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Among all the sequencing techniques, RNA sequencing (RNA-seq) has galloped with pace adopting the
profiling of transcriptomic data in almost every biological analytics area like gene regulation study,
development biology and clinical research. Recently the discovery of differentially expressed genes
across different conditions has outshone the barrier of genetic & epigenetic regulations. The present
work identified and analyzed differentially expressed novel long non-coding RNAs (lncRNAs) for breast
cancer. A complex computational pipeline was adopted for the study which includes analysis of 18498
differentially expressed genes with 4114 up-regulated and 3475 down-regulated transcripts. The over-
expression of lnc-MTAP (CDKN2B-AS1), lnc-PCP4 (DSCAM-S1), and lnc-FAM (H19) in breast cells suggests
that these lncRNAs may have significant role to play in breast cancer. These results validated the rele-
vance of the dysregulation pattern in cancer cells due to the presence of lncRNAs. The study further
opens a new scope for experimental analysis to confirm the aberrant expression pattern of these lncRNAs
which may act as potential bio-markers for the diagnosis and early detection of breast cancer.
© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Breast Cancer is second leading cause of morbidity and mor-
tality worldwide, prevalently affecting female population [1]. Ac-
cording to the World Cancer Research Fund International 2012
report, U.S, China and India shares almost one third burden of the
disease (accounting for approximately 25% of all new cancer) cases
diagnosed [2]. Globally 0.45 million patients die from breast cancer
annually, which solely constitutes 13.7% of female cancer deaths
[3]. Breaking the myth that the disease widely flourishes in the
developed countries, 144937 incidences of breast cancer and 70218
cases of death due to breast cancer was reported in Indian conti-
nent itself, as accounted by the latest survey done byGlobocan 2012.
The disease has outnumbered the cases of cervical cancer among
women in India [4]. The statistics report shown in Fig. 1 depicts the
incidence of breast cancer andmortality rate in three countries, viz.
India, U.S and China.

Breast cancer can be divided into different types, the most
common being the carcinoma (also summoned as
ing by Elsevier B.V. on behalf of Ke

et al., Integrated analysis of dy
, http://dx.doi.org/10.1016/j.n
adenocarcinoma). Other type of cancer occurring in the breast is
sarcoma [5]. Depending upon the invasiveness and non-
invasiveness and targeting areas (lobular and ductal), carcinoma
can be characterized as invasive (or infiltrating) ductal carcinoma
(IDC), ductal carcinoma in situ (DCIS), and invasive lobular carci-
noma (ILC) [6,7]. Sometimes tumour can be the result of mixture of
different types such as invasive cancer and in situ cancer occurring
in single breast tumour. In 2014, 232670 new cases of invasive
breast cancer and 62570 new cases of in situ breast cancer (which
includes DCIS and ILC) were reported by American Cancer Society.
Statistics show that breast cancer has devastating effect on our
health and represents about 90% of all the oral malignancies [8].
Early detection of cancer is crucial as treatment of late stage cancer
is often difficult in less developed settings. Therefore, recent tech-
nologies like high-throughput sequencing can act as strong play
card in the run [9].

The dawn of Next Generation Sequencing (NGS) has miracu-
lously revolutionised the study of cancer genomics and molecular
biology. Moreover, NGS has appeared as an effective way to capture
large amount of genomic information related to diseases [10] by
statistical study of clinical workflow. The study can produce snap-
shot of the actively expressed genes and the transcripts that has
metamorphose the expression analysis experiments by providing
Ai Communications Co., Ltd. This is an open access article under the CC BY license
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Fig. 1. Statistics for breast cancer in India, U.S. and China for the Year 2012 (Adopted
from WHO, International Agency for Research on Cancer).

