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A b s t r a c t - - T o  estimate convergence of the multigrid algorithms, we need some assumptions on 
smoothers. The assumptions fur typical smoothers are well analyzed in the multigrid literature [1,2]. 
However, numerical evidence shows that Kaczmarz smoother does not satisfy above assumptions. 
Thus, we introduce a weaker condition which is satisfied by Kaczmarz smoother as well as Jacobi 
and Ganss-Seidel smoother. Under these weaker assumptions, we show that the convergence factor 
of V-cycle multigrid algorithm is 6 ---- 1 - 1/(C(j - 1)). These assumptions for Kaczmarz smoother 
are verified by numerical experiment. 
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I .  I N T R O D U C T I O N  

Multigrid methods have been used extensively as tools for obtaining approximations to the solu- 
tions of partial differential equations. In conjunction, there has been intensive research into the 
theoretical understanding of these methods. Many papers present various analyses of multigrid 
methods which are often based on certain assumptions concerning smoothing process. These as- 
sumptions are sometimes verified for specific examples in [1-3]. In this paper, we provide weaker 
assumptions under which multigrid methods converge. 

Assumptions concerning the smoothing process described in [2] are satisfied by Jacobi and 
Ganss-Seidel smoothing, but  not by Kaczmarz smoothing, because the constant CR grows 
with 1/h 2. In this paper, we modify these assumptions so that  these new assumptions are satisfied 
by Kaczmarz smoother as well as Jacobi and Gausss-Seidel smoother. It  turns out  tha t  these as- 
sumptions are weaker than the conventional ones, thus Jacobi and Gauss-Seidel smoother satisfy 
them trivially. The  case for Kaczmarz smoother is supported by numerical computation. Under 
these weaker assumptions, we prove that  convergence factor of V-cycle multigrid algorithms is 
6 = 1 - 1 / (C( j  - 1)). 

The  outline of the remainder of this paper is as follows. In Section 2, we describe the basic 
multigrid algorithm in an abstract setting which utilizes some conditions on the smoothers. In 
Section 3, we prove multigrid convergence under these weaker assumptions. Various smoothing 
procedures including Kaczmarz iteration are described and analyzed in Section 4. Finally, in 
Section 5, we discuss finite element applications. 
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2. T H E  M U L T I G R I D  A L G O R I T H M S  

We assume that there is given a sequence of nested finite-dimensional inner product spaces 

NIl C A42 C ..- C A4j, 

with inner product (., ")k. In addition, we assume that symmetric positive definite operators 
Ak : fl4k --* /~4k are given for k = 1 , . . .  , j .  The multigrid algorithm gives rise to iterative 
procedures for the solution of the problem on A//j, i.e., given f E J~ j  find u E fl4j satisfying 

Aju  = f.  (2.1) 

We define the operators P °  1 : fl4k --* 54~-1 by 

(P°_iv,~)k_l = (v,~b)k, for all ~b 6 A4k-l, (2.2) 

and the projectors Pk-1 : A4~ -~ ~k-I by 

A(P~- lV ,~)  = A(v,~) ,  for all ~ e A4k-l ,  (2.3) 

where A(., .) is the bilinear operator defined by A(u, v) = (Aku, v)k for u, v E f14~. 
Also, we require a sequence of linear smoothing operators Rk : A4k --+ A/I~ for k = 2 , . . .  , j .  

We shall always take R1 = A11. We set 

R ( 0 = I R k '  i f l i s o d d ,  

R T, if I is even, 

and set K~ = I - RkA~ on J~k. Then we note that  K~ = I - RTAk.  Here, 'T'  and ' . '  denote 
adjoint with respect to (-,-)k and A(., .), respectively. 

We next define a multigrid process for iteratively computing the solution of (2.1). 

ALGORITHM. Set B~ = A11. Assume that B~_ 1 has been defined and define B~g for g E A//k as 
follows. 

(1) S e t v  ° = 0 .  
(2) Define v i for i = 1, 2 , . . . ,  re(k) by 

~]i ----- ~ i - 1  .~_ R(ki+m(k)) (g _ A / c ~ i - 1 )  . 

(3)  Define w re(k) = v re(k) + B ~ _ I [ P ~ _ I ( g  - Akvm(k) ) ] .  

(4) Define u~ ~ for i -- re(k) + 1 , . . . ,  2re(k) by 

,W i ___~ ~.0 i - 1  -}- R~ i+m(k)) (g -- Akwi-1). 

(5) Set B~g = w 2m(~). 

