounded product attribute noise distribution, and
η be a classification noise rate such that γb = |1− 2η| > 0. Then C is exactly (P, η)-learnable with confidence 1− δ
using sample complexity and running time poly(2n, log(1/δ), γ−n

a , γ−1
b ).

Proof. By Proposition 5.7, choosing ε = 2−n−1 and Tε = 2[n], it remains to bound ∆ε
P (C) from below to prove the

claim. Note that PAC learning with accuracy 1− 2−n−1 is just exact learning since concepts differing in a fraction of
inputs that is smaller than 2−n must be equal. As observed in Section 5.2 (see (7)), |λI | = |1− 2pI | ≥ γ

|I |
a .

Let f, g ∈ C be distinct concepts. Since ( f (x) − g(x))/2 ∈ {−1, 0,+1} for all x ∈ {0, 1}n , we have
‖( f − g)/2‖22 = ‖( f − g)/2‖1 ≥ 2−n . By Corollary 5.3 (c), we have

‖TP (( f − g)/2)‖22 ≥ min
I⊆[n]

λ2
I · ‖( f − g)/2‖22 ≥ γ 2n

a · 4 · ‖ f − g‖1 ≥ γ 2n
a · 2

−n+2.

By Theorem 5.4, 1
2‖TP ( f−g)‖1 ≥ 2−nγ 2n

a , yielding ∆ε
P (C) ≥ 2−nγ 2n

a . Thus, 1/∆ε
P (C) is linear in 2n and polynomial

in γ−n
a , and the desired result follows from Proposition 5.7. �

Although sample and time complexity are exponential in n, the method described will prove useful as part of our
noise-tolerant learning algorithm for juntas (see Section 7).

Since d-juntas have all of their Fourier weight located in levels 0, . . . , d (by Lemma 4.1), we obtain a better (but
still not satisfactory) sample and time complexity by summing only over all I ⊆ [n] of size at most d in Eq. (8).

Proposition 5.9. Let P be a γa-bounded product attribute noise distribution and η be a classification noise rate such
that γb = |1 − 2η| > 0. Then J n

d is exactly (P, η)-learnable with confidence 1 − δ using sample complexity and
running time nd

· poly(n, log(1/δ), γ−d
a , γ−1

b ).

Proof. We proceed similarly as in the proof of Proposition 5.8, but choose ε = 2−d−1 and Tε = {I ⊆ [n] | |I | ≤ d}
(since f̂ (I ) = 0 for all I of size larger than d). It remains to bound ∆ε

P (J
n
d ) (as defined above in the proof of

Proposition 5.8) from below. By (7), |λI | = |1 − 2pI | ≥ γ
|I |
a . Consequently, for distinct concepts f, g ∈ J n

d and
h = f − g, h depends on at most 2d variables, i.e., ĥ(I ) = 0 whenever |I | > 2d. We have

‖TP (h)‖
2
2 ≥ γ

4d
a ·

∑
I⊆[n]

ĥ(I )2 ≥ γ 4d
a · 4ε = γ

4d
a · 2

−d+1.
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Algorithm 2 τ -NOISY-FOURIERd .

1: input S = ((xk
1 , . . . , xk

n ), yk)k∈[m], γa, γb
2: R← ∅
3: for I ⊆ [n] with 1 ≤ |I | ≤ τ do

4: β ← (γ
|I |
a · γb)

−1
·

1
m ·

∑m
k=1 χI (xk) · yk

5: if |β| ≥ 2−d−1

6: then R← R ∪ {xi | i ∈ I }
7: output τ-NOISY-FOURIERd(S) = R

By Theorem 5.4, 1
2‖ f − g‖1 ≥ 2−d−1

· γ 4d
a , yielding ∆ε

P (J
n
d ) =

1
2‖ f − g‖1 ≥ 2−d−1

· γ 4d
a . Thus, 1/∆ε

P (J
n
d ) is

linear in 2d and polynomial in γ−d
a , and the desired result follows from Proposition 5.7. �

Unfortunately, sample and time complexity do not drop for subclasses such as the monotone juntas since the
Fourier weight may be spread evenly over all Θ(nd) nonzero coefficients (as is the case for example for monomials;
see e.g. [23, Section 3.3]).

In what follows we show how to combine the method just described with the idea of first detecting the relevant
variables, as we did in the noise-free case. In Theorem 7.1, we show that this significantly reduces the sample
complexity from O(nd+O(1)) to poly(log n, 2d). In addition, for τ -low d-juntas with τ < d, the running time also
decreases from O(nd+O(1)) to O(nτ+O(1)).

