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Abstract

A new modulus of smoothness based on the Euler angles is introduced on the unit sphere and is shown to
satisfy all the usual characteristic properties of moduli of smoothness, including direct and inverse theorem
for the best approximation by polynomials and its equivalence to a K -functional, defined via partial deriva-
tives in Euler angles. The set of results on the moduli on the sphere serves as a basis for defining new moduli
of smoothness and their corresponding K -functionals on the unit ball, which are used to characterize the
best approximation by polynomials on the ball.
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1. Introduction

A central problem for approximation theory is to characterize the best approximation by poly-
nomials via moduli of smoothness, or via K -functionals. In this paper we consider the setting of
best approximation by polynomials on the unit sphere and the unit ball

S ={x: |xllI=1} and B?={x: |Ix| <1}

of R?, where || x|| denotes the usual Euclidean norm.



FE Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310 1235

1.1. Approximation on the unit sphere

On the unit sphere, we consider the best approximation by polynomials in the space L”(S%),
1 < p < oo, or C(S¢ 1) for p = oo, with norm denoted by |- llp =1 llppe-1y, 1 < p <
00, in Part 1. Let H,‘f denote the space of polynomials of total degree n in d variables and
IT,(S% 1) = H,f |sa—1, the space of spherical polynomials, or equivalently polynomials restricted
on the sphere. In the following we shall write H,f for H,‘f (S?~1) whenever it causes no confusing.
The quantity of best approximation is defined by

En(f)p= inf |f—glp, 1<p<oo (1.1)

gEHn71

The first modulus of smoothness that characterizes E,(f), on the sphere is defined via the
spherical means

1
o4—1(sin@)4—2

So f (x) == / F ) doxe(y), (1.2)

(x,y)=cos6

where doy g is the Lebesgue measure on {y € S9=1: (x,y) = cos8} and oy = 274/% /I (d/2)
([1, p. 216], [25, p. 475], [29, p. 288]). For r > 0 and ¢ > 0, this modulus of smoothness is
defined by

W (fit)p = sup |(I — Sp)"* f|
01<t

b (1.3)

where (I — Sg)’/ 2 is defined in terms of infinite series when r/2 is not an integer [33, p. 183].
After earlier studies by several authors (see, for example, [1,21,25]), Rustamov [30, p. 315]
finally established, for 1 < p < oo, both direct and inverse theorems for the polynomial best
approximation, as well as the equivalence of w}(f, ), to the K-functional

K (finp=inf{lf —gllp+1 | (=20 ]}, (1.4)

where Ag, given in (2.5) below, is the Laplace—Beltrami operator on the sphere and the infimum
is taken over all g for which (=Ap)"/ 2g € LP. The proofs of these results for the full range
of 1 < p < oo can be found in [33, pp. 195-216]. The study of w}(f,t), and K(f,1), relies
heavily on the fact that both (I — Sp)"/ 2 and (—Ag)'/? are multiplier operators of Fourier series
in spherical harmonics. This approach has been extended in [35, p. 15] to the setting of weighted
space LP(S41, h%), where A, is a weight function invariant under a finite reflection group.

The second modulus of smoothness on the sphere is defined via rotation,

To f(x):= f(Qx), QeS0@), (1.5)

where SO(d) denotes the group of rotations on R?, or the group of orthogonal matrices of deter-
minant 1 in RY. For ¢ > 0, define

0, = {QeSO(d): max d(x, Ox) gr],
xeSd-1
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where d(x, y) := arccos (x, y) denotes the geodesic distance on S¢~!. For r > 0 and 7 > 0 define

@ (fi1)p = sup | A
Q€0

where A’Q = -Tp)". (1.6)

For r =1 and p = 1 this modulus of smoothness was introduced and used by Calderon, Weiss
and Zygmund [4] and further studied in [19]. For other spaces, including L? (Sd -1y, p > 0, these
moduli were introduced and investigated in [13]. The direct and weak converse theorems for
LP(Sd’]), 1 < p < oo were given in [14, p. 23] and [13, p. 197], respectively. An easier proof
of the direct result applicable to a more general class of spaces was given in [8]. In [9, (9.1)] it is
shown that @, (f, 1), is equivalent to @} (f, ), when 1 < p < 0o, whereas the equivalence fails
for p=1and p =00 [15].

The modulus of smoothness defined via multipliers, such as w}(f, 1) p» allows an easy access
to a neat theory, but it is hard to compute and more difficult to follow because of its dissimilarity
to the traditional modulus of smoothness defined via differences of function evaluations. The
modulus @, (f, t) », on the other hand, is closer to the traditional form, as distance on the sphere is
measured by geodesic distance; in fact, the authors in [4] considered it the most natural definition
on the sphere. However, the supremum over O, makes it difficult, if at all possible, to compute
even for simple functions.

In the present paper we shall introduce another modulus of smoothness, denoted by w, (f,1)p,
that can be expressed as forward differences in Euler angles. More precisely,

w, t = su max A
r(f: )p |9|E 1<1</<d”

1.7

where A’ , denotes the r-th forward difference in the Euler angle ¢; ;. These angles can be
descrlbed (see next section and [32, Chapt. 9]) by rotations on two-dimensional planes, so that the
new modulus of smoothness can be defined through a collection of two-dimensional forwarded
differences, which are well understood and can be easily computed. Examples of functions will
be given in Section 9, where w,(f, ), is computed whereas we do not see how to compute
or(f,1)p or @i (f,1)p. Both direct and inverse theorems will be established in terms of this
new modulus of smoothness. We will also define a new K -functional, using the derivatives with
respect to the Euler angles, and show that it is equivalent to w,(f, t),. Comparing to the other
moduli of smoothness, we shall prove that w, (f, ¢), is bounded by both &, (f,t), and w} (f, 1),
and is equivalent to them for 1 < p < oo and r = 1, 2. The strength of the new modulus of
smoothness lies in its computability. We will give examples to show how the asymptotic order of
wy(f,1)p can be determined.

By taking the norm in a weighted L? space, we can also define our modulus of smoothness
for a doubling weight. Best approximation in a weighted space with respect to a doubling weight
was first investigated, on an interval, in [23,24]. It was studied in [6] on the sphere in terms of
weighted version of the modulus of smoothness w, (f, t),. We shall show that the results in [6]
can be established using our new modulus of smoothness.

1.2. Approximation on the unit ball

For the unit ball BY, a modulus of smoothness, denoted by W (f, )p, ., as it is in the spirit of
wy(f,t)p in (1.3), is introduced in [36, p. 503] for LP(BY, W), where
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W)= (1= 1)~ w0, (1.8)

in terms of the generalized translation operator of the orthogonal series, given explicitly in [36,
p- 500], and used to characterize the best approximation by polynomials. There were also earlier
results in [28, p. 164] of direct theorem given in terms of supy; <, [ f(x + h) — f(x)], which,
however, does not take into account the boundary of B? and, hence, does not have a matching
inverse theorem. At the moment, the modulus w}(f, ), is the only one that gives both direct
and inverse theorem for d > 1.

