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Abstract 

This paper is concerned with shape-preserving interpolation of discrete data by polynomial splines. We show that 
positivity can be always preserved by quartic’C’-splines and monotonicity by quintic C2-splines. This is proved for 
one-dimensional interpolation as well as for two-dimensional interpolation on rectangular grids. 
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1. Introduction 

Let a data set D, = {(xi, zi): i = O(l)n} be given on the one-dimensional grid 

A, : x0 <Xl < ... < X”. 

This set is called to be in positive position if 

Zi 2 0, i = O(l)n, (1.1) 

and in monotone position if 

Zi-1 < Zi, i = l(l)n. (1.2) 

Analogously, a data set D,,, = {(Xi,yj, Zi,j): i = O(l)n,j = O(l)m} on the two-dimensional grid 

A II,*: x0 -c x1 < *.- < xn, YO<Yl< ... <y, 
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is said to be in positive position if 

Zi, j > 03 i = O(l)n, j = O(l)m, (1.3) 

and in monotone position if 

Zi-l,j < Zi,j, i = l(l)n, j = O(l)m, 
(1.4) 

Zi,j-1 <Zi,j, i=O(l)n, j= l(l)m. 

In this paper we are interested mainly in the following existence problem. Are there polynomial 
splines s defined on d, or on A,,,, which interpolate the data set D,, or D,,, and which, in addition, 
preserve the shape of D, or D,,,. In one dimension, the first positive result concerning this topic is 
given in [4]. There it is shown that monotone interpolation is always possible with cubic 
Cl-splines. The same holds true for positive interpolation due to [13]; cf [3]. In contrast to this, 
convex interpolation may fail. In an earlier paper [7] a strict convex data set D,, n 2 4, is 
constructed such that all cubic Cl-interpolants are not convex on [x0,x,]. With quadratic 
Cl-splines also positive and monotone interpolation is in general not realizable; see [ll, 121. 

Now, in the present paper we are concerned with shape-preserving C2-interpolation. It is shown 
that positive interpolation is always successful with quartic C2-splines. Because positive interpola- 
tion may fail when applying cubic C2-splines this result cannot be improved. Analogously, quintic 
C2-splines are that of lowest degree for which monotone interpolation is always possible. This last 
result, however without optimality, can also be found in [3]. In addition, we are in a position to 
extend these properties to the two-dimensional C2-interpolation on rectangular grids. 

For convex interpolation we mention the highly negative result from [6]. For all spaces of 
polynomial Cl- (or C2-) splines of fixed degree there exist convex data sets D,, n 2 4, such that all 
spline interpolants fail to be convex on [x0,x,]. Moreover, in [6] this result is shown to be valid 
even for convex interpolation on finite-dimensional linear subspaces of Cl-functions. 

The splines used for proving the existence theorems from above are in general not the best ones 
from geometrical point of view. We get visually more pleasing interpolants, e.g., by minimizing the 
mean curvature subject to the shape preservation constraints. In the one-dimensional case this 
optimization approach is elaborated in detail for the types of shape-preserving interpolation of 
interest here, while in the two-dimensional case several of the arising questions are open until now. 

For surveys on shape-preserving interpolation the interested reader is referred, e.g. to the papers 
[l, 5, S] and to the books [15, 161. 

2. Shape-preserving interpolation with quartic C2-splines in one dimension 

The problem here of interest is to consider C2-splines s on A, which satisfy the interpolation 
condition 

S(Xi) = Zi, i = O(l)& 

and which are nonnegative, monotone, or convex on I = [x0, x,]. 

(2.1) 
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2.1. C2-continuity of splines 

Here it is of advantage to define a spline s on A,, not necessarily a quartic, by 

S(x) = Ui(U)TSi, XEJ!i=[xi-l,Xi], O<U<l, (2.2) 

with the local variable u = (X - xi-,)/hi, hi = xi - xi_ l, and with vectors ai, Si, i = l(l)n. Obvi- 
ously, s is Co-continuous on I if and only if 

Ui(l)TSi = Ui+i(0)TSi+l, i = l(l)it - 1. (2.3) 