6. Learning the relevant variables from uniformly distributed noisy samples

The detection of relevant variables works similarly as in the noise-free case. The following modifications to τ -
FOURIERd (Algorithm 1) vaccinate it against noise; the resulting algorithm τ -NOISY-FOURIERd is presented as
Algorithm 2.

First, the noisy version has to obtain some information about the noise parameters. In the variant presented here,
it receives the bounds γa, γb as additional inputs. Next, to ensure that, in line 5 of the algorithm, β is an appropriate
measure to decide whether the Fourier coefficient f̂ (I ) vanishes, we divide the expression given in the noise-free
setting by γ |I |a · γb, which is a lower bound for |1− 2pI | · |1− 2η|.

Additionally to the adaptations of the algorithm, the number of examples that have to be drawn increases by a factor
of 4 · (γ τa · γb)

−2. Furthermore, instead of receiving a noise-free sample, the algorithm now obtains a noisy sample as
input. In particular, in line 1 of τ -NOISY-FOURIERd , xk

= x ′k ⊕ ak and yk
= y′k · bk for appropriate noise-free data

x ′k, y′k and noise ak, bk .

Theorem 6.1. Let f be a τ -low d-junta and

m ≥ 8 · ln(2n/δ) · 22d
· (γ τa · γb)

−2.

Then τ -NOISY-FOURIERd(S) = rel( f ) with probability at least 1− δ. Furthermore, τ -NOISY-FOURIERd(S) runs in
time nτ · poly(m, n).

Proof. Let ρ = 2−d . Algorithm τ -NOISY-FOURIERd classifies xi as “relevant” if and only if | f̃S(I )| ≥ (1/2) · γ
|I |
a ·

γb · ρ for some I of size at most τ with i ∈ I . By Lemma 5.5, for every I ⊆ [n] of size at most τ ,

| f̃S(I )− (1− 2pI )(1− 2η) f̂ (I )| ≤ 1
2 · γ

τ
a · γb · ρ (9)

with probability at least 1− δ/n.
Consider some variable xi ∈ rel( f ). Since f is τ -low, there exists an I ⊆ [n] of size at most τ such that i ∈ I and

f̂ (I ) 6= 0. Since f̂ (I ) is an integer multiple of 2−|rel( f )|, | f̂ (I )| ≥ 2−d . In particular, if (9) is satisfied, then

| f̃S(I )| ≥ |1− 2pI | · |1− 2η| · | f̂ (I )| − 1
2 · γ

τ
a · γb · ρ ≥

1
2 · γ

τ
a · γb · ρ,

i.e., |β| ≥ ρ/2, so xi is classified as “relevant” with probability at least 1− δ/n.
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Algorithm 3 τ -NOISY-LEARNd

1: input S = ((xk
1 , . . . , xk

n ), yk)k∈[m], P, γa, η

2: γb ← |1− 2η|
3: R← τ-NOISY-FOURIERd(S, γa, γb)

4: for I ⊆ R do
5: f̃S(I )← 1

m

∑m
k=1 χI (xk) · yk

6: output hypothesis

τ-NOISY-LEARNd(x) = sgn
∑
I⊆R

(1− 2pI )
−1(1− 2η)−1 f̃S(I )χI (x)

Now consider some variable xi 6∈ rel( f ). Thus, f̂ (I ) = 0 for all I ⊆ [n] with i ∈ I by Lemma 4.1. By (9), with
probability at least 1− δ/n,

| f̃S(I )| ≤
1
2
· γ τa · γb.

We conclude that xi is correctly classified with probability at least 1− δ/n.
Finally, the probability that at least one out of the n variables is not classified correctly is at most n · (δ/n) = δ. �

7. Constructing a hypothesis from uniformly distributed noisy samples

Learning juntas (in the sense of constructing an accurate hypothesis) in the presence of noise proceeds in two
phases. In the first phase, we infer all relevant variables with high probability. In the second phase, we build up the
truth table of a suitable hypothesis. The main difference from the algorithm used in the noise-free setting is that we
cannot simply read off the truth table from the examples since these may contain inconsistencies (even if not, such a
truth table is unlikely to be correct).

Fortunately, we have seen in Section 5.2 how to build a good hypothesis in the presence of attribute noise. The trick
is that we do not apply Proposition 5.8 to the whole given sample, but restrict the sample to the variables classified
as relevant in the first phase. As a consequence, the sample and time complexity for the second phase do not depend
on n any longer, but only on the number d of relevant variables.