There is a close connection between analysis on the sphere and on the unit ball B¢ =
{x: Ix]l <1} ([35, Sect. 4], [37, Sect. 4]). Our results on the sphere can be used to define a new
modulus of smoothness and a new K -functional on the unit ball with weight function W, for u
being a half integer, and all results on the sphere can be carried over to the weighted approxima-
tion on the ball. It is worth to mention that our results appear to be new even in the case of d = 1,
which corresponds to the extensively studied case of best approximation in L?([—1, 1], W),
and our new modulus of smoothness takes the form

p
wr(f, 1) p.u = Sup ( f}ng(xcos(-) + ysin())]”(1 = x* - yz)"‘ldxdy> .
lo|<r
BZ

There are several well-studied moduli of smoothness in this setting of one variable. Among others
the most established one is due to Ditzian and Totik [16, p. 11], defined in the unweighted case
(u=1/21in (1.8)) by

Wl (fip=ap(fi1)p = S 1260 fl ooty 1< P <00, (1.9)
<0<t

where ¢(x) = /1 — x2, 32 f(x) is the r-th central difference which equals O when x £ % ¢
[—1, 1] (see [16, p. 11] or (5.27) below for details) and we have dropped @ = 1/2 in the notation
of the norm. It turns out that

wor(fit)paj2 <cay(fit)p, 1< p<oo.

The comparison between the last two moduli of smoothness and the K -functional equivalent to
wy,(f,1)p,u suggests yet another pair of modulus of smoothness and K-functional on the unit
ball, which can be regarded as a natural extension to those defined by Ditzian and Totik. In the
unweighted case, it is defined by

Wy (f, O po@ay =0 (f,1)p = lzg lgrinjlxgdHA?’jﬁfHP’ lrglaéd‘|zgweif||p}, (1.10)

where ¢(x) =+/1—||x||?, e; denotes the i-th coordinator vector, and || - || p is the L? norm
computed with respect to the Lebesgue measure on B¢ (see the definition in Section 7.3 for
details). A corresponding K -functional can also be defined. We are able to prove the main results
normally associated with moduli of smoothness and K -functionals for this pair.

These new moduli of smoothness and K -functionals provide, we believe, a satisfactory solu-
tion for the problem of characterizing the best approximation on the unit ball, and new tools for
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gauging the smoothness of functions on the unit ball. Our computation examples give the asymp-
totic order of the moduli of smoothness for several functions, which are not intuitively evident,
and will be hard to distinguish without the new moduli of smoothness.

1.3. Organization of the paper

The paper is naturally divided into three parts. Part 1 deals with approximation on the sphere,
whereas Part 2 deals with approximation on the ball. Part 3 contains examples of functions for
which the asymptotic order of new moduli of smoothness and best approximation by polynomials
are determined.

Throughout this paper we denote by c, c1, ¢2, ... generic constants that may depend on fixed
parameters, whose value may vary from line to line. We write A < B if A <c¢B and A ~ B if
A< Band B < A.

Part 1. Approximation on the unit sphere

This part is organized as follows. The new modulus of smoothness and K -functional on the
sphere are defined and studied in Section 2, their equivalence and the characterization of best
approximation in terms of them are proved in Section 3. Finally, in Section 4, we discuss the
weighted approximation with respect to a doubling weight.

2. A new modulus of smoothness and K -functional
2.1. Euler angles and Laplace—Beltrami operators

In the case of d = 3, the Euler angles are often used to describe motions in the Euclidean
space and are well known to physicists and people working in computer graphics. We shall need
the definition for d > 3, for which we follow [32, p. 438].

Let eq, ..., eq denote the standard orthogonal basis in R?. For 1 <i # j <d and t € R, we
denote by Q; ;; arotation by the angle ¢ in the (x;, x;)-plane, oriented such that the rotation from
the vector e; to the vector e; is assumed to be positive. For example, the action of the rotation
Q1,2+ € SO(d) is given by

Q1,2.:(x1,...,xq) = (x1cost —xasint, x; sint 4+ x cost, X3, ..., Xq)

:(scos(¢+t),ssin(¢+t),x3,...,xd), 2.1

where (x1, x2) = s(cos ¢, sing), and other Q; ;. are defined likewise. It is known [32, p. 438]
that every rotation Q € SO(d) can be presented in the form

0=04-104-2---Q1, where Oy = Q1262565 Crir1.6f (2.2)

for some 6{‘ € [0,2m) and Gk, e G,f € [0, ), and the representation (2.2) is unique for almost
all elements Q of SO(d). The numbers

0f, 1<j<k 1<k<d—1
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are called the Euler angles of the rotation Q. There are a total d(d — 1)/2 Euler angles, which
agrees with the dimension of SO(d).

We note that an Euler angle comes from a two-dimensional rotation. The following simple
fact is useful in our development below.

Lemma 2.1. Suppose that 1 <i # j <d and x,y € S~ differ only at their i-th and j-th
components. Then y = Q;_j; x with the angle t satisfying

cost:(x[yi+xjyj)/s2 and t~|x—yl|/s withs::1/xi2+xj2..

Proof. Since x and y differ at exactly two components, they differ by a two-dimensional rotation.
Moreover, as )cl.2 + sz. = yi2 + yjz., the formula for cost is the classical formula for the angle

between two vectors in RZ. We also have
. a1 2
2~ dsin® 2 =2(1 = cost) = | (xi, 1) = i v /5® = Dl = y I/,

where the first || - || is the Euclidean norm of R? and the second one is of R¢. [

To each Q € SO(d) corresponds an operator L(Q) in the space L2(S471), defined by

L(Q)f(x):= f(Q 'x) forx e S, Since L(Q1Q2) = L(Q1)L(Q>), it is a group representa-
tion of SO(d). In terms of Euler angles, the infinitesimal operator of L(Q;, ;) has the form

0 d ad ..
D; ;= E[L(Qi’j't)“’:():xja_xi —xigj, I<i<j<d, (2.3)

where the second equation follows from (2.1). For more details, see [32, Chapt. IX]. In particular,
it is easy to verify that, taking (i, j) = (1, 2) as an example,

9\ .