Fig. 2. Statistics about the current Human GENCODE Release (version 24: August 2015
freeze, GRCh38) states that there are total 60,554 genes. The major category is of
25,823 non-coding RNAs genes (both, small non-coding RNAs and long non-coding
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in-depth identification of gene isoforms, splice junctions, unique
transcripts and translocation events, specific alleles and post
transcriptional base modifications in a cost effective way with un-
precedented sequencing speed and accuracy [11]. Among all the
sequencing techniques, RNA sequencing (RNA-seq) has galloped
with pace adopting the profiling of transcriptomic data in almost all
the biological specified areas like gene regulation study, develop-
ment biology and clinical research [12,13]. The discovery of differ-
entially expressed genes (DEGs) in diverse contrasting conditions
(such as, stimulated versus unstimulated or wild type versus
mutant or knockdown versus control or normal versus tumour) has
helped in the identification of underlying mechanism of the dis-
ease, out showing the barrier of genetic & epigenetic regulations
[14].

Functionally, the annotation of the transcriptional activity
including enumerable coding and non-coding genes profiling at
once is important to construct an overall image of the cell activity
[15]. The selection of such DEGs is on the basis of the amalgamation
of score cut-off and expression change threshold that depends on P
values obtained by statistical modelling.

Millions of short sequences (reads) are generated by RNA-
sequencing technique. These reads are aligned to a reference
genome and the number of reads aligning within a genomic feature
of interest is used to measure the enrichment of the characteristic
in the dataset [16,17].

A class of non-coding RNAs (ncRNAs) that does not encode for
protein includes, tRNA (transfer RNA)- which is involved in protein
synthesis by actively participating in decoding of nucleic acid lan-
guage and protein language, and rRNA (ribosomal RNA)- which
work as protein synthesis factories in the cell. The complex asso-
ciation of tRNA and mRNA like regions forms another class of ncNA
known as tmRNA. The tmRNA's quality control system monitors
protein synthesis and releases ribosomes stalled during translation
and target the nascent polypeptides for degradation. Other class of
ncRNAs include snRNA (small nuclear RNA), found in the nucleus of
eukaryotic cell, involved in RNA splicing and maintaining the
telomers, and snoRNA (small nucleolar RNA) which play important
role in chemical modifications such as RNA methylation, and for-
mation of small nucleolar ribonucleoprotein (snoRNP) [18]. A group
of small silencing RNAs which are molecules of approximately 20
nucleotides in length, forms union with Argonaute protein family
members includes miRNA (micro RNA), siRNA (small interfering
RNA) and piRNA (Piwi-interacting RNA). In recent years, the
attention from short ncRNAs has shifted towards long ncRNAs
(lncRNAs). It has become evident that mammalian genomes prin-
cipally encode lncRNAs, the group which is rapidly gaining prom-
inence [19,20].
Please cite this article in press as: R. Tripathi, et al., Integrated analysis of d
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
Once tagged as “junk”, the lncRNA clearly demonstrates that
they can perform different functions more than being a messenger.
Clear insights can end up the research at the “RNA-level” extracting
information from the “hidden-jewel” ignoring the movement to-
wards the next-protein level. LncRNAs are endogenous cellular
RNAs which lack significant positive strand open reading frame
(ORF), i.e. lack protein coding potential. These are of more than 200
nucleotides in length and are distinct from any known functional
RNA classes [21]. This group of ncRNA does not constitute the ho-
mogeneous class of functionally related molecules [22]. The GEN-
CODE 24 release catalog is much larger and expansive than
previously expected accounting for approximately 15,941 lncRNAs
in human genome as shown in Fig. 2 [23]. Fig. 3 shows five types of
lncRNAs classified on the basis of their biogenesis.

While lncRNAs are pervasively transcribed in the genome, their
potential involvement in human disease is not yet understood.
Several lncRNAs can regulate gene expression at various levels,
including chromatin modification, transcription, and post-
transcriptional processing [24]. RNA-seq analysis can identify the
lncRNAs related to different cancers. Dysregulation of lncRNAs is
related to prognosis, metastasis, and recurrence in different cancer
types affecting several processes related to oncogenesis, including
cell growth and proliferation [25]. The over-expression of some
lncRNAs (such as HOTAIR, MALAT1, BCYRN1, etc.) with proto-
oncogenic function in normal cell increases tumour growth and
matrix invasion of cancer cells. Some lncRNAs, such as the XIST (X
inactive-specific transcript) or HOTAIR, forms heterochromatin
structure and interact with chromatin modelling complexes
actively altering the expression of their target genes [26,27]. Other
lncRNAs regulate the transcriptional activity by the process of RNA-
binding proteins, acting as co-activator of TFs, or repressing a major
promoter of their target genes [28].