This results in an algorithm for learning the classJ n
d in the presence of attribute and classification noise with sample

complexity growing only polynomially in log n and 2d (instead of nd as in Proposition 5.9). Moreover, for the subclass
J n

d (τ ), the time complexity depends on nτ instead of nd . Precisely, the algorithm, which we call τ -NOISY-LEARNd ,
is presented as Algorithm 3.

Theorem 7.1. Algorithm τ -NOISY-LEARNd exactly learns the class J n
d (τ ) with confidence 1− δ

• from uniformly distributed (P, η)-noisy samples of size poly(log n, 2d , log(1/δ), γ−d
a , γ−1

b )

• with running time nτ · poly(n, 2d , log(1/δ), γ−d
a , γ−1

b ).

Proof. Let f ∈ J n
d (τ ). As we have shown in Theorem 6.1, with probability at least 1 − δ/2, τ -NOISY-FOURIERd

successfully infers the relevant variables of f , provided that

m ≥ 8 · ln(4n/δ) · 22d
· (γ τa · γb)

−2.

By Proposition 5.8, again with probability at least 1 − δ/2, hypothesis h exactly coincides with f . Hence,
τ -NOISY-LEARNd succeeds in exactly learning the target concept with probability at least 1− δ. The claimed sample
complexity and running time follow from Theorem 6.1 and Proposition 5.8. �

For the class of all d-juntas and the class of monotone d-juntas, we obtain:

Corollary 7.2. (a) The class J n
d can be exactly (P, η)-learned with confidence 1− δ from a sample of size

poly(log n, 2d , log(1/δ), γ−d
a , γ−1

b ) in running time nd
· poly(n, log(1/δ), γ−d

a , γ−1
b ).

(b) The class MONn
d can be exactly (P, η)-learned with confidence 1 − δ from a sample of size

poly(log n, 2d , log(1/δ), γ−d
a , γ−1

b ) in time poly(n, 2d , log(1/δ), γ−d
a , γ−1

b ).



J. Arpe, R. Reischuk / Theoretical Computer Science 384 (2007) 2–21 13

8. Non-uniformly distributed attributes

In this section we show how to generalize our results to product attribute distributions (not to be confused with
attribute noise distributions). We confine ourselves to presenting results for 1-low concepts only. The more delicate
task of studying the general applicability of the methods to τ -low juntas is left for future investigations.

The examples are now distributed according to an attribute distribution D : {0, 1}n → [0, 1], which we assume to
be a product distribution with rates d1, . . . , dn . Let σi =

√
di · (1− di ) be the standard deviation of variable xi . To

avoid pathological cases, we assume that there exists a constant γc ∈ (0, 1/2] such that, for all i ∈ [n], di ∈ [γc, 1−γc].
The learning algorithm now has access to D-distributed (P, η)-noisy samples (see Definition 3.1). When using
methods from the uniform setting, we now approximate expectations with respect to D instead of Un . Consequently,
we have to adjust the inner product on our concept space and choose an appropriate orthonormal basis, as has been
proposed by Furst, Jackson, and Smith [13]. For i ∈ [n], define χD

i : {0, 1}n → R by χD
i (x) =

di−xi
σi

. For I ⊆ [n],

define χD
I : {0, 1}n → R by χD

I (x) =
∏

i∈I χ
D
i (x). Note that χUn

I = χI . The functions (χD
I | I ⊆ [n]) form an

orthonormal basis with respect to the inner product

〈 f, g〉D = Ex∼D[ f (x)g(x)].

The D-biased Fourier coefficient of f at I is FD( f )(I ) = 〈 f, χD
I 〉D . Since we only work with a single distribution D

in the following, we also write f̌ (I ) for FD( f )(I ) (but reserve f̂ (I ) to stand for the unbiased Fourier coefficient
FUn ( f )(I )). It is not difficult to see that Lemma 4.1 generalizes to biased Fourier coefficients, paving the way to carry
over techniques from the uniform setting, at least for noise-free data.

In the noisy setting, the main problem is that, in general,

χD
I (x ⊕ a) 6= χD

I (x) · χ
D
I (a).

Hence, we cannot simply approximate Ex∼D,a∼P,b∼η[χ
D
I (x ⊕ a) · f (x) · b] and proceed as in the uniform case. On

the other hand, using χUn
I , we obtain

Ex∼D,a∼P,b∼η[χ
Un
I (x ⊕ a) · f (x) · b)] = (1− 2pI ) · (1− 2η) · 〈 f, χUn

I 〉D,

but 〈 f, χUn
I 〉D does not properly work together with the definition of biased Fourier coefficients. The way out is

provided by a clever combination of biased Fourier coefficients, the inner product 〈·, ·〉D , and the “unbiased” parity
functions χUn

I , presented in Lemma 8.1. Its proof relies on explicit calculations of the biased Fourier coefficients of
the unbiased parity functions.