Di,f(x)= <—£> f(scosg,ssing, x3,...,x4), 2.4)

where (x1,x3) = (scos¢, ssing). It turns out that these operators are closely related to the

Laplace—Beltrami operator on the sphere. Let A = 0‘1—22 44 %22 be the usual Laplace operator.
d

The Laplace—Beltrami operator is defined by the relation

Aof(x)zA[f<”§—”>:|(x), xesi !, 2.5)

where the Laplace operator A acts on the variables y. The explicit formula of Ag f(x), x € S9!,
is often given in terms of differential operators in spherical coordinates as in [32, p. 494]. It turns
out, however, that it also satisfies a decomposition,

Ap = Z D} i (2.6)

1<i<j<d
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When applied to a function, the right-hand side of this decomposition is defined for all x € R?,
but the above identity holds for those x restricted to S?~!. The point is that each operator D; ;in
this decomposition commutes with the Laplace—Beltrami operator Ag. This decomposition must
be classical but we are not aware of a convenient reference. It can be easily verified, however. In
fact, a straightforward computation of Zle 3,'2 F /Iyl shows, by (2.5), that

d d d
Ao=A—>" xixjdid; —(d— 1) x;d;. 2.7)
i=1

i=1 j=I

where 0; denotes the i-th partial derivative, and the right-hand side of (2.6) gives the same for-
mula as an other straightforward computation shows.

2.2. New modulus of smoothness and K -functional

For each Q € SO(d), we have defined A’Qf = (I — Tp)" f in (1.6). For the rotations Q; ;¢
in the Euler angles, we shall denote

A gi=0p,.,, 1<i#j<d

for convenience. Since Q; j 9 = Qi s, We have Af,j,e = A;,i,—9~ Let Kg denote the forward
difference operator acting on f : R — R, defined by ng(t) = f(@+60)— f() and Zg =

ZQ*IZQ; then
Kpfy=> (-1 C.)f(t +6)).
j=0

Because of (2.1), it follows that Af’ j.0 can be expressed in the forward difference. For instance,
take (i, j) = (1, 2) as example,

Ai’zﬁf(x) = ng(xl cos(-) — xp sin(+), x1 sin(-) + x> cos(+), x3, ..., xd), 2.8)

where Zg is acted on the variable (-), and is evaluated at = 0.

Definition 2.2. For r € N, ¢t > 0, and f € LP(S91), 1 < p < o0, or f € C(S?1) for p = o0,
define

Py r
wr(f, )= lzgt ]grl_n<a]x<d|| Al jef (2.9

For r =1 we write w(f, 1) := w1(f, 1) p.

Let us remark that this modulus of smoothness is not rotationally invariant, that is, if we define
fo(x) = f(Qx), then w,(fgp, ), is in general different from w, (f, t) ,, whereas both w}(f, 1),
and @, (f,t), are rotationally invariant. Moreover, @, (f, ), does not depend on the choice of
the orthogonal basis of RY, whereas, on the face of it, the new modulus wr(f,1)p relies on the
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standard basis eq, ..., eq of Rd, but do not, we note, on the order of ey, ..., eq. As will be shown
later in Section 3.4, the three moduli are nevertheless closely related (see Corollary 3.11 for
details) and the result below shows that w, (f, t), is smaller than o, (f, 1) .

Recall O; = {0 € SO(d): max, gi-1d(x, Qx) < t}. For d =2, there is only one Euler an-
gle 0; a rotation Q € SO(2) belongs to O; if and only if its Euler angle 0 satisfies |sinf]| < sint.
Hence, for d =2, w,(f, 1), agrees with @,(f, ), in (1.6). This, however, does not extend to
d > 3. A rotation Q € SO(d) belonging to O; may not be easily characterized by its Euler an-
gles. For example, for d = 3, the rotation Q1227-9023.:Q1.2.0 18 in O; for all 6 € (0, 27), as
can be easily seen from (2.1). On the other hand, for x € Si-1 4 quick computation shows that

(Qij.0x,x) = (x? +x12~) cosf + Z x? =cos6 + Z xZ(1 = cos0) > cosh.
ki, j k#i, j

Consequently, since cosd (x, y) = (x, y), we obtain
d(Q;, jex,x)=arccos{Q; jox,x) <0

which shows that Q; j g € O, for 0 < 6 <. As a result, we immediately see that the following
proposition holds.

Proposition 2.3. For f € LP (S 1) if 1< p <ooand f € C(S* V) if p =00,
or(fiD)p <aor(fit)p, 1<p<oo, rel

The main advantage of the new modulus of smoothness is that it reduces to forward differ-
ences in Euler angles, which live on two-dimensional circles on the sphere, and many of its
properties can be deduced from the corresponding results for trigonometric functions of one
variable.

Our new K-functional is defined via the differential operators D; ; in (2.3), which can be
regarded as derivatives with respect to the Euler angles.

Definition 2.4. For r e Ny and r > 0,
K. (f.1),:= inf { — ‘" D } 2.10
A(f0pi= it U= gllp " max D]l (2.10)

One usually defines the K-functional in L? norm by taking the minimum over a Sobolev
space, such as

W/ = {geL?(8""): |Df;g], <oo, 1<i#j<d].

Since we will deal with several different K -functionals, it is more convenient to take the mini-
mum over C’(Sd’1 ), the space of r-th continuous differentiable functions, which however is no
less general by the density of C"(S¢~!) in the Sobolev spaces. In Section 3, we will show that
K, (f,1)p is equivalent to w,(f, ).
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2.3. Properties of the modulus of smoothness

We will need the following elementary lemma (see Lemmas 3.8.9 and 3.6.1 in [17]), in which
do denotes the usual Lebesgue measure on S?~! without normalization.

Lemma 2.5. Let d and m be positive integers. If m > 2, then

f(y)do=/(1—||x||2)m72[ / f(x,\/l—IIXIIZE)do(S)}dx, @.11)

§d+m—1 B4 gm—1
whereas if m = 1, then
5 5 dx
fdo=[[f(x,\/1—IxlI?)+ f(x, =/ 1= lIx]| )]ﬁ. (2.12)
J J — Jx]
Because of the maximum in the definition of w, (f, ), it is more convenient, and often more
useful, to state the properties on supg <, || Af‘ j o f | p, some of which are collected in the lemma
below.

Lemma 2.6. Let r € N and let f € LP(S?") with 1 < p <00, or f € C(S™1) when p = .

(1) Forany A >0,t€(0,2n],and 1 <i < j <d, we have

AL <A+ D" AL .
B N haolly < Ox o1l

(i) For1<i#j<dandf €|—m, ],
[ai0f 1, <2UfNp and |27 f], <clo1"| D],
(i) If fe O and 1 <i < j <d, then
|27 £, ~ D £,

@{v) For1<i< j<dandt e (0,2r),

t
1 ,
sup 147 57 7~ 7 Of a7, 7]7 do

with || - |}y replaced by || - ||oc when p = oo.