Here we conducted a comprehensive study of lncRNA expres-
sion profiles across two cell lines- MCF10A and MCF7 using RNA-
seq technique. We grouped our analysis into two categories (1)
pre-process-and-identify, and (2) annotate-and-analyse, based on
the ways we deal with the reads (small fragments of DNA) obtained
from a sequencer. The first category does the pre-processing of the
raw data, and then counts the number of reads that fall within
condition specific boundaries. The second category seeks to iden-
tify the novel lncRNAs and related information about the relative
expression pattern, followed by deep analysis of the non-coding
materials.
RNAs).
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Fig. 3. Schematic diagram illustrating the origin of long non-coding transcripts based on their biogenesis. lncRNAs can be classified on the basis of their proximity to protein coding
genes (PCGs) as (a) exon sense & intron sense (which overlaps the sense strand of PCG), (b) natural antisense (which overlaps the antisense strand of PCG), (c) intronic antisense
(which is derived entirely from or within an intron of another transcript), (d) intergenic (which is not located near any other protein coding loci), and (e) bidirectional (which have
transcription start sites in close proximity to a PCG but are transcribed in the opposite direction) [21].
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2. Methods

2.1. NGS datasets and sample information

The comprehensive analysis was performed on two contrasting
dataset (i.e. normal-like mammary epithelial cell line and trans-
formed oestrogen responsive breast cancer cell line derived from a
metastatic site) in order to characterize genome organisation during
breast cancer development by repurposing the previously published
gene expression profiles. The primary NGS datasets generated using
Illumina's HiSeq 1500 platform and related RNA-seq library clinical
information was obtained from Gene expression omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE
71862). The lncRNA NGS dataset comprised of SE (single-end)
36bp length sequence of 6 samples including 3 normal cells as
control and 3 cancer cells as treated (Table 1). Both the data setswere
analyzed using RNA-seq techniques complete workflow. Fig. 4 gives
the overall steps involved in gene expression analysis. A protocol was
developed, from filtering, mapping of reads, to count generation, to
the discovery of DEGs, with a strenuous prominence on quality
checks throughout the workflow. Entire computational analysis was
carried out on CentOS based HP server with 48 cores 2.2 Ghz AMD
processors configuration and 256 GB random access memory (RAM)
as well as Ubuntu Linux.

Computers with 8 cores 2.5 Ghz Intel processors and 8 GB RAM.
2.2. RNA-sequencing and lncRNA profile mining

The SE 36bp raw sequenced reads obtained from Illumina were
stored in SRA format in the GEO database and was processed using
Table 1
Clinical features of all 6 dataset (3 replicates of each normal cell line and treated cell
line).

Replicates GSM ID Size (in SRA format) Layout

Normal cell line
MCF10A_RNA-Seq_R1 GSM1847015 1.1 Gb Single end
MCF10A_RNA-Seq_R2 GSM1847016 1.1 Gb Single end
MCF10A_RNA-Seq_R3 GSM1847017 1.9 Gb Single end
Treated cell line
MCF7_RNA-Seq_R1 GSM1847018 1 Gb Single end
MCF7_RNA-Seq_R2 GSM1847019 1.9 Gb Single end
MCF7_RNA-Seq_R3 GSM1847020 1.8 Gb Single end