Lemma 8.1. Let f : {0, 1}n → R and I ⊆ [n]. Then

f̌ (I ) =

(∏
i∈I

(2σi )

)−1

· 〈 f, χUn
I 〉D −

∑
J(I

∏
i∈I\J

1− 2di

2σi
· f̌ (J ).

Before we prove Lemma 8.1, we calculate the values 〈χUn
I , χD

J 〉D . This may be of independent interest for other
applications since these are the entries of the change of basis matrix for converting coordinates with respect to the
unbiased basis (χUn

I | I ⊆ [n]) to coordinates with respect to the D-biased basis (χD
I | I ⊆ [n]).

Lemma 8.2. Let J ⊆ I ⊆ [n]. Then

FD(χ
Un
I )(J ) =

〈
χ

Un
I , χD

J

〉
D
=

∏
i∈J

(2σi ) ·
∏

i∈I\J

(1− 2di ).

Proof. We have

χ
Un
i (x) · χD

i (x) = (−1)xi ·
di − xi

σi
=

{
di
σi

if xi = 0,
1−di
σi

if xi = 1.
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Hence, using χD
I =

∏
i∈I χ

D
i , we obtain〈

χ
Un
I , χD

J

〉
D
=

∑
x∈{0,1}n

D(x) · χUn
I (x) · χD

J (x)

=

∑
x∈{0,1}n

∏
i∈[n]

(
d xi

i · (1− di )
1−xi

)
·

∏
i∈J :xi=0

di
σi
·

∏
i∈J :xi=1

1−di
σi
·

∏
i∈I\J

(−1)xi

=

∑
x∈{0,1}n

∏
i∈[n]\J

(
d xi

i · (1− di )
1−xi

)
·

∏
i∈J

σi ·
∏

i∈I\J

(−1)xi

=

∑
x∈{0,1}n

∏
i∈[n]\I

(
d xi

i · (1− di )
1−xi

)
·

∏
i∈J

σi ·
∏

i∈I\J

(
(−1)xi · d xi

i · (1− di )
1−xi

)

=

∏
i∈J

σi ·

 ∑
x |J∈{0,1}J

1

 ·
 ∑

x |[n]\I∈{0,1}[n]\I

∏
i∈[n]\I

(
d xi

i · (1− di )
1−xi

)
·

 ∑
x |I\J∈{0,1}I\J

∏
i∈I\J

(
(−1)xi · d xi

i · (1− di )
1−xi

)
= 2|J | ·

∏
i∈J

σi ·
∑

x∈{0,1}I\J

∏
i∈I\J

(
(−1)xi · d xi

i · (1− di )
1−xi

)
= 2|J | ·

∏
i∈J

σi ·

(
Pr

x∼D
[χ

Un
I\J = 1] − Pr

x∼D
[χ

Un
I\J = −1]

)
= 2|J | ·

∏
i∈J

σi · (1− 2dI\J ) =
∏
i∈J

(2σi ) ·
∏

i∈I\J

(1− 2di ),

where, analogously to pI , we define dI = Prx∼D[χ
Un
I = −1] for I ⊆ [n]. By induction, 1−2dI =

∏
i∈I (1−2di ). �

Proof of Lemma 8.1. We first show that 〈χUn
I , χD

J 〉D = 0 for all J 6⊆ I :

χD
I =

∏
i∈I

χD
i =

∏
i∈I

(2σi )
−1
· (χ

Un
i + (2di − 1) · 1) ∈

〈
χ

Un
J | J ⊆ I

〉

implies 〈χD
J | J ⊆ I 〉 ⊆ 〈χUn

J | J ⊆ I 〉. Since both sides of this relation are subspaces of R{0,1}n of equal dimension,

the spaces coincide. In particular, χUn
I ∈ 〈χ

D
J | J ⊆ I 〉. Consequently, 〈χUn

I , χD
J 〉D = 0 for all J 6⊆ I . Now

〈
f, χUn

I

〉
D
=

〈
f,
∑

J⊆[n]

〈
χ

Un
I , χD

J

〉
D
· χD

J

〉
D

=

∑
J⊆I

〈
f, χD

J

〉
D
·

〈
χ

Un
I , χD

J

〉
D

=

∑
J⊆I

f̌ (J ) · FD(χ
Un
I )(J )

=

∑
J(I

f̌ (J ) · FD(χ
Un
I )(J )+ f̌ (I ) · FD(χ

Un
I )(I ).