Proof. Clearly we only need to consider the case of (i, j) = (1, 2). For f defined on ST we
set g5.y(¢) := f(scosg, ssing, v/1 —s2y), where y € S=3, 5 € [0, 1] and ¢ € [0, 27].
(i) For a positive integer n, the well-known identity
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n—1 n—1
Z;ag(t)Z Z ZZgg(;+v19+...+vr9)
v1=0 V=0

and the connection (2.8) imply immediately the inequality

sup [|A7 ;6 f |, <n" sup a7 611,

1o1<nt

from which (i) follows from the monotonicity of supjg <, | A} ol llp intandn=|A].
(ii) By (2.11), for d > 3,

/f<y)d0<y>=/ / £ (xr.x2.1= Ixl2y) dor () (1 = x]?) 7 dx
§d—1

B2 §d-3

1 2
= [s0-2)F [ [e@rdpdoas (2.13)
0

§d-3 0

where the second equality follows from changing variables (x1,x2) = s(cos¢, sing). Us-
ing (2.8), the identity (2.13) implies immediately

1

2
HA?,z,tfHZ=/s(1 —?)'T / [/lzigs,y(qsﬂ”dd:} do(y)ds. (2.14)
0

0 §d-3

In the case of d = 3, the formula (2.13) degenerated to a form in which the integral over S9-3 s
replaced by a sum of two terms, see (2.12). By (2.1) and (2.3), it is easy to see that

(=)D}, f(scos¢, ssing, V1 —s2y) =g (¢) (2.15)

and g, ,(¢) is a 2m -periodic function. Hence, the desired result follows from the corresponding
result for the trigonometric functions on T.

(i) If f € Hf , then g () is a trigonometric polynomial of degree at most n in ¢. The
classical result of Steckin [31] shows that for a trigonometric polynomial 7, of degree at most n,
0<h< an~!

178 oery ~ I E Tl

"~ (T)’

with the constant of equivalence depending only on r. Thus, (iii) follows by (2.14) and (2.15).
(iv) This again follows from (2.14) and the corresponding result for trigonometric function.
Indeed, by [26, p. 191, Lemma 7.2], we have for 0 < ¢t < 2w,

t 2w

27 1 1

=r 14 g 1 xr 14 g

sup( / 120 65.4()| d¢> ~(— / / 120855 (®)] d¢d0>
o1<e\ o ! ,

0

with the usual modification when p = oo, from which (iv) follows from (2.14). O
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Proposition 2.7. The modulus of smoothness w,(f, t), satisfies

(D) Fors <r, w.(f,1)p <27 w5 (f, ).
(2) For x>0, o-(firt) p <A+ 1D - (f, 1) p.
3) ForO<t < % and every m >r,

1
wr(fJ)p < Cmtr/ —m('{ri")p du.

t

Proof. The first property follows from the identity

I=TY=(U-T) (’ ;S)(—l)"Tk
k=0

and the triangle inequality. The second one follows immediately from (ii) of Lemma 2.6. The
third one is the Marchaud type inequality and it follows, by (2.14), from Marchaud inequality
for the trigonometric functions, in which the additional term #"|| f|, that usually appears in the
right hand can be removed upon using inf.cr || f —cll, S w, (f, ) that follows from Lemma 3.2
below. O

Recall the distance d (x, y) := arccos (x, y) on S~ 1. It follows that

lx =yl =+v2—=2cosd(x,y) =2sin

d(xz’ Y Caey), (2.16)

Lemma 2.8. For x, y € S,

£ = FO)| < colf,dx, ),
where ¢ depends only on dimension.

Proof. We may assume that d(x,y) < 87 :=1/ (2d%). Otherwise we can select an integer m
such that d(x,y) < mds; < 1, then m is finite and we can select points x = zg, 21, ..., 2m =
y on the great circle connecting x and y on S?~! such that d(z;, zi+1) = % < 84 fori =
0,1,...,m — 1, and then use triangle inequality. Since ||x| = 1 implies that |x;| > 1/+/d for at
least one i, we can assume without losing generality, as w, (f, t), is independent of the order of
el,...,eq, that x4 =max|g;<d |xj| > ﬁ

For 1 <j<d—2,let u’/ = (X1y.euy Xy Yjtls--or Ya—1) and vj := /1 — ||u’j||2, where by

the choice of x4 and 4,4,

” j” (;+1 y]2-+1)—--~—(x§_1—y§_1)—x§

1 1 1
<l——42d—-j—-2)dx,y)<1——+-<1.
Ja d—j—2d(x,y) 7 7=
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We then define ug =y, u; = (u’j, vj) € S9-1 for 1 <j<d-2,and uy_1 = x. By definition, u
and u j_1 differ at exactly j-th and d-th elements, so that we can write u;_; = Q.,',d,,j uj, where
the Euler angle ¢; satisfies, by Lemma 2.1,

2 2 2
ti~uj—1—ujl/s;, Wheresj =xj+vj.

Our assumption shows that

_ 1
s72 v =xg+ (6 =) o (g —aa) 2d T = = yIP > o

and, on the other hand, by (2.16),

2 232
(xj _y]')

o S DI — P S )
J— J

2 2
Nl —w;1ll”=Ix; —y;jI”+

Together the last three displayed equations imply that #; < d(x, y). Hence,

d—1

1F @) = fOD] <Y N F(Qianup) = fup)] < (d = Do f. cd(x,y)) , < co(f.dx, 1)),
j=1
where the last step uses (2) of Proposition 2.7. O

3. Approximation on the unit sphere

In this section we show that our new modulus of smoothness and K -functional are equivalent
and use them to establish direct and inverse theorem for

En(f)p= int [f—glp, n=12.. 1<psoo (3.1)
1

gelly_
3.1. Preliminaries

Recall that 1'[,‘11 denote the spherical polynomials of degree at most n. Let Hg denote the
space of spherical harmonics of degree n, which are the restriction of homogeneous harmonic
polynomials on S?~!. It is well known that the reproducing kernel of the space Hﬁ in L2(S471)
is given by the zonal harmonic

A
Znate, =" ECH (0 y), =, (32)

where C}' is the Gegenbauer polynomial with index A, normalized by C}(1) = ("+2k71).

n
Let n be a C*°-function on [0, co) with the properties that n(x) =1 for 0 < x < 1 and
n(x) =0 for x > 2. We define

Vo f (x) = / FOKa((x,9))do(y), xeS¥™ ' n=1.2,... (3.3)
Sd*l
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with

Cr@), tel-1,1].