In the case (2.3) we have Cl-continuity on I if and only if 

k U:(l)TSi = j$ U! L+ l(“)TSi+I, i = l(l)rt - 1, 
I 1+1 

and in the cases (2.3) and (2.4) the spline s is C2-continuous on I if and only if 

f Ur(l)‘Si = h,l 2 a;‘+ 1 (O)‘Si i- 1 Y i= l(l)n- 1. 
I r+l 

2.2. Quurtic C2-splines 

Quartic splines are obtained if in (2.2) the vector ai is specified by 

Ui(U) = C(U ; hi) 

with 

u) 

and the vector Si by 

zi-l 

Zi 

Si = pi-1 ; II Pi 

pi-l 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

here pi and Pi are parameters having the geometrical meaning given by (2.10), (2.13). 



54 W. HeJ, J. W. Schmidt/Journal of Computational and Applied Mathematics 55 (1994) 51-67 

Because 

(2.9) 

the conditions (2.3) and (2.4) are always satisfied, and 

S(Xi) = Ziy S’(Xi) = pi, i = O(l)n. (2.10) 

Further, in view of (2.5) and 

0 12 

0 -12 

a:‘(O) = 0 , a:(l) = 6hi , 

II 11 (2.11) 

0 6hi 

h? hf 

a quartic spline s is C2-continuous if and only if 

12(zi- 1 - Zi) + 6hi(pi_l + pi) + hf(Pi- 1 - Pi) = 0, i = l(l)n - 1 a (2.12) 

In this case we have 

S”(Xi) = Pi, i = O(l)n, (2.13) 

where P, is defined by (2.12) for i = n. 

2.3. Positivity of quartic C2-splines 

We are not in a position to give a criterion which is necessary and sufficient for the positivity of 
quartic splines. But we can derive a condition sufficient only, but sharp enough for our purposes. 
We substitute u = p/(1 + p) implying u E [0, l] if and only if p > 0. Thus, we get 

(1 + p)4c(u; h) = e. + e,(h)p + e2(h)p2 + e3(h)p3 + e4p4 (2.14) 

with 

0 0 

4 1 

e,(h) = II Ij 0 , e4= 0 . (2.15) 

-h 0 

0 0 
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Hence, a sufficient condition for the positivity of s, i.e., for s(x) 2 0, x E 1, reads 

e,(hi)TSi 2 0, V = 0(1)4, i = l(l)n. (2.16) 

These inequalities are equivalent to 

Zi 2 0, i = O(l)n, 

421-l + hipi- B 0, 421 - hiPi 3 0) (2.17) 

12Zi-1 + 6hipi-r + h”Pi-i >, 0, i = l(l)n. 

Thus, an interpolating quartic spline (2.2), (2.6)-(2.8) is of C2-continuity and positive on I if the 
parameters pi, Pi, i = O(l)n, satisfy the system (2.12), (2.17) of linear equalities and inequalities. 

Now it can be shown that system (2.12),(2.17) is solvable if the data set is in positive position. 
This is done inductively. At the beginning, let p. and PO be such that 

420 + hip, 2 0, 122, + 6hlpo + h:Po 2 0. 

The proof is complete if, under the assumption 

12Zi-1 + 6hipi-1 + h:Pi_1 3 0, 

there exist numbers pi and Pi which satisfy 

4Zi + hi+ Ipi B 0, 4Zi - hipi 2 0, 

12Zi + 6hi+ Ipi + hf+ 1Pi > 0 3 

12Zi- 6hipi + h:Pi = 12Zi- 1 + 6hipi_ 1 + h?Pi_1. 

Obviously, such numbers are 

4Zi 
Pi = K 2 03 

1 
Pi = e (12Zi-1 + 

We summarize these considerations in 

6hipi-1 + hzPi_1) + 9 > 0. 
I 

the following proposition. 

Proposition 1. For data sets in positive position the problem of positive one-dimensional interpolation 
is always solvable with quartic C2-splines. 

This result does not hold for polynomial C2-splines of degree lower than four. In this sense 
Proposition 1 is sharp. Indeed, when using cubic C2-splines, for the data set D5 = 
{ (0, O), (1, O), (2, O), (3, l), (4, O), (%O)>, e.g., which is in positive position, all interpolants are not 
nonnegative on the interval [O, 5-J. Further, the set of data sets D, for which positive interpolation is 
successful is a closed set. Thus, the complementary set is open, and there exist data sets, in 
a neighbourhood of the above set D5, which are even in strict positive position z. > 0, . . . , z5 > 0 
such that the corresponding cubic C2-spline interpolants are not nonnegative everywhere on [0,5]. 