Hence,

f̌ (I ) =
(
FD(χ

Un
I )(I )

)−1
·

(〈
f, χUn

I

〉
D
−

∑
J(I

f̌ (J ) · FD(χ
Un
I )(J )

)
.

The claim now follows from Lemma 8.2. �
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Algorithm 4 NOISY-PRODUCT-FOURIERd

1: input S = ((xk
1 , . . . , xk

n ), yk)k∈[m], D, P, η, ρ
2: R← ∅
3: φ0 ←

1
(1−2η)·m

∑m
k=1 yk

4: for i = 1 to n do
5: φi ← (1− 2di ) · φ0
6: ψi ←

1
(1−2pi )·(1−2η)·m

∑m
k=1 yk

· χ
Un
i (xk)

7: βi ←
ψi−φi

2·
√

di ·(1−di )

8: if |β| ≥ ρ/2
9: then R← R ∪ {xi }

10: output NOISY-PRODUCT-FOURIERd(S, D, P, η, ρ) = R

9. Learning the relevant variables from non-uniformly distributed noisy samples

The threshold to recognize nonzero Fourier coefficients is given by the least absolute value of the considered
nonzero coefficients. Thus, we define the Fourier threshold thrD( f ) of f with respect to D by

thrD( f ) = min
{∣∣∣ f̌ (i)

∣∣∣ ∣∣∣ xi ∈ rel( f )
}
. (10)

For concepts f that are not 1-low (with respect to D), thrD( f ) = 0. If D = Un is the uniform distribution, then for
1-low concepts f , thrD( f ) ≥ 2−|rel( f )|.

For the next theorem, we stick to the notation fixed in the beginning of Section 5, except that S is now assumed to
be a D-distributed (P, η)-noisy sample of size m.

Theorem 9.1. Let f : {0, 1}n → {−1,+1} be a d-junta with ρ = thrD( f ) > 0 and

m ≥ 2 · ln(4n/δ) · ρ−2
· (γa · γb)

−2
· (γc · (1− γc))

−1.

Then

NOISY-PRODUCT-FOURIERd(S, D, P, η, ρ) = rel( f )

with probability at least 1− δ. Furthermore, the algorithm runs in time

poly(n, log(1/δ), γ−1
a , γ−1

b , γ−1
c , ρ−1).

Proof. The proof is an extension of the proof of Theorem 6.1. By Lemma 8.1,

f̌ (i) = (2σi )
−1
·

〈
f, χUn

I

〉
D
−

1− 2di

2σi
· f̌ (∅).

Since Ex∼D,b∼η[ f (x) · b] = (1− 2η) · f̌ (∅), it follows analogously to the proof of Lemma 5.5 that with probability
at least δ/(2n),

|φi − (1− 2di ) · f (∅)| ≤ σi · ρ/2,

provided that

m ≥ 2 · ln(4n/δ) ·
4(1− 2di )

2

(1− 2η)2 · σ 2
i · ρ

2
. (11)

Moreover, we have

Ex∼D,a∼P,b∼η[ f (x) · b · χ
Un
I (x ⊕ a)] = (1− 2pi ) · (1− 2η) ·

〈
f, χUn

I

〉
D
.

Thus, with probability at least 1− δ/(2n),∣∣∣ψi −

〈
f, χUn

I

〉
D

∣∣∣ ≤ σi · ρ/2,
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provided that

m ≥ 2 · ln(4n/δ) ·
4

(1− 2pi )2 · (1− 2η)2 · σ 2
i · ρ

2
. (12)

The number of examples in the claim dominates both numbers given in (11) and (12). Thus, with probability at least
1− δ/n,∣∣∣βi − f̌ (i)

∣∣∣ = ∣∣∣∣∣ψi − φi

2σi
−
〈 f, χUn

I 〉D − (1− 2di ) f̌ (∅)

2σi

∣∣∣∣∣ ≤ ρ · σi

2 · σi
= ρ/2 .

NOISY-PRODUCT-FOURIERd classifies xi as “relevant” if and only if |βi | ≥ ρ/2. If f̌ (i) = 0, then |βi | < ρ/2 with
probability at least 1 − δ/n, and if f̌ (i) 6= 0, then |βi | ≥ ρ/2 with probability at least 1 − δ/n (since f̌ (i) ≥ ρ by
assumption). Consequently, all variables are classified correctly with probability at least 1− δ. �

For monotone concepts, we obtain

Lemma 9.2. Let f : {0, 1}n → {−1,+1} be a monotone Boolean concept. Then

thrD( f ) ≥ 2 · min
xi∈rel( f )

σi ·
∏

x j∈rel( f )\{xi }

min{d j , 1− d j }.