2n
k\k+ X
Knm:Zn(;) i

k=0
By now it is well known (cf. [30, p. 316]) that V,,(f) satisfies the following properties:
Lemma3.1.Ler f e LP if 1 < p <ooand f € C(S* ) if p=o0. Then
(1) Vof €ellf, and V, f = f for f e T¢.

(2) FOWGN IVafllp <clifilp.
(3) Forn eN,

If = Vafllp < cEn(f)p-

More importantly, the kernel is highly localized [3, p. 409]; that is, for any positive integer £,
K, (t) satisfies

|Ky(cos®)| < cen? ' (1 +n0)"F =G, (0), 6 €l0,7]. (3.4)
The following lemma plays an essential role in our study below.

Lemma 3.2. Suppose that f € LP(S?- Y for 1 < p < oo, and G,(t) = G 0(2) is given by (3.4)
with £ > p +d. Then

[ 1760 = 10 Gald. ) do ) dar ) < col ),
gd—1 gd—1

Proof. LetE+ (xeSilix;> f}andE ={xesSi i x; < [}forl j <d.Then
§a-1 U] 1(E*UE ). Hence, it is enough to show that for each 1 <k <d,

/ / @) = fD|"[Guld(x, ) |do (y)do (x) < co( f.n™ ") (3.5)
EESd-1

By symmetry, it is enough to consider Ej. For 0 <8 < and x € SY7!, let ¢(x, 8) denote the
spherical cap defined by

c(x,8) = {yeSi ! d(x,y) <35}

We choose § = 1/(100d) and split the integral in (3.5) into two parts:

/‘/n-do(y)da(x)—i—/ / -+-do(y)do(x)=: A+ B.

Ej c(x,8) Ej Sd=1\c(x,8)
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We first estimate the integral B:

/ / | f) = fFD|P|Ga(d(x, )| do(y)do (x)

E} {yeSI=1: d(x,y) >4}

< ond1-t / / 1f @) — FO) do () da(y)
§d—1 gd—1

=cn"‘1“ff /!f(x)—f(Qx)!”do(x)dQ, (3.6)

S0(d) sd-1

where the last step uses the standard realization of §d-1 = SO(d)/SO(d — 1). Using the de-
composition of @ in terms of Euler angles as in (2.2), each Q € SO(d) can be decomposed as
0=0102-04@-1y2 with Qr = Qj, j 1, for some 1 < iy < jix <d and 1 € [0, 27r]. It then
follows that

/!f(x)—f(Qx)I”da(x)S / | F(Qa—-1)2%) — f(x)|" do(x)
Sd—l Sd—l
ddzh g

+ Y / | £ Qi+ Qaa—1y/2%) — f( Qi1+ Quaa—1y/2x)|" do (x)
k=1 qa_1
< max_ sup / | £(Qij0x) = ()" do (x)

~I<i<j<d 0<g<on

So(f.2m), Snfo(fin™")),

which, together with (3.6), gives the desired estimate B < cw (f, n —hyp P

It remains to estimate the integral A. Setting x = (x', x4) with x4 = /1 — ||x’||2, we deduce
from (2.12) that

A=/ / |f) = FO|"Gu(d(x, y))do(y)do (x)
E} ex.d)

= / / |f(x)—f(y)|pGn(d(x,y))da(y)d—x/,

I <d* c(x.8) VI—Iv|2

where d* =+/1 — . Since x4 > ﬁ it follows that for any y = (¥, yq) € ¢(x,8), ya = x4 —

Vg —xg| Z x4 —d(x,y) 2 xq—86 2> ﬁ, which further implies, by a simple computation, that

X112 = 11y 112
Y|+

[ =¥/ < =y < ' = ¥ + v = yal = %' — xa + a
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< (1 +2x/c_l)||x/ —y’”.

Consequently, setting g(x’) := f(x’,+/1—[1x’||?), using (2.12) again and observing that
G, (61) ~ G, (62) whenever 6 ~ 6,, we obtain

ase [ [ ls) = g0 Ga(l = D)y ax
X/ II<d* |lx' =y | <8

=cC / / |g(.x/)_g(1/l +xl)|pGn(”u”)dudx/
I 1<d* |ull<8

Let bo(u) :=0and bj(u) :=uje; +---+ujej, 1 < j<d— 1. Since

d—1

g(x) —g(x" +u) Z x'+bji_1(w) —g(x +b;w))),

Jj=1
by triangle inequality it suffices to estimate, for 1 < j <d — 1,
Aj:= / / lg(x +bj—1w) — g(x" +b;@)|" Gu(llull) dudx’
x| <d* ull <8

S / / |g(x/)_g(x/+Mj6j)|pGn(||u||)dudx/’
/| <d*+5 ull <8

where the second line follows from a change of variables x” 4+ b;_1(u) — x’. By symmetry, it
suffices to consider Aj.
Observe that for u; e R and u = (4, v) € RI-2,

Go(llull) = n®= (14 nllull) ™ < Hy (jua )n?=2(1 + o)) =",

where H,(s) =n(1 + ns)~*T¢~1 and we have used the assumption £ > d — 1 in the last step.
This implies

ER B T
x| <d*+8 =8

x|: / Gn(”(ul,v)H)dvj| duydx’'
WeRT2: vl </62—Jui )

/|g x —i—se])’p (|s|)dsdx 3.7

x| <d*+8 —8
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Set v1(t, x') = —x1 +xj cost —+/1 — ||x’||?sint. A straightforward calculation shows that

L znex) g L 9 (t.x) <2 (3.8)
< < and —— < ——vq(t,x .
xvd t ayd > o

whenever |7| < /d8 = §* and ||x’|| < d* + 8. Thus, performing a change of variable s = v; (¢, x’)
in (3.7) yields
6*
e [ [1e) = et w0
x| <d*+8 —8*

vy (¢, x’
duit, x) ’x)‘dtdx’

/ /|8 (x" +vi(x', t)er)|” Hy(12]) dt dx’,

lx'll<p —8*

where p :=+/1— (2d)~! > d* + §, and we used (3.8) and the monotonicity of H, in the last
step. Now observe that for x = (x’, /1 — ||x’||2) with ||x'|| < p

Orax=(x"+vi(x',1)e1,z4), Vie[-6"68%]
where, using the fact that sint < ¢ < 1/(8Vd),

24 =\/1 — I+ vi(x", t)es ||2=x1sinz+,/1 — ||x’||zcost >1/@Vd) > 0.

Thus, using (2.12), we deduce that

6*
A S f / | f(x) = F(Q1.a,%)|" do(x)Hy(It]) dt
—8* (xeS9-1: x4 >2d) 1}
6*

S f (£ 1t1), Ha(I21) dt

_8*
Hence, by (2) of Proposition 2.7 and the definition of H,,,

8* 8*
A So(f /(1+nt)”H (1) dt = o(f, _I)Ifn/(1+nt)_£+”+d_ldt

So(fin™")) /(1 +9) P ds So(fon!),

since £ > p + d. This completes the proof. O
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The operator V,, f plays an important role in our study. Our next lemma shows that it com-
mutes with A; ; ;.