56 W. He& J. W. Schmidt/Journal of Computational and Applied Mathematics 55 (1994) 51-67 

2.4. Curvature minimization 

In general, there exist an infinite number of positive quartic C2-interpolants. For selecting one of 
them a choice function is of interest. As usual, here the mean curvature is taken leading to the 
following program: 

s 

x. 
minimize s”(x)~ dx 

x0 
” 

= 4 ( i=l & 
1 

pi-1 --pi +$(Pi-1 + Pi) 
> 

2 +$(3PF-l -2Pi-1Pi + 3PF) I (2.18) 

subject to (2.12),(2.17). 
This is a quadratic program of partially separable structure. It is uniquely solvable, and can be 

solved effectively, e.g., via dualization. The general dual procedure described in [2] or [lo] applies 
to program (2.18). The details are somewhat lengthy and will not be reproduced here. In the added 
test examples the splines, called there optsplines, are computed by means of this dual procedure. 

2.5. Convexi& of quartic splines 

Substituting again u = p/(1 + p) we find for x E Ii, 

(1 + p)2S”(X) = Pi- 1 + 
( 

E (pi - pi-l) - 2(Pi + Pi- 1) 
> 

p + Pip2 (2.19) 

if the C2-condition (2.12) is taken into account. We remember a result from paper [13], namely that 

a + pp + yp2 > 0 for all p > 0 (2.20) 

if and only if 

a 2 0, y>O, p> -2&. (2.21) 

In this way we get the following proposition. 

Proposition 2. A quartic C2-spline (2.2), (2.6)-(2.8) is conuex on I if and only if 

Pi > 0, i = O(l)n, Pi-1 -J-t Pi <i(“i-pi-i), i = l(l)n. 
I 

(2.22) 

For n > 4 there exist data sets D, being in strict convex position, i.e., 

Zi - Zi- 1 Zi+l -Zi 

hi < hi+1 ’ 

i = l(l)n - 1, 

such that system (2.12),(2.22) is not solvable. In other words, for n > 4 the convex interpolation 
with quartic C2-splines is not always successful. This holds true even for polynomial C2-splines of 
arbitrary but fixed degree. For a proof we consider the data set D4 = { (0, 0), (l,O), (2,0), (3, l), (4,2)}, 
e.g., which is in convex position. It is seen straightforwardly that all polynomial C2-spline 
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interpolants to D4 are not convex on the interval [0,4]. Furthermore, the set of data sets D, not 
suitable for convex interpolation is open. Thus, there exist strictly convex data sets D,, n >, 4, 
which do not allow convex interpolation with polynomial C2-splines of fixed degree. 

2.6. Monotonicity of quartic splines 

Because of 

(l + p)3s’(X) = pi- 1 + (3pi- 1 + hiPi- 1)p + (3pi - hiPi)p’ + pip33 X E Ii, (2.23) 

we get the following result by means of the criterion from [13] on the positivity of cubic 
polynomials. A quartic C2-spline (2.2),(2.6)-(2.8) is monotone increasing on I if and only if 

Pi 2 02 i = O(l)n, (2.24) 

and 

3Pi-l +hiPi-1 20, 3pi-_h,Pi~O, i = l(l)n, (2.25) 

or 

P~-~+P~-,P~+P:-~(P~-P~_,)(P~-,+P~)+~(P~-P~_~)’ 
I I > 

+ 3(PiPi- 1 - pi- lPi)(2hiPi- 1Pi - 3piPi- 1 + 3pi- IPi) + 4hi(piP:- 1 - pi- ,P:) 

- h,2P?_,P? 3 0, i = l(l)n. (2.26) 

It can be shown that for data D,, n > 3, even in strict monotone position Zi- I < Zi, i = l(l)n, 
system (2.12),(2.24)-(2.26) is not always solvable, i.e., monotone interpolation with quartic C2- 
splines is not always successful. Indeed, let D3 = { (0,0),(1,0),(2,1),(3.1)} be a data set which is in 
monotone position. It follows immediately that the corresponding interpolating quartic C2-splines 
are not monotone on [0,3], and in the same way as before we assure the existence of strictly 
monotone data sets being in a neighbourhood of the above set D3 for which monotone interpola- 
tion with quartic C2-splines fails. 