In the above algorithm, by defining B~g = w re(k), we get nonsymmetric multigrid algo- 
rithm B~. From the above algorithm, fundamental recurrence relations for the nonsymmetric 
and the symmetric multigrid algorithm are 

I - B~Ak -- [(I - Pk-1) + (I  - B~_IA~- I ) 'Pk -1  ]/~(,n(,)), (2.4) 

B~_IA~-I) p I Pk-1] (2.5) 

on .A~, where 
/~.(m(~)) _- / (K~K~)m(~)/2' if re(k) is even, 

K~ (K~Kk) (~(~)-~)/2 , if re(k) is odd. 
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To estimate the convergence of multigrid algorithm, we need some conditions concerning the 
smoothing operators. The conditions which were often assumed by many authors (see [1-7]) are 
the following. 

CONDITION (C. 1). There is a constant Ca which does not depend on k such that the smoothing 
procedure satisfies 

[]u[[~ < Ca (/~ku, u)k, for all u 6 J~t&. (2.6) 
Ak - 

H e r e ,  Rk is either ( I  - K ~ K k ) A ~  1 or ( I  - K~K~)A-~ 1. Ak is the largest eigenvalue of Ak. 

CONDITION (C.2). Let Tk = RkAk.  There is a constant 0 < 2 not depending on k satisfying 

A(Tkv, Tk.) <_ OA(Tkv, v). (2.7) 

Kaczmarz smoothing, however, dose not satisfy (C.1). Thus, we modify (C.1) as follows. 

CONDITION (SM.1). There is a constant Ca which does not depend on k such that the smoothing 
procedure satisfies 

A(u,u) 
A~ <_ Ca (/~ku, u)k, for all u 6 A4~. (2.8) 

3. C O N V E R G E N C E  ESTIMATES 
FOR M U L T I G R I D  A L G O R I T H M S  

To estimate the convergence of multigrid algorithm, we need some properties concerning the 
operator A~ and the subspaces. The following assumption will be verified in Section 5. 

ASSUMPTION (A.1). There exists a sequence of  linear operators Q k : J~4 j --. J~4 ~ for k = 1 , . . .  , j ,  
with Qj = I satisfying the following properties. There are constants C1 and C2 not depending 
on k for wl~ch 

( A k l ( Q k  -- Qk-1)u,  (Qk - Qk-1)u)k ~_ C1Ak2A(u, u), l¢or k -~- 2, . . .  , j ,  
(3.1) 

A(Qku,  Qku) <_ C2A(u,u) ,  for k = 1 . . . .  , j  - 1. 

THEOREM 3.1. Assume that Assumption (A.1) holds. Let  R~ assume that (SM.1) and (C.2) 
hold. Let B~ (B~ ) be detined by symmtric (nonsymmetric) multigrid a/gorithm. Then, 

A ( ( I - B ~ ) v , v )  ( ~ f j a ( v , v ) ,  [ o r a l l v E ~ 4 j  (3.2) 

and 
A ( ( I - B ~ ) v , ( I - B ~ ) v )  <_6jA(v,v), f o ra l l vE . / t 4 j ,  (3.3) 

hold with 
1 6 ~ = 1 -  c(j - 1)' 

where C = [(1 + C~/2)(20/(2 - O)) 1/2 + (CRCl)1/2] 2. 
PROOF. Since 

I - S ; A j  = ( I -  B ~ A j ) ' ( I  - B ~ A j ) ,  

holds by (2.4) and (2.5), it suffices to prove (3.3). If we let Tk = (I - (/(k(m(~)))*)Pk, we obtain 
the following recurrence relation: 

(I - B'~Aj)" = ( I  - T j ) ( I  - T j _ I ) . . .  ( I  - T,) .  

~ib use a product analysis, we set E0 = I and 

Ek = (I - T~)(I - T~_,) . . . (I - T,) = (I - T~)E~_,. 
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Then, we have 

J 
a ( u ,  u) - A(Eju,  Eju) = Z [a (Ek-lU, Ek-lU) - A (Eku, Eku)] 

J 
= ~ A((2I  - Tk)Ek-lU, T~Ek-lU). 

k- -1  

Note that  I - B2Aj = El ,  and hence, the inequality (3.3) will follow if we can show that 

J 
A(u, u) <_ C(j - 1) Z A ((2I - Tk) Ek-lU, TkEk-lU). (3.4) 

k = l  

Since Qj = I, we have 

J 
A(u, u) = ~ A (Ek-lu, (Qk - Q~-l)U) + A(~, QlU) 

k ~ 2  
j (3.5) 

+ ~ A ((X - Ek-l)~, (Qk - Qk-llu).  
kffi2 

For the first sum on the right-hand side (3.5), from (3.1) and (2.8), we see that  