Lemma3.3. For L < p<ooand1<i# j<d,
zjtvf V( ;,j,tf)'
In particular, fort > 0,

wr(f — Vft)p cor(f, t)p

Proof. Recall that T f(x) = f(Qx) for Q € SO(d). By the definition of V,, f,

ToVnf(x)= / FOMK.((Qx,y))do(y) = / FOKa((x, 07'y))do ()

= / FOYKn((x, y))do (y) = Va(To f)(x)

§d—1

by the rotation invariance of do (y), which gives the stated result as A} j=U—-Tg; i) By
(2) of Lemma 3.1,

| a7 g = V”f)” =&} th_VnA{,j,tf||p<(1+c)||A;, ,

from which the stated inequality follows. O
3.2. Direct and inverse theorems for best approximation
We start with direct and inverse theorem characterized by our new modulus of smoothness.

Theorem 3.4. For f € L? if 1 < p < oo and f € C(S?™1) if p = oo, we have

Ey(f)p <cor(fin™'),, 1<p<oo. 3.9)
On the other hand,
n
o (fin™!), <en™ Y KT E1(f)p, 1< p<oo, (3.10)
k=1

where w,(f, 1), and E, (f), are defined in (2.9) and (3.1), respectively.

Proof. When » =1 and 1 < p < 0o, we use Lemma 3.1, Holder’s inequality and the fact that
Jsa-1 1Kn((x, y)|do (y) < ¢ for all x € SY~! to obtain
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En(f)p <|f- VL’%jf”p

1
P

S( / f|f(x)_f<y>|p|KL%J(<x,y))!fla(x)do(y)) :

§d—1 gd—1

from which (3.9) for r = 1 follows from Lemma 3.2. For r = 1 and p = oo, we use Lemma 2.8
and V,, f to conclude

En(foo <If = Vg fllso < f |f ) = FOD[K g ((x, y)) | do ()
§d—1
S / o(f,dx, 1)) o Kz ((x, y))|do ()

gd-1

Sw(f,nil)oo/(1+nd(x,y))|KL%J((x,y))|da(y)

gd-1

SJ w(f’ n_l)oo’

where the last inequality follows from (3.4) and the fact that (x, y) = cosd(x, y), just like the
estimate of A; in the previous proof.

For r > 1, we follow the induction procedure on r ([6, pp. 106-107], [8, pp. 191-192]) using
V., f in Lemmas 3.1 and 3.3. Assume that we have proven (3.9) for some positive integer » > 1.
Let g =f — VL%Jf. It suffices to show that | g, < ca),H(f,n’l)p. The definition of V,, f
implies that VL% 18= 0, so that

gy =1g = V2 8llp <cEz(g)p < cw)r(g,n_l)p.

On the other hand, using (2) and (3) of Proposition 2.7, we obtain, for any m € N,

2"t 1
CUr-H(g»M)p 1 —r—1
(g, 1)y <cpt” / — du+c, 2 gl, | ' du
' 2my

<ci(m, Nor1(g,0)p + 227" gl p,

where c; () is independent of m. Choosing m so that 47V <erer(r)27™ < 271 we deduce from
these two equations that

)

Igly < corsi1(g.n™"), <corpr(fin™")

p p

where the last step follows from Lemma 3.3. This completes the proof of (3.9).

The proof of (3.10) follows the standard approach for deriving it from the Bernstein inequality
(see, for example, [11, p. 208]). Upon using (ii) of Lemma 2.6, it reduces to the Bernstein type
inequality
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| D} P|, <en"IPll,, Pemy 1<i<j<d,
which, however, immediately follows from (ii) and (iii) of Lemma 2.6. O

As a corollary of Theorem 3.9, we have the following:

Corollary 3.5. For O <o <rand f e LP(S? 1) if 1< p <ooand f € C(S4™Y) if p= o0,

En(f)p ~n~% and wr(f, t)p ~t
are equivalent.
3.3. Equivalence of modulus of smoothness and K -functional

Theorem 3.6. Let r € Nandlet f € LP if 1 < p <ooand f € C(S* V) if p=o0. For0O <t <1,

a)r(f’t)pNKr(fat)pa lgpgoo'

Proof. By (ii) of Lemma 2.6 and the triangle inequality,

|85 5071, <1276 =0, + 147008l , SIS = glp +67[ D8],

from which w,(f, 1), < K, (f,1), follows. On the other hand, for t > 0 set n = L%J, then by
Lemma 3.1, (3.9) and (iii) of Lemma 2.8

— r .
Ke(f0p <If =Vafl 417 max [D];Vaf],

Son(fin ™), +i ma |7 V]

i<j<d i,j,n P

Sor(fin™!), Sor(fin)p
where the last step follows from (i) of Lemma 2.8. O

The proof of the above theorem, together with Lemma 3.3 and (iii) of Lemma 2.6, yields a
realization of the K -functional.

Corollary 3.7. Under the assumption of Theorem 3.6,

Ke(fin"), ~IIf = Vafllp+n7" max |D7;Vuf],.
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3.4. Comparison with other moduli of smoothness

We want to compare our modulus of smoothness w, (f, 1), with 0} (f, 1), defined in (1.3) and
@r(f, 1), defined in (1.6). By the equivalence of modulus of smoothness and K -functional, we
can work with K(f, 1), givenin (1.4) and K, (f, ), in (2.10). Thus, we need to deal with the
equivalence

max_ [ D7 e, ~ [ Ads]

1<i< p’

where A is the Laplace—Beltrami operator.