3. Positive interpolation with quartic C2-splines in two dimensions 

The results from section 2 concerning the positivity now are extended from one-dimensional to 
two-dimensional interpolation. We are interested in C2-splines s on the rectangular grid d,,, which 
interpolate the given data set D,,,, i.e., 

S(Xi,Yj) = Zi,j, i = O(l)& j = O(l)m, 

and which are nonnegative on J = [x0, x,] x [yO, yJ. 

(3.1) 
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3. I. C2-continuity of bisplines 

On the subrectangle Ji,j = [xi_ 1, xi] x [yj- 1, yj], we define the spline s not necessary a biquartic 
one by 

S(X, y) = Ui(U)TSi, jbj(U), 0 6 U, 2, < 1) (3.2) 

with the local variables u = (X - xi- ,)/hiy hi = xi - xi- 1, v = (y - yj- ,)/kj, kj = yj - yj- 1 and 
with vectors ai, bj and matrices Si,j, i = l(l)n, j = l(l)m. The component functions of the vector ai, 
respectively, bj may be linearly independent. 

The spline s is Co-continuous on J if and only if 

Ui(l)=Si,j = Ui+l(0)TSi+l,j, i = l(l)n - 1, j = l(l)Wi, 

Si,jbj(l) = Si,j+ rbj+ i(O), i = l(l)n, j = l(l)m - 1. 

Further, if (3.3) holds we obtain Cl-continuity on J if and only if 

(3.3) 

i Ui(l)=Si, j = $ 4+l(0)TSi+l,j, i = l(l)n - 1, j = l(l)m, 
I r+l 

(3.4) 

i Si,jbJ(l) = & Si,j+ lb;+ r(O), i = l(l)n, j = l(l)m - 1. 
J J+l 

In addition, the equalities (3.4) imply the continuity of the mixed derivative dla2s on J. Finally, if 
(3.3) and (3.4) are assumed, the C2-continuity of s on J is equivalent to 

$ Uf’(l)TSi, j = h,l ~“f’+l(o)TSi+l,j~ i = l(l)n - 1, j = l(l)m, 
I r+1 

(3.5) 

$ S&‘(l) = & &+ &‘+ 10, i = l(l)n, j = l(l)m - 1, 
j Jfl 

and from (3.5) follows the continuity of the mixed derivatives 8:&s, drais and ata& on J; see 
c9,141. 

3.2. Biquurtic C2-splines 

In (3.2) we now define the vectors ai and bj by 

Ui(u) = C(U; hi), b,(u) = C(V; kj) 3 

where c is given by (2.7). The matrix Si,j is set as 

zi-1.j qi-l.j-1 qi-l,j Qi-l,j-1 

zi,j 4i, j- 1 4i.j Qi,j- I 

Pi-1,j ri-l,j-l ri-l,j I/i-l,j-1 ; 

Pi,j ri, j- i yi, j K,j-1 

Pi-1,j ui-l,j-1 ui-1,j wi-l,j-1 I 

(3.6) 

(3.7) 
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here pi,j, qi,j, ri,j, Pi,j, Qi,j, Ui,j, T/i,j and Wi,j are parameters representing derivatives; see (3.8) and 
(3.15). 

In view of (2.9) we find the conditions (3.3) and (3.4) always satisfied, and 

Stxi, Yj) = zi,j, alS(Xi, Yj) = pi, j, a2Stxi, Yj) = 4i.j 9 

di8ZS(xi, Yj) = ri, j, i = O(l)n, j = O(l)m. 
(3.8) 

Using (2.11), for biquartic splines the C2-condition (3.5) is seen to be equivalent to 

12(Zi- i,j - Zi,j) + 6hi(pi- i,j + pi,j) + h?(Z’- i,j - Pi,j) = 0, i = l(l)n - 1, j = O(l)m, (3.9) 

