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I. INTRODUCTION 

In 196 1, Lagerstrom introduced some model singular perturbation 
problems to illustrate the mathematical ideas underlying the analysis of low 
Reynolds number flow by means of asymptotic expansions. One of these 
model problems is the following: 

Y(E) = 0, (lb) 

y(a) = 1. (ICI 

This problem corresponds to three-dimensional, viscous, incompressible 
flow; E plays the role of Reynolds number. The asymptotic expansion of the 
solution of this problem exhibits what is known as a switchback term, and it 
is this feature which we wish to consider. 

Discussions of the above and related model problems are found in 
Lagerstrom (1961), Kaplun (1967), Cole (1968), Lagerstrom and Casten 
(1972), Hsiao (1973), Rosenblat and Shepherd (1975), MacGillivray (1978, 
1979) and Cohen, Fokas, and Lagerstrom (1978). In this last paper there is 
proved an existence and uniqueness theorem for a very general class of 
problems which includes as a special case the problem (la)-(lc). 

Classical fluid mechanics problems in which switchback terms occur are 
the so-called Filon terms (see Chang [ 11) and the R2 In R term in the low 
Reynolds number flow analysis by Proudman and Pearson [lo]. 

For a comprehensive review of the Kaplun-Lagerstrom theory of marched 
asymptotic expansions the reader is referred to the review article of 
Lagerstrom and Casten. However, to make the present discussion reasonably 
self-contained, we indicate briefly the main ideas we shall be using. 
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SINGULAR PERTURBATION SWITCHBACK TERM 613 

To begin with, we shall assume the first two terms of the outer asymptotic 
expansion have been constructed using the Kaplun-Lagerstrom theory. By 
this we mean that this theory produces an approximation of the following 
sort : 

Y(K El =./xx> + &f,,(X) + O(E) 

=I-& Cc 
I 

e-tt-2 dt + O(E), 
x 

(2) 

uniformly on an interval of the form 

x E [I?&)7 cQ)T (3) 

where qO(s) is known only to satisfy 

E < %(E) = o(1). (4) 

Similarly, the theory produces the leading term of the inner asymptotic 
expansion. If we set 

x* = X/E, 

this means we have an approximation of the following sort: 

Y(K 8) = g,(x*) + o( 1) 

= 1-h +0(1) 
c ) 

(5) 

uniformly on any interval of the form 

x E I&, ?,(&)I (6) 
with 

V,(E) = o(l). (7) 

Notice that according to (3), the outer asymptotic expansion is expected 
to approximate y(x; E) away from x = E, whereas, according to (6), the inner 
asymptotic expansion is expected to approximate y(x; E) at and near x = E. 

With these brief preliminaries, we proceed in somewhat more detail to find 
the next term in the inner expansion. The first step for accomplishing this is 
to write (la)-( lc) in terms of the “inner” variable x* = X/E. This yields 

d2y 
-g+g&+EY$=o @aI 

y(l;E)=O, @b) 

y(co;E)= 1. (8~) 
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If we now formally substitute 

Y&-G El = + P(E) g,(x”) + OW)) (9) 

(P(E) to be determined, though of course P(E) = o(l)) into @a), we obtain, 
after dropping higher-order terms, 

P d*g, ~+/3-&-$=-~(1--&)(-$)‘. 

The natural choice for /3(s) is 

P(E) = E, (11) 

and the general solution of (10) which vanishes at x* = 1 is 

In x* 
g,(x*) = - x* - - In x* + B, go@*), (12) 

where B, is a constant, and B, g,,(x*) is the general complementary solution 
of (10) which vanishes at x* = 1: 

B,g,(x*)=B, 1-s . 
( ) 

We notice that gi(x*) becomes unbounded as x* + co, and in any case we 
expect (9) to be valid only at and near the boundary x = E. For this reason, 
B, must be determined by a matching condition involving (2). This requires 
an interval of the form [v~(E), v~(E)], with vO(s) = o(r2(s)) and V*(E) = o(l), 
on which both (2) and (12) approximate y(x; E) to O(E), and hence (2) and 
(12) approximate each other to O(E). By this we mean that 

(14) 

uniformly for x E [V,,(E), v~(E)]. The interval [qO(e), q2(s)] is called an 
overlap domain. The Kaplun-Lagerstrom theory provides heuristically 
motivated methods for determining overlap domains. For our present 
purposes, however, we shall simply assume the overlap domain exists and 
describe how it is used in the matching procedure. 