In particular,

thrD( f ) ≥ 2 ·
∏

xi∈rel( f )

min{di , 1− di }.

Proof. Let xi ∈ rel( f ). Then

f̌ (i) =
∑

x∈{0,1}n
D(x) · f (x) ·

di − xi

σi

=

∑
x ′∈{0,1}[n]\{i}

D(x ′) ·

(
(1− di ) · fxi=0(x

′) ·
di

σi
− di · fxi=1(x

′) ·
1− di

σi

)
= σi ·

∑
x ′∈{0,1}[n]\{i}

D(x ′)( fxi=0(x
′)− fxi=1(x

′))

= σi ·
∑

x ′∈{0,1}rel( f )\{i}

D(x ′)( f ′xi=0(x
′)− f ′xi=1(x

′)),

where for J ⊆ [n] and x ∈ {0, 1}J , we define D(x) =
∏

j∈J d xi
i · (1 − di )

1−xi , and for g : {0, 1}J → R,

g′ : {0, 1}rel(g)
→ R denotes the restriction of g to its relevant variables. If f is monotone, then fxi=0 ≥ fxi=1.

If, in addition, xi is relevant to f , then fxi=0(x ′) 6= fxi=1(x ′) for at least one x ′ ∈ {0, 1}[n]\{i}. Hence,

| f̌ (i)| ≥ 2 · σi · min
x ′∈{0,1}rel( f )\{i}

D(x ′) = 2 · σi ·
∏

x j∈rel( f )\{xi }

min{d j , 1− d j }.

We conclude the proof by showing σi ≥ min{di , 1−di }. If di ≤ 1/2, then σi =
√

di · (1− di ) ≥ di = min{di , 1−di }.
If di ≥ 1/2, then σi ≥ 1− di = min{di , 1− di }. �

The lemma also holds for unate concepts.
While under the uniform distribution, the parity function χI is |I |-low but not (|I |−1)-low, the situation is entirely

different for non-uniform distributions:

Lemma 9.3. Let f : {0, 1}n → {−1,+1} be a parity function, i.e., f = χI for some I ⊆ [n]. Then

thrD( f ) = 2 ·min
i∈I

(
σi ·

∏
j∈I\{i}

|1− 2d j |

)
.
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In particular, if D is a non-degenerate θ -bounded product distribution (i.e., for all i ∈ [n], |1 − 2di | ≥ θ > 0, see
Definition 3.4), then

thrD( f ) ≥ 2 · γc · θ
d−1. (13)

Proof. Let i ∈ rel( f ) = I . By Lemma 8.2,

FD(χI )(i) =
〈
χ

Un
I , χD

i

〉
D
= 2σi ·

∏
j∈I\{i}

(1− 2d j ),

which proves the equation in the claim. To see the inequality (13), note that σi ≥
√
γc(1− γc) ≥ γc (since

1− γc > γc). �

In particular, if di 6∈ {0, 1
2 , 1} for all i ∈ [n], then the relevant variables of parity functions can be inferred via the

Fourier approach (even in the presence of noise). Furthermore, since the relevant variables already determine the target
concept in this case, the learning problem is as easy as the detection of relevant variables.

For the class of monotone d-juntas and the class of parity d-juntas we obtain

Corollary 9.4. (a) The relevant variables of monotone d-juntas can be exactly learned with confidence 1− δ
• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−1
a , γ−1

b , γ−d
c )

• with running time poly(m, n).
(b) If D is θ -bounded, then the class PARn

d of parity d-juntas can be exactly learned with confidence 1− δ

• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−1
a , γ−1

b , γ−1
c , θ−d)

• with running time poly(m, n).

Proof. Part (a) follows from Theorem 9.1 and Lemma 9.2; part (b) follows from Theorem 9.1 and Lemma 9.3. Note
that a parity function f is uniquely determined by rel( f ). �

10. Constructing a hypothesis from non-uniformly distributed noisy samples

Next we describe how to construct a hypothesis for general concepts. We use Lemma 8.1 to successively
approximate all biased Fourier coefficients level by level. Given a D-distributed (P, η)-noisy sample S =
(xk, yk)k∈[m] and having inferred the set R of relevant variable indices, we compute for each I ⊆ R the value

βI =

(
(1− 2pI )(1− 2η)

∏
i∈I

2σi

)−1

·
1
m
·

m∑
k=1

ykχI (x
k)−

∑
J(I

∏
i∈I\J

1− 2di

2σi
βJ . (14)

Finally, we build the hypothesis h(x) = sgn
∑

I⊆R βI · χ
D
I (x).