12(Zi,j- 1 - Zi,j) + 6kj(qi,j- 1 + qi,j) + kT(Qi,j- 1 - Qi,j) = 0, i = O(l)n, j = l(l)m - 1, (3.10) 

12(qi- i,j - qi,j) + 6hi(ri- i,j + ri,j) + hF(Ui- i,j - Ui,j) = 0, i = l(l)n - 1, j = O(l)m, (3.11) 

12(pi,j_ 1 - pi,j) + 6kj(ri,j-l + ri,j) + kf(T/,,j- 1 - K,j) = 0, i = O(l)n, j = l(l)m - 1) (3.12) 

12(Qi_l,j- Qi,j) +6hi(&-i,j + Vi,j) +h?(W’-i,j- Wi,j) ~0, i = l(l)n -1, j=O(l)m-1, 

(3.13) 

12(Pi,j_ 1 - Pi,j) + 6kj(U,,j- 1 + Ui,j) + kf(Wi,j- 1 - Wi,j) = 0, i = O(l)n - 1, j = l(l)m - 1. 

(3.14) 

Moreover, if (3.9))(3.14) are satisfied, also the mixed derivatives 8:a2s, 8,&s and @ass are 
continuous on J, and 

dfS(Xi, _Vj) = pi, j, d$s(Xi, yj) = Qi,j, a:a2S(Xi, Yj) = ui,j 3 

(3.15) 
~l~~S(xi, yj) = vi, j, CY:dzS(Xi, Yj) = Wi, j, i = O(l)& j = o(l)m i 

here the quantities P,+j are defined by (3.9) for i = n, and so on. 
The two systems (3.13) and (3.14) for determining the Wi,j turn out to be not in contradiction. 

Indeed, assume IV- l,j- 1 to bz given. At first compute Wi,j = @‘i,j via IV_ l,j by (3.14) and (3.13) in 
this order. Secondly, Wi,j = Wi,j is determined via Wi,j- 1 by (3.13) and (3.14) in the opposite or$er. 
Then, using (3.9)-(3.12) it follows after some computations but straightforwardly that I@i,j = Wi,j. 
This property is immediately extended to a consistence proof for system (3.9)-(3.14). 

3.3. Positivity of biquartic C2-splines 

Here we derive a condition for the positivity of the biquartic spline (3.2),(3.6),(3,7), i.e., for 
s(x, y) 2 0, (x, y) E J. Using (2.14) and the abbreviations (2.15) we obtain that 

eV(hi)TSi,jeP(kj) 2 0, V,/J = 0(1)4, i = l(l)n, j = l(l)??& (3.16) 
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is sufficient for the positivity of s on J. Though somewhat lengthy, the conditions (3.16) now are 
given explicitly in order to make the proof of the succeeding existence property readable: 

Zi,j > 0, i = O(l)n, j = O(l)WI, 

4zi,j + hi+lpi,j 2 0, i = O(l)n - 1, j = O(l)m, 

4zi,j + kj+lqi,j 2 O, i = O(l)n, j = O(l)m - 1, 

4zi, j - hipi,j 2 0, i = l(l)n, j = O(l)m, 

4ai.j - kjqi, j 2 0, i = O(l)rt, j = l(l)m, 

16zi.j + 4hi+ rpi,j + 4kj+ ,qi,j + hi+lkj+ 1ri.j 2 0, i = O(l)n - 1, j = O(l)m - 1 

16zi.j + 4hi+Ipi,j - 4kjqi.j - hi+lkjri,j 2 0, i = O(l)n - 1, j = l(l)m, 

16zi.j - 4hipi.j + 4kj+,qi,j - hikj.1ri.j > 0, i = l(l)n, j = O(l)m - 1, 

16zi,j - 4hipi.j - 4kjqi.j + hikjri,j 2 0, i = l(l)n, j = l(l)m, 

12zi,j + 6hi+ 1pi.j + hF+ ,Pi,j 2 0, i = O(l)n - 1, j = O(l)m, 

12Zi.j + 6kj+ ,qi,j + kf+ 1Qi.j 2 0, i = O(l)n, j = O(l)m - 1, 

4(12z,,j + 6hi+Ipi,j + G+,Pi,j) + kj+1(12qi,j + 6h+lri,j + hf+lui,j) > 0, 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

i = O(l)n - 1, j = O(l)m - 1, (3.28) 