Let Hg denote the space of spherical harmonics of degree n in d-variables. The operator Ag
has Hﬁ as its space of eigenfunctions. For any o € R, we have

(=20)*Y = (n(n+d — )Y, YeH (3.11)
Lemma3.8. For 1<i# j<dandoaeR
D; j(=Ag)* = (—=Ag)* Dy ;.
Proof. Because of the density of the polynomials, we only need to establish this commutativity
for spherical polynomials, which can be further decomposed in terms of spherical harmon-

ics. Thus, it suffices to work with spherical harmonics. By (3.11), we only need to show that
D;, ng C Hz. Let A be the usual Laplacian operator. A straightforward computation shows that

07D =201+ D; 87,  ODi;j=Di 3} k#i, k#j,
from which it follows readily that
AD;j=D;i A, 1<i,j<d.
This implies that D; ;¥ € ker A if ¥ € ker A, which shows D; ;H¢ c HY. O

Lemma 3.9. Let f € |32, [1¢. Forr €N,

(nax_ 1Dij flp~ (=80 2 f] . 1< p <o, (3.12)
and, forr e N,
max_ D f|, <c|(=a0)%f],. 1<p<oco. (3.13)

1<i<j<d
Proof. The key ingredient of the proof is the following result proved in [9]
|20 2 7], ~ lgrad fll,, 1< p<oo, (3.14)

where grad f is defined by
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grad f :=VFl|gi1, with F(x) :=f<”x—”>, xeR\ {0},
X

inwhich VF := (0 F,...,04F) and 9; := %. The norm || grad f| , is taken over the Euclidean
J

norm of grad f’; that is, || grad £, = [|{ grad f, grad f)1/2||,,.
We relate || grad f||, to | D; j fll . A straightforward computation shows that

d
ad X
8_[f<ﬂ)} =8jf_xj2xiaif=_ Z xiDij f, (3.15)
X * flxll=1 i=1 (i 1<i#j<d)
where we have used 1 = Z?:l xl.2 in both equations. The first equation of (3.15) implies that
ID; ;i fl= |(xiej —xje,-,gradf)] < (grad f, glradf)l/2

on S?~1, from which follows immediately that || D; j f1l, < |l grad £ || ,. On the other hand, the
second equation of (3.15) implies that

d
(grad f, grad f) Z(Zx, ,,f> ggwi,ij<d21<g1<a;<<d<0,~,,f>2,

i#]

so that we have

1Dij fllp < lgrad fllp <d  max_ |IDijflp.

S LA

which proves, upon using (3.14), the equivalence in (3.12). Furthermore, by the commutativity
of D; j and (—Ag)® in Lemma 3.8, we have

[0, 71, < el a0 205 1], =075 a0 1],
from which the inequality (3.13) follows from inductiononr. O

Remark 3.1. The decomposition (2.6) implies immediately that

dd-1)
||(—Ao)f“p<Tl<< <d”D fl, 1<p<oe (3.16)
Together with (3.12) and (3.13), we see that
|20 f],~ max |Djf|, 1<p<co, 3.17)

1<i<j<d

holds for r = 1 and r = 2. However, we do not know if (3.17) is true for all r.

We can now state and prove our main result in this subsection:
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Theorem 3.10. Ler f € LP(S?~1), 1 < p <oc. Forr eNand0 <1 < 1,

K (f,0)p <cK (f,1)p, 1<p<oo. (3.18)

Furthermore, forr =1 or 2,

K (fit)p~ K (fi1)p, 1<p<oo. (3.19)

Proof. We only need to prove the inequality with = n~!. Furthermore, by Corollary 3.7, we
only need to work with polynomials V, f, for which the stated results are immediate conse-
quences of Lemma 3.9 and Remark 3.1. O

For 1 < p < oo, itis shown in [9] that &, (f, 1), ~ K} (f,1)p sothat o, (f, 1), ~ wf(f, 1), for
1 < p < 00. As a corollary of Proposition 2.3, Theorems 3.6 and 3.10, we can state the following
equivalence:

Corollary 3.11. Let f € LP (S Y with1 < p <oc. Forr eNand 0 <t < 1,

o (fi)p <o (fit)p ~ @) (f,1)p, 1< p<oo. (3.20)

Furthermore, forr =1 or 2,

wr(f,0)p ~ @ (1)) ~ 0 (fi1)p, 1< p<o0. (3.21)

According to the inequality (3.20), our new modulus of smoothness w, (f, 1), is at least as
good as w;(f,t), for 1 < p < oo and r > 1, and they are equivalent when r = 1, 2. We do not
know if the equivalence holds for r > 3. In the case of » = 2, the inequality (3.16) shows that
w}‘(f, 1)p < cwa(f,1)p also holds for p =1 and p = oco. A recent example of [15] shows that
the equivalence (3.21) fails at the endpoints p = 1, co.

4. Weighted approximation on the unit sphere

In this section we consider approximation in the weighted L” space on the sphere. The main
result establishes the analogue of the Jackson estimate for the doubling weight using our new
modulus of smoothness. Such a result has been established in [6, p. 94] using the weighted
version of @, (f, ) ,, following the lead of [23,24] for weighted approximation on the interval.
We shall follow the approach in [6] closely.

4.1. Definition of modulus of smoothness for doubling weight

A non-negative integrable function w on S?! is called a doubling weight if there exists a
constant L > 0, called the doubling constant, such that for any x € Slandr>0

w(do(y) <L / w(y)do ().

c(x,2t) c(x,t)
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Many of the weight functions on S~ that appear in analysis satisfy the doubling condition,
including all weights of the form

m
hay@) =[] 1x v, ;>0 v;es, (4.1)
j=1

as shown in [5, (5.3)], which contains reflection invariant weight functions introduced by Dunkl

(see [17, Chapt. 5]). Throughout this section, we assume that w is a doubling weight with the
doubling constant L. We further define

Wy (x) :=n¢"! / w(y)do(y), n=1,2,..., xes! 4.2)

c(x,nl)

and set wo(x) := wi(x). Then w, is again a doubling weight with doubling constant comparable
to L. Moreover, it satisfies the following inequality

wy (x) < L(l +nd(x, y))swn(y), s=logL/log2, n=0,1,.... “4.3)

We denote by L? (w) the weighted Lebesgue space endowed with the norm
» 1/p
1f 1. :=( / | f0 w(y)do(y)) (“4)
sd—1

with the usual change when p = oo. For f € LP(w), our weighted r-th moduli of smoothness
are defined by

wr(f,t := max sup ||A] , 0<p<oo, 4.5
r(F Dp.on 1<i<j<d|9|<pt” ol L, P .5)

and the corresponding weighted r-th order K -functional is defined by

K. (f,t = inf { - t" max |D!; } 4.6
r(f )p’w" geCr(Sd-1) ”f g”p’wndl_ 1<i<j<a’” ”/g”Pawn (4.6)

These definitions are analogues of those defined in [24, p. 181] and [6, p. 91]. They are used to
study the weighted best approximation defined by

Er(Hpw, = inf |If —gllpw,, 1<p<oo. 4.7
genkd_]

The direct and the inverse theorems for Ex(f) p,w, were established in [6] using the weighted
modulus of smoothness

o (fin), = i 12571,
-1

n
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Our development is parallel and follows along the same line. After establishing the properties of
the modulus of smoothness, most of our proof will be similar to the unweighted case in Section 3,
so that we can be brief.