Please cite this article in press as: R. Tripathi, et al., Integrated analysis of dy
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
RNA-seq workflow (http://www.ncbi.nlm.nih.gov/sra). The raw
files embrace millions or billions of short sequence reads down-
loaded in SRA format and were directly converted and stored in
FASTQ format using SRA toolkit (v2.3.2) (http://www.ncbi.nlm.nih.
gov/Traces/sra/?view¼software). The total read numbers in the li-
brary were 59941107 and 67020239 for 3 control and 3 treated
conditions, respectively. Analysis required initial checks on
sequence quality using read filtering tool FastQC (v0.11.5) (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and filteR
(Illumina1.8þ & Illumina1.3) (http://scbb.ihbt.res.in/SCBB_dept/
Software.php) for removing noise. Filtering and trimming
removed low quality reads (or bad reads) present due to genomic
DNA contamination during the sample isolation and incompletely
processed RNA (sequencer error) [29]. Filtering for quality and
contamination check, removed total of 43.06% reads from control
dataset (34.6 Gb of raw sequence) and 40.75% reads from treated
dataset (37.3 Gb of raw sequence). Reads were mapped to the hu-
man reference genome (hg19) using splice-aware aligner Bowtie2
(v2.2.9) with default settings for subsequent analysis. For typical
RNA-seq analysis (interested in identification of novel splice vari-
ants or new transcripts), using a splice-aware mapping is mostly
preferred. After coarse filtration, best aligned short reads accounted
for approximately 84.8% (control) and 90.33% (treated) using
Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
aligning exactly 1 and more than 1 times to the reference genome.
From the set of mapped reads, sorted files in SAM format which
were generated using IGV- Integrative Genomics Viewer (https://
www.broadinstitute.org/igv/) tools, were merged and counted.
The count numbers were later assembled into a table (features
information were stored in rows and sample related information
were present in columns) using HT-seq count (v0.5.4) (http://
www-huber.embl.de/HTSeq/doc/install.html) (Table 2).
2.3. Statistical analysis for the identification and characterization of
DEGs

For identifying DEGs, the statistical methods make the use of
feature count table generated using HT-seq count tool [30]. Count
feature based tools normalizes the log-summarized values using
averaging algorithm for each gene set using formula shown in Eq.
(1). The two condition specific libraries served as replicates, offer-
ing better confidence and higher coverage.
sregulated lncRNA expression in breast cancer cell identified by RNA-
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Fig. 4. RNA-seq workflow. The input consists of sequencing reads (FASTQ files), a reference human genome sequence (FASTA file), and gene annotations (GTF and GFF files). The
different stages of RNA-seq's workflow are illustrated and are grouped into two categories (a) pre-process-and-identify, and (b) annotate-and-analyse.

Fig. 5. Plots of sample relations generated using a count-specific distance measure
edgeR's function plotMDS which produces a multidimensional scaling plot showing the
relationship between all pairs of condition specific samples (Control [C_R1, C_R2, C_R3]
vs Treated [T_R1, T_R2, T_R3]).
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RPKM ¼ 109 � C
N � L

(1)

where, C is that number of readswhichmatches to a particular gene
or gene segment, N is overall mapping reads in the experiment, and
L is exon length of a gene (given in base pairs).

Bioconductor package based tool edgeR (v3.3) (https://
bioconductor.org/packages/release/bioc/html/edgeR.html) used
read count values clustered in EXCEL sheets to identify significantly
up- and down- regulated genes (Supplementary Table 1). The tool
edgeR calculates the expression of sample using mean-values and
dispersion of expression around this mean value. edgeR contains
columns for log-fold change (logFC), counts per million (or mean by
condition, CPM), likelihood ratio statistic (for GLM-based analysis),
as well as raw and adjusted P values facilitatingmultiple testing and
extracting feature-level information [31]. Total 61800 genes were
obtained as expressed genes, among which using Poisson distri-
bution 18498 genes showed DE. Both, the Tagwise and Common
dispersion method showed 8767 DEGs, respectively. Among the
total genes 3475 were found to be down-regulated; 4114 were
found to be up-regulated and 10909 did not show any regulation,
exhibiting significant alterations in expression by applying Fisher's
Table 2
Summary of transcriptomics data generated on Illumina Genome Analyzer IIx obtained t

GSM1847015 GSM1847

Total number of single end reads 17070793 15553889
Percentage of reads removed after quality filtering 25.17 21.58
Percentage of mapped reads (1 time) 56.25 53.07
Percentage of mapped reads (>1 time) 28.56 33.19

Please cite this article in press as: R. Tripathi, et al., Integrated analysis of d
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
exact test on a negative binomial (NB) distribution (Supplementary
Table 2). Genes with positive and negative FC were considered
hrough the process of RNA-sequencing.