4(12zi,j + 6hi+ 1pi.j + hF+ rPi,j) - kj(l2qi.j + 6hi+ 1ri.j + I$+ 1 Ui,j) >, 0, 

i = O(l)n - 1, j = l(l)m, (3.29) 

4(12zi,j + 6kj+ lqi,j + kf+ 1Qi.j) + hi+ l(12Pi.j + 6kj+lri,j + kf+ 1vi.j) 2 0, 

i = O(l)n - 1, j = O(l)m - 1, (3.30) 

4(12zi,j + 6kj+ lqi,j + kf+ lQi,j) - hi(12pi.j + 6kj+ 1ri.j + kf+ lvi,j) 2 0, 

i = l(l)n, j = O(l)m - 1, (3.31) 

12(12zi,j + 6hi.lpi.j + h:+rPi,j) + 6kj+r(l2qi,j + 6hi+rri,j + h?+lui,j) 

+ kf+r(12Qi,j + 6hi+lv,j + hiZ,lW’i,j) 2 0, i =O(l)n - 1, j =O(l)m- 1. (3.32) 

Hence, the biquartic spline (3.2), (3.6), (3.7) is C2-continuous and positive on J if the parameters 
Pi,j, qi,j, ri,j, pi,j, Qi,j, ui,j, K , j and Wi,j, i = O(l)n, j = O(l)m, satisfy the linear system (3.9)-(3.14), 
(3.18)-(3.32). 
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Now, we are in the position to construct inductively a solution of this system if zi,j > 0, i = O(l)n, 
j = O(l)m. To this end we set 

4 
pi,j=LZi,j) i= l(l)n, j=O(l)m, 

I 

PO, j = 0, j = O(l)m, 

qi,j=iZi,j, i =O(l)n, j= l(l)Wt, 
J 

qi,o = 0, i = O(l)n, 
(3.33) 

i = l(l)n, j = l(l)m, 

Yi,j=O, i=O,j=O(l)rn, orj=O,i=O(l)n. 

In this case the inequalities (3.18)-(3.25) are immediately seen to be satisfied. Further let 

PO,j = UO,j = 0, j = O(l)m, 

Qi,o = vi,0 = 0, i = O(l)n, (3.34) 

IV,,, = 0. 

Because of (3.13), (3.14) this implies Wo,j = Wi,o = 0, i = l(l)n, j = l(l)m. 
Now, for i = 0, j = 0 the inequalities (3.26)-(3.28) (3.30), (3.32) are obviously valid. Next, if we 

assume 

Pi- l,j 2 0, wi-l,j 2 02 

Qi,j-1 > 0, wi,j-1 2 03 (3.35) 

4 
ui-l,j = GE-1.j. I/i,j- 1 = i Qi,j- 1 

1 

for arbitrary but fixed i B 1 andj > 1, by means of (3.9)-(3.14) and (3.33) we find straightforwardly 
that 

Pi,j > 0, Qi,j 2 0, ui,j 2 O9 K,j 2 O, K+j 2 O, 

(3.36) 

ui,j = i,Pi,j, 

J 

6.j = i Qi,j 

I 

hold true, and that the inequalities (3.26)-(3.32) are satisfied. This property, which analogously 
holds for i = 0, j 2 1 and j = 0, i 3 1 is sufficient for determining recursively a solution of system 
(3.9)-(3.14), (3.18)-(3.32). Hence, we have obtained the following proposition. 

Proposition 3. For data sets in positive position the problem of positive two-dimensional interpolation 
is always solvable with biquartic C2-splines. 
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4. Monotone interpolation with quintic C2-splines 

In Section 3 we have seen that positive interpolation is always successful with quartic C2-splines. 
On the other hand, convex interpolation fails in general when using polynomial C2-splines. Thus, 
we are now interested in monotone interpolation only. 