To ensure that βI approximates f̌ (I ) well enough, reasonably good approximations of all coefficients f̌ (J ) for
J ⊆ I are required. This feedback effect leads to a necessary sample size of 2ω(|rel( f )|).

Theorem 10.1. Let f : {0, 1}n → {−1,+1} be a d-junta with ρ = thrD( f ) > 0. Then f can be exactly recovered
with confidence 1− δ from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−d
a , γ−1

b , γ−d2

c , ρ−1)

with running time poly(m, n).

Note that γ−1
c ≥ 2. For a fixed attribute distribution D, the sample size is polynomial in 2d2

. Before we prove
Theorem 10.1, we show that a suitable hypothesis can be built, provided that the set of relevant variables is already
known:
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Lemma 10.2. Let S be a D-distributed (P, η)-noisy sample of size

m ≥ poly(log(1/δ), γ−d
a , γ−1

b , γ−d2

c )

for f . Let βI as defined in (14). Then with probability at least 1− δ, the hypothesis h defined by

h(x) = sgn
∑
I⊆R

βI · χ
D
I (x)

coincides with f .

Proof. We first prove by induction on |I | that |βI − f̌ (I )| ≤ ε with probability at least 1− δ, provided that

m ≥ 8 · ln
(

2(|I |
2
+|I |)/2/δ

)
· γ−2|I |

a · γ−2
b · γ

−(|I |2+3|I |)
c · ε−2. (15)

We have

β∅ = (1− 2p∅) · (1− 2η) ·
1
m

m∑
k=1

yk .

By the Hoeffding bound (Lemma 2.1), with probability at least 1− δ,

|β∅ − f̌ (∅)| ≤ ε, provided that m ≥ 2 · ln (2/δ) ·
1

(1− 2η)2 · ε2 ,

which is clearly dominated by (15).
Now consider I ⊆ [n] with |I | ≥ 1 and assume that the claim holds for all J ⊆ [n] of size at most |I | − 1. Let

ψI =

(
(1− 2pI ) · (1− 2η) ·

∏
i∈I\J

2σi

)−1

·
1
m

m∑
k=1

yk
· χ

Un
I (xk)

and

φI =
∑
J(I

( ∏
i∈I\J

1− 2di

2σi

)
· βJ .

The remainder of the proof is a bit technical, so we provide a brief overview first: we show that, with probability
at least 1− δ · 2−|I |, (16) holds, and that, with probability at least 1− δ · (1− 2−|I |), (17) holds for all J ( I . Putting
these things together, we will obtain that, with probability at least 1− δ, |βI − f̌ (I )| ≤ ε.

We have Ex∼D,a∼P,b∼η[ f (xk) · bk
· χ

Un
I (xk

⊕ ak)] = (1− 2pI ) · (1− 2η) · 〈 f, χUn
I 〉D . Thus, with probability at

least 1− δ · 2−|I |,∣∣∣∣∣∣ψI −

(∏
i∈I

2σi

)−1

·

〈
f, χUn

I

〉
D

∣∣∣∣∣∣ ≤ ε/2, (16)

provided that

m ≥ 2 · ln
(

2 · 2|I |

δ

)
·

4

(1− 2pI )2 · (1− 2η)2 ·
(∏

i∈I
2σi

)2

· ε2

.

Again, this is dominated by (15) since σi ≥ min{di , 1 − di } ≥ γc (as we have shown in the end of the proof of

Lemma 9.2) and thus (
∏

i∈I 2σi )
2
≥ (2 · γc)

2|I |
≥ γ

|I |2+3|I |
c (recall that 0 < γc ≤ 1/2).

Furthermore, by induction hypothesis, we have that for each J ( I , with probability at least 1− δ · 2−|I |,

|βJ − f̌ (J )| ≤ γ |I |+1
c · ε, (17)
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provided that

m ≥ 8 · ln
(

2(|J |
2
+|J |)/2

· 2|I |/δ
)
· γ−2|J |

a · γ−2
b · γ

−(|J |2+3|J |)
c · (ε · γ |I |+1

c )−2.