016 GSM1847017 GSM1847018 GSM1847019 GSM1847020

27316425 14406303 27004244 25609692
53.23 21.7 41.44 36.84
51.44 47.9 61.01 50.78
30.81 42.43 28.83 35.01
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Fig. 6. Plots of mean-variance relationship and dispersion was plotted using edgeR's
plotMeanVar function to explore the mean-variance relationship. Each dot represents
the estimated mean and variance for each gene, with binned variances as well as the
trended common dispersion overlaid (Control vs Treated).
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significantly to be up- and down-regulated, respectively. The sub-
sequent analysis steps were same for both the replicates. The re-
lationships between samples using a multidimensional scaling
(MDS) plot, was inspected using the function plotMDS and the
generated graph is shown in Fig. 5.

A visual representation of the mean-variance relationship using
the plotMeanVar was generated as given in Fig. 6.
Fig. 7. Control versus Treated plots for RNA-seq data for two conditions: cancer and normal
expression levels between two experimental conditions) against the log concentration for (
plotMA function plots the log-fold change (i.e., the log ratio of normalized expression level

Please cite this article in press as: R. Tripathi, et al., Integrated analysis of dy
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
The graph of differential expression results, such as logFC versus
log-average expression value (calculated as a measure of read
count) consisting of the genes selected as differentially expressed
(with a 5% false discovery rate) were plotted using plotMA function
of edgeR, as shown in Fig. 7(a, b, c, d). edgeR's plotSmear function
was used to plot ‘Control versus Treated plots’ based on the log-fold
change value (i.e., the log ratio of normalized expression levels
between two experimental conditions) against the log concentra-
tion for (a) Common Dispersion, (b) Tagwise Dispersion and (c)
Poisson Dispersion (d) edgeR's plotMA function plots the log-fold
change (i.e., the log ratio of normalized expression levels between
two experimental conditions) against the log counts per million
(CPM).
3. Results

3.1. Sequence analysis and non-coding family classification

Functional annotation and characterization of DE lncRNAs ob-
tained from RNA-seq was done to check their involvement in
different biological and molecular functioning, using BiomaRt (an R
package) (https://bioconductor.org/packages/release/bioc/html/
biomaRt.html). Gene ontology (GO) classification was done for
segregating significant genes. Further functional classification of
the annotated unigenes in molecular function and biological pro-
cess category was done using PANTHER classification system
(http://www.pantherdb.org/) [32]. A list with associated ENSEMBL
transcript ids containing functional classification of the genes,
statistical over representation of the data and statistical
. edgeR's plotSmear function plots the log-fold change (i.e., the log ratio of normalized
a) Common Dispersion, (b) Tagwise Dispersion and (c) Poisson Dispersion (d) edgeR's
s between two experimental conditions) against the log counts per million (CPM).

sregulated lncRNA expression in breast cancer cell identified by RNA-
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enrichment test was generated. Deemed to be differentially
expressed, the corresponding statistics can be used in downstream
interpretive analyses to confirm or generate further hypotheses.
Analysis of biological processes showed that several up-regulated
genes were associated with metabolic process, biological regula-
tion, and cellular process, whereas down-regulated genes were
associated with metabolic process, cellular process and biological
regulation, respectively. GO enrichment analysis for the DEGs
showed that the up-regulated genes were mostly involved in mo-
lecular functions such as DNA binding, catalytic activity, and nucleic
acid binding TF activity, and the down-regulated genes were
implicated in DNA binding, catalytic activity and structural mole-
cule activity, respectively (Fig. 8). Similar results were also observed
using GOrilla pathway analysis (http://cbl-gorilla.cs.technion.ac.il/).

Functional and pathway assignments of the DEGs using Panther
and GOrilla classification revealed numerous hormonal, physio-
logical, and developmental changes in condition specific dataset.
Genes related to DNA binding, catalytic activity, metabolism,
regulation, cellular process, structural molecular activity and
transcription were shown to be most regulated in tumorous con-
ditions [33]. The present data suggested involvement of ncRNAs in
establishing the metabolic equilibrium during tumorous condition
to enable the role of lncRNAs in regulating mRNA as well as other
ncRNAs.