Remark on notation. In what follows it will be convenient to use the 
notation V(E)< (P(E) to mean v(s) = o((~(s)) as E -+ 0. 

Continuing, the next step is to introduce n(s) satisfying 

%(E) G V(E) 4 V*(E) Q 13 (15) 
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and define 

x = r/(&)X,. (16) 

Then, for all sufftciently small E, x E (qo(e), q2(s)) if x, is fixed and 
positive. With this notation, and (2) and (12), we can rewrite condition (14) 
after some trivial simplification as 

lim - Wd+, 
F-0 Web, 

+lne+Br--B,-&+(Y--1)+0(v) =O, (17) 
x,fixed 

11 

where we have used the result (see Lagerstrom and Casten [7]) 

I 
00 
x 

e-‘tzdf=i+lnx+(y- 1)+0(x). 

Using the fact that E < V(E), (17) further simplifies to 

lim 
e-0 

lne+B,+(y- 1) =O, (18) 
x,fixed 

and we see immediately that no choice of B, independent of E will work. 
However, (18) suggests we might achieve matching by setting 

B,=-Ins-((y- 1). (19) 

To verify this, we substitute (19) into (14) and this time find after some 
simplification that the matching condition is 

lim 
tz In E 

w)+2~- 
&lnx,v = 0. 

e-0 * xnr 
x,fixed 

(20) 

The expectation from the Kaplun-Lagerstrom theory is that the inner 
expansion thus far constructed, 

,(x;s)=(l-$)-aIns(l--&) 

[ 

In x* 
+& --- 

X* 
lnx*-(y-1) 1-G ( )I + O(E), (21) 

is valid for x E [E, I?~(&)], where the only restriction on q2(c) is V*(E) 6 1. 
On the other hand, (20) is satisfied if 

I.5 In E] < I](E). (22) 

409/77/z-19 
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Consequently an overlap domain is 

Ielnsl<rj(s)< 1. (23) 

The term --E In E( 1 - l/x*) which appears in (21) is the switchback ferm. 
Its order of magnitude, O(E In E), lies “between” the O(1) leading term and 
the O(E) term that were constructed originally, but its existence becomes 
apparent in the course of the construction of the O(E) term in the expansion. 

In the next section we shall put the results of the above formal analysis on 
a rigorous basis by proving statement (21). In so doing we of course shall be 
rigorously establishing the existence of the switchback term. This seems to be 
the first proof of such a result. 

II. ANALYSIS 

As mentioned above, we shall prove the following: 

PROPOSITION 1. 

y(x;c)=(l--$-)-.slne(l--$) 

( In x* 
+& --- 

X* 
lnx*-((y- 1) 1-h 

( 1) 
+ 4x) (24) 

uniformly for x E [E, V*(E)], where the only restriction on q*(e) is 

Vz(E) G 1. 