Since |1− 2di |/σi ≤ 1/σi ≤ γ
−1
c , we obtain∣∣∣∣∣φI −

∑
J(I

( ∏
i∈I\J

1− 2di

2σi

)
· f̌ (J )

∣∣∣∣∣ ≤ ∑
J(I

∣∣∣∣∣ ∏
i∈I\J

1− 2di

2σi

∣∣∣∣∣ · |βJ − f̌ (J )|

≤

∑
J(I

(2γc)
−|I |+|J |

· γ |I |+1
c · ε

≤

∑
J(I

(2γc)
−|I |
· γ |I |+1

c · ε

≤ 2|I | · (2γc)
−|I |
· γ |I |+1

c · ε

≤ γc · ε ≤ ε/2

with probability at least 1− δ · 2|I |−1
2|I |

, provided that

m ≥ 8 · ln
(

2
(
(|I |−1)2+|I |−1

)
/2
· 2|I |/δ

)
· γ−2(|I |−1)

a · γ−2
b · γ

−((|I |−1)2+3(|I |−1))
c · (γ |I |+1

c · ε)−2

= 8 · ln
(

2(|I |
2
−2|I |+1+|I |−1)/2+|I |/δ

)
· γ−2(|I |−1)

a · γ−2
b · γ

−(|I |2−2|I |+1+3|I |−3+2|I |+2)
c · ε−2

= 8 · ln
(

2(|I |
2
+|I |)/2/δ

)
· γ−2(|I |−1)

a · γ−2
b · γ

−(|I |2+3|I |)
c · ε−2.

The latter sample bound is again dominated by (15). Finally,

|βI − f̌ (I )| =

∣∣∣∣∣∣ψI − φI −

(∏
i∈I

2σi

)−1

·

〈
f, χUn

I

〉
D
−

∑
J(I

( ∏
i∈I\J

1− 2di

2σi

)
· βJ

∣∣∣∣∣∣
≤ ε/2+ ε/2 = ε

with probability at least 1− δ. This finishes the induction proof.
Now we apply this result to estimate how closely h approximates f . Assume that |βI − f̌ (I )| ≤

√
2−d · ε for all

I ⊆ R. The standard LMN analysis (see Linial et al. [18]) yields

Pr
x∼D
[h(x) 6= f (x)] ≤

∑
I⊆R

(βI − f̌ (I ))2 ≤ 2d
· (2−dε) = ε.

Let ε = γ d
c /2. Then, with probability at least 1− δ,

Pr
x∼D
[h(x) 6= f (x)] ≤ γ d

c /2 <
∏
i∈R

min{di , 1− di } = min
x∈{0,1}R

D(x).

This implies h = f . Thus, we can request

m ≥ poly(log(2d2
/δ), γ−d

a , γ−1
b , γ−d2

c , γ−d
c )

= poly(log(1/δ), γ−d
a , γ−1

b , γ−d2

c )

examples to guarantee h(x) = f (x) for all x ∈ {0, 1}n with probability at least 1− δ. �

Now we can prove Theorem 10.1:

Proof of Theorem 10.1. By Theorem 9.1, we can infer the set of relevant attributes correctly with probability at least
1−δ/2, provided that we are given a sample of size m ≥ poly(log n, log(1/δ), γ−1

a , γ−1
b , γ−1

c , ρ−1). By Lemma 10.2,
f can be exactly recovered from

poly(log(1/δ), γ−d
a , γ−1

b , γ−d2

c )



20 J. Arpe, R. Reischuk / Theoretical Computer Science 384 (2007) 2–21

examples with probability at least 1 − δ/2. Combining these bounds, the claimed sample complexity follows. The
claimed running time obviously suffices.

Corollary 10.3. The class MONn
d of monotone d-juntas can be exactly learned with confidence 1− δ

• from D-distributed (P, η)-noisy samples of size

m ≥ poly(log n, log(1/δ), γ−1
a , γ−1

b , γ−d2

c )

• with running time poly(m, n).

11. Conclusion

We have investigated the learnability of Boolean juntas in the presence of attribute and classification noise. While
arbitrary noise distributions may render learning impossible, we have presented an algorithm to learn the class of τ -
low d-juntas under product attribute and classification noise with rates different from 1/2. For τ = 1, these include all
monotone juntas. Moreover, the algorithm does not only work for product noise distributions but for any distribution
satisfying a more general condition (as stated in (7)). In addition, we have shown how to generalize the methods
to non-uniformly distributed examples. This has led to efficient learning algorithms for monotone juntas and parity
juntas.

The major goal is to settle the question whether learning juntas in the presence of noise can be done as efficiently
(up to unavoidable factors due to noise) as in the noise-free case. At present, this means whether or not running
time nc·d

· poly(n, 2d , γ d
a , γ

−1
b ) can be achieved for learning J n

d , with some constant c < 1 (c < 0.704 would even
improve the noise-free case). While we have shown that the “Fourier part” of Mossel et al. [22] carries over to the
noisy scenario, it seems that an adaption of the “parity part” is intractable for uniformly distributed examples since
it requires noise-tolerant learning of parity functions. We suspect that non-trivial lower bounds (based on hardness
assumptions) can be shown.
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