3.2. Bioinformatics analysis of differentially expressed lncRNAs

Statistical over representation of the top 100 up-regulated and
Fig. 8. (a, b, c, d): Pie chart of the broad biological and molecular function associated wit
transcripts according to (a) biological functions for down-regulated transcripts, (b) molecu
transcripts, and (d) molecular functions for up-regulated transcripts using PANTHER.

Please cite this article in press as: R. Tripathi, et al., Integrated analysis of d
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
100 down-regulated transcripts showed the name of annotation
data category, number of genes uploaded list that mapped to the
particular annotation category and the genes that did not map to
the particular annotation data category. The top 100's for both the
regulated categories were selected on the basis of logFC value (for
up-regulated logFC was >9.24 and for down-regulated logFC was
>�0.89) and could be considered statistically significant. The
threshold value was based on P value, determined by binomial
statistics. The probability of finding genes/transcripts in this cate-
gory occurs randomly (by chance), as determined by the reference
list provided. A small P value indicated that the number obtained is
significantly rich and potentially of use. Only those lncRNAs with a
P value of <0.05 was used as default parameter, were screened out
for further analysis. Among top 100, total 57 up-regulated and 54
down-regulated transcripts were found to unmap the existing GO
database with enriched coding genes (Supplementary Table 3).
Some specific non-coding transcripts were searched against (a)
noncoding RNA database (NONCODE) (http://www.noncode.org)
and (b) LNCipedia database (http://www.lncipedia.org/) for iden-
tification and classification of these ncRNAs. Use of two different
databases removed the chance of false annotation of non-coding
genes.

It was found that unmapped/unannotated transcripts fall into
the category of lncRNAs, miRNAs, snRNAs, snoRNAs and miscRNAs.
This research was more focussed towards the identification of DE
lncRNAs, therefore to strengthen our analysis the corresponding
NONCODE ids were searched against LNCipedia database. Overall,
91% of up-regulated genes and 35% of down-regulated genes were
h top 100 differentially expressed breast cancer genes/transcripts. Characterization of
lar functions for down-regulated transcripts, (c) biological functions for up-regulated

ysregulated lncRNA expression in breast cancer cell identified by RNA-
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Fig. 9. Characterization of the Transcriptome assembly. (a) Pie chart of the composition and quantities of Protein coding genes, processed transcript, retained intron, lincRNA, non
sense mediated decay, antisense, pseudogene, sense intronic, and short ncRNAs in the up-regulated assembly. (b) Pie chart of the composition and quantities of Protein coding
genes, processed transcript, retained intron, lincRNA, antisense, and processed pseudogene in the down-regulated assembly.
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classified as lncRNAs in top 100 differentially regulated dataset.
Database search of lncRNAs emphasized that most of these DE
lncRNAs were novel and lacked experimental and literature evi-
dences to be reported in breast cancer. The information like loca-
tion, strand, transcript size, sources, alternative transcript names,
RNA-sequence, structure, protein coding potential, locus conser-
vation, secondary structure conformation and targeting miRNAs
were extracted from the database [19,20]. About 19% (11 in
numbers) of the up-regulated lncRNAs were found to have human
locus conservation with mouse and 3% (2 in numbers) showed lo-
cus conservation with mouse and zebrafish, both.

Remarkably, over 11% of lncRNAs were categorized as large
intergenic non-coding RNAs (lincRNAs), pseudogene, unitary
pseudogene, transcribed unprocessed pseudogene, unprocessed
pseudogene, processed pseudogene, antisense and sense lncRNAs
(Fig. 9a) in an up-regulated condition. In down-regulated condi-
tions 6% of lncRNAs were classified as lincRNAs, processed pseu-
dogene and antisense (Fig. 9b).
4. Discussions

The study aimed at identifying novel lncRNAs that are believed
to be involved in breast cancer and governs the expression change
of a cell. From the RNA-seq workflow, it was observed that the total
number of DEGs in breast cancer was 18498 out of which 4114 were
Please cite this article in press as: R. Tripathi, et al., Integrated analysis of dy
seq study, Non-coding RNA Research (2016), http://dx.doi.org/10.1016/j.n
observed to be up-regulated and 3475 were down-regulated. And
finally we could conclude that large number of lncRNAs showed DE
patterns in condition specific dataset breast cells (such as control
versus treated).