J J 

k----2 k - 2  

J 
.~  • \ 1 / 2  ~_ ~ A(AkPkE~-lU, AkPkEk-lu) 1/2 " (A~'I(Qk -Qk-1 )u ,  ( Q~ -c4~-1)u1~ 

kffi2 

<_ (c1)ll2All2(u, u) ~ A1/2(A~PkE~-lU' AkP~Ek-lU) 

J 
<_ (CRC1)I/2A1/2(u, u) Z A1/2 ((I - K~Kk) P~Ek-lU, PkEk-lu) 

kffi2 

_< (CRC1 (j - 1))1/2 A1/2(u, u) A(( I -K~Kk)P~E~- lu ,  PkEk-lU) 

The remainder of proof is the same with the proof of Theorem 4.3 in [2]. | 

4.  S M O O T H I N G  P R O C E D U R E S  I N  M U L T I G R I D  A L G O R I T H M S  

We define Gauss-Seidel smoother by the following algorithm. 

ALGORITHM 4.1. Let f e ~t~, we define Rkf  ~ .A4~ as follows. 

(1) Set vo = O. 
(2) Define v~ for i = 1, . . . ,1  by 

- 1  i v~ = v~-I + A~,~Q~(I - A~v~-I), (4.1) 

where A~,~ is a n  i t h  diagonal element of A~ and Q~ is a projection onto span{e~} with 
respect to (., .)~. 

(3) Set R~f = v~. 
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Let P~ be the projection onto span{ei} with respet to (A~., .)~. It immediately follows from 
the identity Ak,iP~ = Q~Ak that  

g~  = ( I  - Pkt) . . .  ( I  - P~) ,  (4.2) 

for Ganss-Seidel smoother. If we let R ~ f  7~-']-~=1~ -1 i we = A~,iQkf ,  obtain Jacobi smoother. It is 
well known that  Jacobi and Gauss-Seidel smoother satisfy (C.1) (see [2]). 

LEMMA 4.1. Let R~ be a smoother which satisfy (C.1). Then R~ satisfy (SM.1). 

PROOF. Let u = Akw,  then (C.1) becomes 

(Alcw, Akw)k  < CR [(Akw, w)k - (AkKkw,  Kkw)~]. 
.XI~ 

Since A~ is the largest eigenvaiue of Ak, we know that  

(Akw, w)k < )tk(W,W)k, for all w e Adk. 

Therefore, 

(A~w, A~w)k < CR [(Akw, w)k - (AkKkw,  K~w)k ] . m 

Now we consider Kaczmarz iteration. Let A~ = (aij)~,j=r Then Kaezmarz smoother is defined 
by the following algorithm. 

ALGORITHM 4.2. Let f E .Mk. We define R k f  E .A4k as follows. 

(1) Set v0 = 0. 
(2) Define vi for i = 1 , . . . ,1  by 

ai 
v, = v , -  aCa---S ( a C v , - 1  - S,) ,  

where a T = i th row of Ak, i.e., a T =(a i l ,  a i2 , . . . ,  ail). 

(3) Set R k f  = Yr. 

From the above algorithm, we obtain 

Kk = I -  RkA~ = (I  - B t )  . . .  ( I  - B~) , (4.3) 

where 
a,a T A~Q~Ak 

= = 

Let S~ be the projection with respect to ((AkA~). ,  .)~. Then we have 

From this we get B~ = A ~ A ~  T and (4.3) becomes 

Kit = A~ (I  - S~) . . . ( I  - S~) A'~ T. (4.4) 

The above presentation reflects that  Kaczmarz iteration can be regarded as a Gaues-Seidel iter- 
ation applied to AhA~v  = f with u = ATv. In fact, one can verify that  

( I  - S t ) ' "  ( I  - S~) = ! - (D + L ) - '  (A~AT) , 

where A k A ~  = D + L + L T, where L is a strictly lower trianglar matrix and D is a diagonal 
matrix. Therefore, Kh = I - A T ( D  + L ) - IA~ .  
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Numerical Verification of (SM.1)  vxld (C.2)  

We consider an elliptic partial differential equation of the form 

- E2 ~xiO(a~J(X)~xj(X))=f(z)' i n f , ,  (4.5) 
i,j--1 

v(x) = 0, on 0f/, 

where f~ is a unit rectangle and 2 (a~j)i,j= 1 is a symmetric positive matrix. 