We begin by defining r(x; E) as follows: 

(25) 

y(x;c)=(l-slns+e---7) 1-i -$lnf-sln~+r(x;e). (26) 
( ) 

Substitution into (la), (lb), (lc) yields 
2 z!L+gg= 1-E ( x)($) - y[ $(l --lne+E-v) 

+E2&E2-E+!.? 
x2 E x2 x 1 dx ’ 

r(e; E) = 0, 

lim r(x;e)-slnx=e(y- 1). 
x+cc 

(274 

Wb) 
(27~) 
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An outline of our procedure is as follows. The purpose of the analysis is to 
show r(x; E) is O(E) for x E [E, qr(s)]. To this end Proposition 2 establishes a 
rather weak estimate for y(x; E). Specifically, y(x; E) is shown to be within 
O(E In E) of (1 - E/X). This estimate is sufficiently sharp to enable its use in 
the differential equation for r(x; E) to show that positive and negative values 
of r(x; E) are at most O(E); this is the content of Propositions 3 and 4, respec- 
tively. Proposition 1 then follows immediately. The proofs involve tedious 
but straightforward calculations. 

We now proceed with the details. 

Preliminary remark. It follows from (la)-(lc) that dy/dx > 0 and hence 
y(x; E) > 0 for all x > E. 

PROPOSITION 2. 

1 -i< y(x;e) < 1 -i-slne+O(c), (28) 

where the O(E) estimate is uniform for x E [E, co). 

Proof. We define i(x; E) by the equation 

y(x; E) = 
( ) 

1 - t + i(x; E), (29) 

and find from (la) that J satisfies 

d’i 2 di 
z+;-&=-Y (304 

J(&; E) = 0, (3Ob) 

J(c.Q;&)=O. (3Oc) 

We first show that J(x; E) < 0 is impossible. For, if so, it must have a 
minimum and there df/dx = 0 and, from (30a), there also is d*J/dx* 
negative, a contradiction. Therefore 

Y(x;E)= 1-E +i(x;&)> 1-z 
( i ( 1 

and the first part of (28) is proved. 
To prove the second inequality in (28) we begin by noting from (30a) that 

?(x; E) cannot vanish identically. We showed above i(x; E) cannot be 
negative. Hence P(x; E) must have a positive maximum fM at a point xM. 
From the fact that y(x; E) < 1 and the definition of i(x; E) we conclude that 



618 A. D. MAC GILLIVRAY 

r;M < E/x~. Thus, if fM > 4&, say, then x, < l/4. (If r;M < 4.5, there is nothing 
to prove.) 

From (30a) we see that if df/dx = 0, d*f/dx* = - y(s/x*) < 0, from which 
we conclude that 

$<O forall x>x,. (32) 

Therefore, for all x > x,, we have 

Multiplying the inequality (33) by x2 we obtain 

d 
-& 

which we integrate from x,,, to x > x,. This gives 

Again we integrate from xw to x > x,, and find 

F(x)>fM-c ln&+x:- 1 
( 1 

. 

In particular, set x = l/2. Then, since J(1/2) < 2s, (36) gives 

2E>fM-& ln&+2x,-1 
( M 1 

or 

JM<2E+E 
( 

In&-+2x,-l . 
M ) 

(33) 

(34) 

(35) 

The expression in parentheses increases as x,,, decreases, attaining its 
maximum possible value when x, = E. With this extreme value, (38) gives 

fM < ~(1 - In 2) - E In E + 2s*. (39) 
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Hence 

y(x;e)= 1 -i + ?(x;E) < 1 -i --E Ins + O(E) 
( ) ( ) 

(40) 

for x E [E, l/2]. Since i< E/X in any case, we see that inequality (40) is 
valid for all x > E. This completes the proof of Proposition 2. 

We now return to an estimation of r(x; E) as defined in (26). 

PROPOSITION 3. Let q2(c) be such that E < q*(c) < 1 as E -+ 0. Then 
positive values of r(x; E) on [E, q2(c)] are bounded above by O(E). 