On comparing our result, with existing experimentally validated
datasets obtained from various non-coding databases such as
NONCODE and LNCipedia, we found that three lncRNAs, lnc-MTAP
(CDKN2B-AS1), lnc-PCP4 (DSCAM-S1), lnc-FAM (H19) which was
previously reported to be up-regulated in Breast cancer, were also
up-regulated in our study. Other 51 novel lncRNAs which are not
yet reported in breast cancer can help us to associate their aberrant
expression pattern with the disease (the ENSEMBL Gene Id of the
related lncRNAs has been provided in Supplementary Table 4). DE
lncRNA, H19 is also said to be involved in various other cancer types
such as bladder cancer, cervical cancer, colon cancer, gastric cancer,
kidney cancer, liver cancer, lung cancer and ovarian cancers (Re-
ported in LncRNADisease database). Li H et al. reported in his paper
that the over-expression of lncRNA H19 increases the carcinogen-
esis and metastasis of gastric cancer [34]. Metastasis is one of the
very well known hallmarks of cancer [35]; therefore detail analysis
with validated result can help us to find the role of other novel
lncRNAs discovered in our studies and associate them with other
hallmarks of cancer like angiogenesis, apoptosis, etc.

XIST, a class of lncRNA is associated to both sex and non-sex
related cancers. XIST's relationship with the breast cancer gene
sregulated lncRNA expression in breast cancer cell identified by RNA-
crna.2016.09.002



R. Tripathi et al. / Non-coding RNA Research xxx (2016) 1e88
BRCA1 (which is a well-known tumour suppressor gene, TSG) has
beenwidely studied. It has been found that BRCA1-defficient breast
cancer cell lines have increased XIST expression suggesting it to be
used as a marker to study tumour development [36]. These indi-
vidual examples have been functionally studied, and many more
important questions are yet to be addressed. The expression of H19
in healthy tissues as well as breast adenocarcinomas tissues can
further be associatedwith breast cancer gene and the enhancement
in tumorigenic properties of breast cancer cells can be studied.

Further detail research showed that H19 and mir-675 functions
in a similar manner [37]. Therefore, in future we can dedicate a
section of our research in finding non-coding RNAs interactionwith
other non-coding RNAs. Regulation of one ncRNA by another ncRNA
is a very challenging and demanding field of research for scientific
community. The target pairs can thus be hypothesized to play role
in breast cancer and the result can further be experimentally vali-
dated. The conventional interaction observed mostly is lncRNA
targeting miRNA, however the interaction can also be in the reverse
way. Also some other ncRNA can be involved in the regulation
process. A successful research on this topic may help in unfolding
many hidden ways of malignancy cause in the case of cancer.

The current research majorly focuses only on short ncRNAs,
whereas the underestimated long ncRNAs have a great potential to
be considered as important molecules in physiological as well as
pathological settings. Therefore, the next step should be genome-
scale identification of lncRNAs differentially expressed in wide va-
riety of human cancers. We have discussed many lncRNAs with DE
patterns that could be diagnostic, prognostic, or predictive value for
various types of cancer. lncRNA offers a number of advantages as
diagnostic and prognostic markers. The great wealth of newly
discovered transcripts makes it highly likely that many other
lncRNA markers remain to be discovered. DE analysis study has
been successful in pinpointing new cancer-associated lncRNAs by
following the approach of unbiased modality for gene discovery. By
uncovering this expansive landscape of tissue- and cancer-
associated lncRNAs, we provide the scientific community with a
powerful starting point to begin investigating their biological
relevance. The vast amount of cancer genome data becoming
rapidly available can only be fully exploited if also the non-coding
content of the human cancer genome is studied in great deal- af-
ter all it constitutes the large majority of the genomic information.
The more we learn about lncRNA expression patterns in different
types of cancere aswell as in healthy cellse the higher the chances
for an improved diagnosis and better prognosis will be.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.ncrna.2016.09.002.
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