To obtain A~, we discretize f / b y  uniform triangular element with mesh size hk = 2 -k.  Let S0 h 
be the space of continuous piecewise linear functions with basis (¢~)~=1. We define 

j ~ l  f 0¢8 0¢r  dx, 

for r , s  = 1 , . . . ,1 .  
First, for 2 (aij)ij_-i = I ,  we calculate CR's in (C.1) and (SM.1) of damped Jacobi with w = 0.8, 

Ganss-Seidel, and Kaczmarz smoothing. 
Table 1 shows that  Kaczmarz smoother does not satisfy (C.1). 

Table 1. 

Jacobi Gauss-Seidel Kaczmarz 

h (C.1) (SM.1) (C.1) (SM.1) (C.1) (SM.1) 

i 1.409707 1.409707 1.118052 1.118052 2.281606 1.349255 
8 

1 1.519271 1.519271 1.123504 1.123504 8.349859 1.371804 
16 

1 1.551332 1.551332 1.124665 1.124665 32.667680 1.376693 
32 

1 1.559570 1.559776 1.124900 1.124900 129.937300 1.377789 
64 

Next, we calculate Table 2, CR in (SM.1) and 0 in (C.2) of Kaczmarz smoother for several 
2 , (Gij)i,jffil S. 

Table 2. 

(ai$)ij=12 I e°'2=+0'7~I diag (e 0"2z+0'3v , z + 0.5) 

h Ca 0 Ca 0 Ca 0 
1 1.349255 1.496815 1.321122 1.455358 1.322647 1.460811 

1 1.371804 1.516820 1.342990 1.479987 1.341607 1.483321 
16 
1 1.376693 1.522054 1.356463 1.495506 1.353792 1.497318 

32 
1 1.377789 1.523371 1.364844 1.505585 1.361640 1.506282 

64 

5.  F I N I T E  E L E M E N T S  A P P L I C A T I O N S  

We shall consider the problem of approximating the solution v of (4.5). The form A corre- 
sponding to the above operator is given by 

A(,,,,o) - -  a,j (5.1) 
ij----I 
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This form is defined for all v and w in the Sobolev space Hl( f t ) .  Clearly, U E Hl(f~) is the 
solution of 

A(U,O) = (F, 0), for all 0 E H01(f~), 

where H01 is the subspace of HX(f~) of functions which vanish in the appropriate sense on ~ and 
(., .) denote the L 2 inner product on fL 

By positive definiteness of 2 (aij)~dffil, H" HA -- A1/2( ", ") is a norm on H~(f~) it is equivalent to 
H" [[1 which denotes Hl(f~)-norm. 

We assume that  f~ has been triangulated with a sequence of quasi-uniform triangulations 
f~ = Uir~ of size hk for k = 1 , . . .  , j ,  where quasi-uniformity constants are independent of k. 
We further assume that  there is a constant c, independent of k, such that  hk-1 _< chk. These 
triangulations should be nested in the sense that  any triangle r~_ 1 can be written as a union of 
triangles of {r~}. We define ~4k to be the set of piecewise linear functions with respect to the 
triangulation Ucr~ which vanish on 8nk. 

Let {y[} be the collection of nodes corresponding to the triangulation for fl4k. Let 

(u, v) ,  = h~ ~ u (y~) v (y~). (5.2) 
i 

Note that  the quasi-uniformity of the triangulations implies that  the norm ]] • Ilk is equivalent to 
the L 2 norm on the subspace A/t~. The operator Ak, k = 1 , . . .  , j ,  are then defined by 

(Akv, ¢)~ = A(v, ¢), for all ¢ • A4k. (5.3) 

Let Qk denote the L2(n) projection onto ¢~4~. We know that,  since the triangulations are 
quasi-uniform and inverse property, for all v • H0*(f~), 

II(I - Qk)vll < chkllvllx (5.4) 

and 
llQkvlll <- Cllvllx. (5.5) 

From (5.4) and definition, we get 

( A ; X ( Q ~  - Q ~ - x ) v ,  (Qk - Q ~ - l ) V ) k  

( (Qk - Q ~ - l ) V ,  u)  2 ( (Q~ - Qk-x )V,  (Qk - Q ~ - x ) u )  2 
= = sup 

sup (Aku, u)k ,*e.~h (Aku, u)~ uEA4~ 

ll(Qk -- Qk-1)v l l  2 ll(Qk -- Qk-X)UH 2 (5.6)  
< sup 
- ~eMh (A~u,~)~ 
< ch~ll~'lffch~llull2 < Ch4A(v,v), 
- IIuH~ I 

~ince II(Q~ - Q~-x)~'ll -< ll(X - Q~)~'II + II(I - Q~,-l)vll. 
Combining (5.4)-(5.6) shows that  (A.1) since )~ = O(h-~2). 
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