Proof. Using the second inequality in (28) in (27a) yields 

$+z$.> l-E L- 
( xl x2 ( 

l-t--elns+O(e) 
1 

X 
[ 

$ (1 + O(E In E)) - : + 2 1 
uniformly on [E, l/2]. With trivial computation (41) simplifies to 

Multiplying through by the integrating factor x2eo(‘)X gives 

$ (x2eo(1)xG!l) > O(e2 In E) + EX( 1 + o(l)), 

(41) 

(42) 

uniformly on [&,X(E)] where 

X(E) = max{rl,(e), s”4}. (44) 

Now assume r(x; E) attains a positive maximum on [E, q2(e)] at the point 
x0. Clearly x,, > 0, since r(e; E) = 0, and dr/dxI,,, > 0, where the equal sign 
holds if x0 < qZ(c). 

Integration of (43) from x0 to x, x0 < x <X(E), yields, after some 
rearranging, 

~>O(e21ne)(~--!-) +:(I +0(l))-g(l+o(l)) (45) 

uniformly for x E [E, X(E)]. 
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We notice that when evaluated at x =X(E), (45) gives 

dr 
z 2 O(E)- (46) 

x(r) 

Integrating (45), from x,, to X(E), we find 

4x(E); e) > 4x,; e) + o(E). (47) 

What we can conclude from (47) is that if positive values of r(x; E) on 
[E, q2(s)] are not bounded above by O(E), then the same is true of r(X(.s); E). 
Our strategy is to show rk(tz); E) is in fact bounded above by O(E), and the 
conclusion will then follow. To do this we use the obvious estimate 

y(x; E) < 1, x > E. (48) 

We then get from (27a) 

2 

g+;g> 1-E A- $(I-ElInEfE-ey) 
( J x2 [ 

+Il,X-L”+dT 
x2 & x2 x dx I 

(49) 

which simplifies to 

d2r 
z+ ;+1 g>-E2 

( ) 

2~~ In E ’ ’ 
;;j;+ x2 

-+$$-$lnx+i. (50) 

Multiplying by the integrating factor x2ex and integrating from X(E) to 
x > X(E) yields 

x2ex g > x28 g + (2~~ In E + e’y)e” - (2E2 In s + s2y)eX 

+~xex-~~xe~-~ex+ee~-e2~~es(~+lns) ds. (51) 

Dividing by x2ex and once again integrating from X(E) to x yields 

r(x ; c) - Q(c) E) > x28 d’ ; 
[ I h, 

- (2.~~ In E + s2y)& - sxeX + iseX 1 
i 

x e-r 
X x~d~+(2szlnc+s2~-.s) 

+sln~-e2~~$j~eS(f+lns) ds. (52) 
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We now write (26) out, using estimate (52). In this combined expression 
the E In x terms cancel each other, and we can let x-+ oz. Using the 
boundary condition (lc) and rearranging terms, these steps lead to 

rfy(&); E) < - E + ey - 
[ I 
x2@ g - (2~~ In E + s2y)eX - sXeX + sex 

X 1 Jy $ & 

+sz/(:$j:eS($+lns) dsdr. (53) 

Using the estimate in the formula following (17), we obtain from (53) 

and since X(E) > E’/~, 

r-fix(e); E) < O(E) + c2 [$~~eS(~+hrs) ds. (55) 

Our final task is to show the integral in (55) is 0(1/x2). For x < tg l/x, 
the integration with respect to s is estimated by 

For l/x Q r < co, we have 

Using estimates (56) and (57), it is easy to arrive at 

(56) 

(57) 

(58) 
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Again reminding ourselves that X(E) > E”~, we find from (55) and (58) 
that 

TOI( E) < O(E). (59) 

Combining this with (47), we have 

r(xo; E) < O(E) (60) 

which completes the proof. 

PROPOSITION 4. Let V*(E) be such that E < V*(E) < 1. Then negative 
values of r(x; E) are bounded below on [E, q2(e)] by O(E). 