4.1. Monotonicity of quintic C2-splines in one dimension 

The spline (2.2) becomes a quintic one if the vector ai is defined by 

Ui(U) = d(U; hi) (4.1) 

with 

d(u;h) = 

1 - u- 

u 

0 

0 

0 

0 _ 

and the vector Si by 

1 
zi-l 

I 

SiZ py 
I 1 

Pi 

pi-l 

pi 

Now we get 

f&(O) = 

+ u(l - u) 

0 
3 LZi(l) = 

0 
7 af(0) = 3 ai” = a:‘(l) = (4.4) 

0 

1 + u - 9u2 + 6u3 - 

-1 -u+9u2-66u3 

h(1 - u)~(~u + 1) 

hu2(3u - 4) 

+h2u(l - u)~ 

+h2u2(1 - u) _ 

_ 
0 

1 

0 _ . 

Thus, in view of (2.3)-(2.5) these quintic splines are C2-continuous for all values of the parameters 
pi, Pi, i = O(l)n, and those have again the meaning (2.10), (2.13). 

In order to derive monotonicity conditions, we substitute u = p/(1 + p), and get with (4.2) 

-I 

(4.2) 

(4.3) 

(1 + p)4d’(u ‘4 = d,(h) + 4 (h)p + Mb2 + &(h)p3 + &(h)p4 (4.5) 
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with 

d,(h) = 2 d,(h) = 

'O- 

0 

4h 

0 

h2 

-0. 

> d,(h) = 

-3o- 

30 

- 12h 

-12h 
3 2 

-7 h 

s2 _ 

3 &(h) = 

0 - 

0 

0 

4h 

0 

-h2. 

Hence the conditions 

d,(hi)TSi B 0, v = 0(1)4, i = l(l)n, (4.7) 

which obviously imply s to be monotone on I, are equivalent to 

Pi 2 03 i = O(l)n, 4p,- 1 + hiI’- 1 > 0, 4pi - hiPi > 0, 

6O(zi- zi-,)-24hi(pi +pi-1) + 3hf(Pi - Pi-l) > 0, i = l(l)n. 

9 d,(h) = (4.6) 

(4.8) 

Consequently, an interpolating quintic spline (2.2), (4.1)-(4.3) is C2-continuous and monotone on 
I if the parameters pi,Pi, i = O(l)n, satisfy system (4.8) of linear inequalities. 

Now, if the data set D, is in monotone position, we get immediately a solution of (4.8) by setting 
pi = Pi = 0, i = O(l)n. Th us, we have the following proposition. 

Proposition 4. For data sets in monotone position the problem of monotone one-dimensional inter- 
polation is always solvable with quintic C2-splines. 

4.2. Monotonicity of quintic C2-splines in two dimensions 

We get biquintic splines in (3.2) if the vectors ai and bj are set 

at(u) = d(u; hi), bj(v) = d(v ; kj) 7 (4.9) 

where d is given by (4.2). The matrix Si,j is now defined by 

Si,j = 

‘Zi _ l,j-1 zi-l,j 4i- l,j- 1 qi-l,j Qi-l,j-1 Qi-1.j’ 

zi, j- 1 zi,j 4i, j- 1 4i.j Qi,j- 1 Qi,j 

Pi-l,j-1 Pi-1,j ri-i,j-1 ri- l,j I/i-l,j-1 vi-1,j 

Pi, j- 1 Pi, j ri, j- i ri. j vi,j-1 6.j 

pi- l.j- 1 pi-1,j ui-l,j-1 ui-1,j W-l.j-1 wi-l,j 

pi,j-l pi,j ui.j- 1 ui,j K.j- 1 wi.j 

(4.10) 

Because of (4.4), the smoothness conditions (3.3)-(3.5) are always satisfied. Thus, the biquintic 
splines (3.2), (4.2), (4.9), (4.10) are C2-continuous for all values of the parameters pi,j, 

qi,j,ri,j,pi,j, Qi,j, ui,j, vi j , and Wi,j, i = O(l)n,j = O(l)m, and these represent the derivatives (3.8) 
and (3.15). 
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For the monotonicity of biquintic splines we need in addition to (4.5), (4.6) that 

(1 + p)5d(u;h) = e. + el(h)p + ez(h)p2 + e3(h)p3 + e,(h)p4 + e5p5 

with 

1 

0 

0 
e, = I 0 ’ 

0 

0 

44 = 

cl(h) = 

5- 

0 

h 

0 

0 - 

10 

0 

-4h 

0 

$h2 

3 e&4 = 

7 e2V4 = 

10 

0 

4h 

0 
+h: 

0 I 
0 

1 

0 
es = I 0 * 

0 

0 

Then, a sufficient condition for the monotonicity of biquintic splines reads 

d,(hi)Tsi,je,(kj) > 0, 

e,(hi)TSi,jdy(kj) > 0, v = 0(1)4, p = 0(1)5, i = l(l)n,j = l(l)m. 

(4.11) 

(4.12) 

(4.13) 

We hesitate to give (4.13) explicitly. But for pi,j = 4i.j = ri,j = Pi,j = Qi,j = Ui,j = I’i,j = Wi,j = 0, 
i = O(l)n, j = O(l)m, we find immediately that (4.13) reduces to 

Zi-l,j < Zi,j, i = l(l)n, j = O(l)m, 

Zi,j-1 < Zi,j, i = O(l)& j = l(l)m. 

This means that system (4.13) is always solvable if the data set D,,, is in monotone position. Thus, 
we have proved the following. 

Proposition 5. For data sets in monotone position the problem of monotone two-dimensional interpo- 
lation is always solvable with biquintic C2-splines. 

5. Concludiilg remarks 

In this paper we have shown that in one as well as in two dimensions the problem of positive 
interpolation is always solvable with quartic C2-splines, and so is that of monotone interpolation 
with quintic C2-splines. For proving these existence properties the first and second derivatives in 
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the nodes are constructed as simple as possible in order to meet the sufficient positivity and 
monotonicity constraints. We point out that these choices in general are not the most suitable ones 
for obtaining visually pleasing interpolants. In our experience, to this end special optimization 
algorithms which minimize the &-norm of the curvature subject to shape preservation constraints 
are more favourable; compare with Section 2.4. In the case of positive interpolation in one 
dimension, this is confirmed by the l-3. Here, the positive splines named feasspline are 
computed via (2.2), (2.6)-(2.8) by means of the values used in Section 2.3 for the feasibility proof, i.e., 
with po = PO = 0 and pi, Pi for i > 1 from 

Pi = 4zi/‘hiy f’i = (12zi- 1 + 12zi + 6hipi_ 1 + hFPi_ 1)/h;, 

0 1 2 3 4 6 6 7 

- fenospllno optsplino 

Fig. 1. Positive interpolation with quartic C2-splines. 

Fig. 2. Positive interpolation with quartic Cz-splines. 
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6 6 

- fcdmsplino OptWliM4 

Fig. 3. Positive interpolation with quartic Cz-splines. 

The positive interpolants optspline are optimal in the sense of program (2.18), which was solved 
numerically by dualization. Obviously, the positive splines called optspline are much more 
pleasant than the pictured feasible splines feasspline. 

In the two-dimensional case, most of the questions arising in the optimization approach are still 
open until now. For instance, it is to find out which functionals are suitable as choice function. 

In convex interpolation with polynomial splines or, more general, with Cl-functions from 
finite-dimensional linear spaces we have the negative result from [6]. But, when using nonlinear 
splines, convex interpolation in one dimension may be always successful. This is proven for some 
types of exponential, rational, and lacunary splines; see, e.g., [S, 9, 151. In two dimensions there is 
only moderate progress in interpolation under convexity constraints. However, in S-convex 
interpolation positive results are received in [9, 141. 

Finally we mention that the extension of the present results to the three-dimensional case being 
also of some practical interest seems to be possible. 

6. Note added in proof 

In the present paper, polynomial splines of lowest degrees are determined such that positivity and 
monotonicity are always preserved. To this end we have assumed that the spline grids A,, are built 
by the data sites. It should be mentioned that the received degrees can be reduced when splines on 
grids finer than A,, are admitted. In [22] it is shown that quadratic Cl-splines on grids with one 
additional knot in each subinterval allow monotonicity preservation. The same property for 
the positivity was recently observed in [18]. These results on the Cl-interpolation with quadratic 
splines are extended to the two-dimensional case; see [17, 191 for gridded data and [20] 
for scattered data. Finally, for the one-dimensional C2-interpolation it was recently proved in 
[21] that positivity and monotonicity are always preserved by cubic splines on twofold refined 
grids. 
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