Proof: From the first inequality in (28), and (27a), we obtain 

2 

~+~~~(1-~)~-(1--~)[$-(1--clns+.s-s~) 

+EZ~nX2-~++ 
x2 E x2 x dx 1 

which, upon rearranging, yields 

$+(?+I) $<(2s21ns-s2+s2Y).$-s2~+E3~ 

- (2~~ In E + c’y) -$- + E h. (62) 

(61) 

If T(X; E) has negative values on (E, q2(.s)], let its minimum value occur at 
x,,. Then 

dr - 
dx xa 

< 0. (63) 

Multiplying (62) by the integrating factor eXx2-‘, and integrating from x0 
to l> x0, yields 

dr < exox2-E - . 
I ’ dx., 

+ (2~~ In E - s2 + s*y) 
5 

I 
e’t-‘dt 

x0 

I 
-E’ e’t-‘-‘lntdt+e3 

1 i 

I 
e’t-‘-‘lntdt 

.x-o x0 

- (2~~ In & + c’y)j’ e’t-‘-E dt + ~1’ et?’ dt. (64) 
x0 x0 
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Dropping the nonpositive first term on the right side, then multiplying 
through by e-‘<-‘+’ and integrating from x,, to x > x0 yields the inequality 

r(x) < r(xo) + (2s’ In a - s2 + s’y) 
I 

x eCE<-‘+‘J’ tr’e’dt dc 
x0 x0 

- E2 
I 

x 
e-“(-2t’ l 

1 
tPe’lntdtdt; 

X” x0 

+ E3 

I 

x e-“<-2tE 

I 
’ et (lnt)(t-‘-‘) dt d< 

x0 xl3 

- (2~~ In s + s3y) ix e-“<-‘+‘j’ e’t-I-’ dt d< 
x0 XII 
5 

+ E 
I 

’ e-“c-“’ e’t’-’ dt dt (65) 
xcl I XII 

I 

x 
=r(x,,)+I(x;~;x,,)+e e-“f2+’ 

x0 I 

I 
e’t’-‘dtdl. (66) 

x0 

It is not difficult to show 

lim 1(x; e; x0) = O(E). (67) x-cc 

It is also not difficult to estimate the last term in (77); we show the 
details. The first step involves an integration by parts: 

I 

x 
E e-5r-2tt ’ e’t’-t dtd< 

x0 I aI 

=& e-I{-2+c t’-‘etl& - (1 -a) ’ e’t-‘dt 
c 

dr 
x0 11 (68) 

<clnx-clnx,-cxOexO 
s 

’ 
x0 

e-‘t-’ dr - ~(1 - E) 11, e- “r-‘(e” - c’“)d< 

=alnx-slnx,-sxOeXo 
(69) 

1)+o(l)-jWe~t~~2d~/ 
x 

+ ~(1 - s)eXO 

X -&+lnx,+(y- l)+o(l)--j~e-‘5’d~/ 
I x 

(70) 

where once again we have used the formula following (17). 
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Remembering that x,, = o(l), we expand the exponentials and simplify to 
find 

I 

x 

i 

I 
& 

&r-2+c ettI-t dt d< < E lnx + {ax, - ~(1 - s)exo} ia: e-“<-2d( 
x0 x0 -x 

+;-;+e(y--l)+O(E). (71) 

Using this estimate and the estimate (67) in (26), cancelling the E In x 
terms that appear, letting x+ co, and using the boundary condition (lc), we 
obtain 

lim y(x; E) = 1 < (1 + E - ys) + T(x~) + Z(co; E; x0) + ~(7 - 1) + O(E), (72) .%--‘a, 

which simplifies to 

r(xJ > O(E), (73) 

and our proof is complete. 

Proof of Proposition 1. Combining Propositions 3 and 4 yields T(X; E) = 
O(E) on [E, v2(s)]. From the definition of T(X; E) given in (26), the conclusion 
of Proposition 1 follows immediately. 

III. CONCLUSION 

The correctness of a switchback term in a widely used, nontrivial model 
equation of Lagerstrom is established rigorously. Furthermore, the results 
prove the correctness of the domain of validity predicted by the 
Kaplun-Lagerstrom theory. 
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