4.2. Properties of modulus of smoothness

It was shown in [5, Corollary 3.4] that if f € 17,‘1’ then || fll p,w ~ | fll p,w, forall 0 < p < oo,
with the constant of equivalence depending only on L and d. An important tool for our study is
the Marcinkiewicz—Zygmund inequality. Let 8 > 0. A subset A of SY~! is said to be maximal
B-separated if S~ = Ugpea c(w, B) and min{d (v, o'): w, w0’ € A, w # '} > B. The following
result is a simple consequence of [5, Corollary 3.3].

Lemma 4.1. There exist a positive number ¢ depending only on d and L such that for any
maximal %-separated subset A of STV with0 <8 <e, f € H,‘f and 0 < p < oo, we have

1f Mg~ Y ke min [FO]7~ D ke max,

weA rec(o, ) weA

where Ay, = fc(w,anfl) w(x) do (x), and the constants of equivalence depend only on L, d and p.
We start with the following analogue of Lemma 2.6:

Lemma 4.2. Let r € Nand f € C" (S 1).

Q) If0<|t|<cn 'and 1< p < oo then

1<i<j<d.

|87 F o, S 10171OF5

PsWn pwn’

(i) Let f € Hd 1< p<ooandlete beasin Lemma4.1. If 0 < |t] < —, then
|aL ., ~ 1| Dp s £, 1<i<i<d,
where w,, and | - ||, are defined in (4.2) and (4.4), respectively.

Proof. (i) Let F; j(t,x) :== f(Q; jx). Note that for any #1,#, > 0 and x € se-1

Fijiti +1,x) = f(Qi jn+nx)=Fi j(t1, Qi j.nX),

it follows by the definition of the A; ;, that

t t
3}"
Az(,j,tf(x)zf"'/WFi,j(tl + -+t x)dry - diy (4.8)
0

t t
8r
- / / SR, Qi) - iy, 4.9)
0 0
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which implies, by Minkowski’s inequality, that

\ll ||
8r
A i, ,f||,, w, S / HWFi,j(O, Qi jity+-+1,%)

=l =l

dty --- dt,.

p,Wy

Since, by (4.3), w, (y) ~ w,(x) whenever d(x, y) < cn~! and d(Q;,j.x,x) <t, it follows from
the rotation invariance of do and (2.3) that for 0 < || <n~!,

Iz] I]
187307y, 5 [ oo [ 10857t die SO 51,
=l =l

(ii) Let A be a maximal £-separated subset of S?=1 with ¢ being the same constant as in
Lemma 4.1. Using (4.8), for any w € A and 0 < |#]| < rf—r, we have

t

t
ar
/-far Fij Q. Qi iyt @) diy - di,

|87 (N@)| =
0 0
,
<l 0, 1| D :
" max |= Fij Q,Juw)‘ " max D7 f ()]

Thus using Lemma 4.1 and setting A, = f w(x)do (x), we obtain

c(w,en~1)

12750 £ 10~ D ol AL F @] <elt? ) o max !D JfOP.

yec(w
weA weA @,

However, as shown in the proof of Lemma 3.8, Di’, j fe H,f , so that the right-hand side of the
above expression is, by Lemma 4.1, equivalent to |¢|"” ||D{’ j f ||ﬁ,w. Thus, we have established
the desired upper estimate || A} i Slpw St ||D’ f||p,w.

The lower estimate can be carried out along the same line. In fact, using (4.8), for € A and

t| < £, we have
nr

r

Fi j(0,x)| = |t|" mm |D iFO].

yec(w,

d
A7 (@) =11]"  min o

yec(w,e/n)

Since A7 ; () € Ty and D] ; f € I, it follows by Lemma 4.1 that

[A7 5 71D~ D Rl A7 f @)

weA

>clt|? ) ko min DL fO)|" ~ 101 DL f
wed yec(w,n*ls) ’

This gives the desired lower estimate and completes the proof. O
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Lemmad4.3. Letr e Nandlet f e LP(SY™1) if I < p <ocand f € C(ST™) if p = <.

(i) Fora>1landt >0,

r (fy M) pawy < c(pyr, w)(1+nA0) " PA 0, (f, 1) pouy, -

1
2Ny

(ii) Let m, n be positive integers. For 0 <t <

wr(f, t)p,wn <ceim, r)wq+1(f, t)p,w,, + CZ(r)amr”f”p,wnv

(L25)V/r
(L2%)1/P+1
depends only on r and L.

where § = € (0,1), ci(m,r) > 0 depends only on m, r and L, and c>(r) > 0

The analogue of this lemma using the weighted version of the modulus @, (f,1)p w, Was
proved in Lemmas 2.2 and 4.1 of [6]. The proof there carries over to our new modulus of smooth-
ness with obvious modification.

4.3. Weighted approximation on the sphere
Our main result is the Jackson estimate in the following theorem:

Theorem 4.4. Let f € L?(SY™") when 1 < p < oo or f € C(S*~") when p = 0o. Then

En(f)p,wn < er(f’ n_l)

pown’
where Ey(f)p,w, and w,(f, n~! ) p.w, and defined in (4.7) and (4.5), respectively.

The inverse theorem in terms of w,(f,?)p,w, follows from the one given in terms of
@r(f, 1) p,w, the weighted version of the modulus given in (1.6), in [6, p. 94], since @, (f, 1) p,w, <
@y (f, 1) p,w, as shown in Proposition 2.3. We can also state the following theorem:

Theorem 4.5. Let f € L?(SY~1) when 1 < p < oo or f € C(S?~') when p = 0o. Then

a),(f,nfl) NK,(f,nfl)

P, Wn pswn”

Furthermore, a realization of the K -functional is given by

Kr(f’n_l)p,wn ~INf = an”p,w,, +n_r1 ma Dlr,j(V"f) ||p,LUn‘

X
<i<j<d H

These two theorems are analogues of results in Sections 3.2 and 3.3. Their proofs are also
similar, using the properties of the modulus of smoothness given above and the following two
lemmas. The first one, proved in Lemma 2.5 of [6, p. 97], is as follows.
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Lemma 4.6. For 0 <k <4n, f e LP(S* 1) if 1 < p <00, and f € C(S? 1) if p = o0,

”an”p,wk <c||f||p,w1<’ and ”f - an”p,wk <CEn(f)p,wk7

where ¢ > 0 depends only on d and L.

The second lemma is the analogue of Lemma 3.2. Let

Gu(®) = G o(®) i=n" (1 +n10) " with £ >d+s+>.
p
Lemma 4.7. Suppose f € LP(S?™") for 1 < p < 0o. Then

/ | f) = fOD|Gu(d(x, y))wp(x)do (x)do () < co( f,n™")?

AU
§d—1 gd—1

Proof. The proof is similar to that of Lemma 3.2. We only list the necessary modification for the
weighted cases. First we need to replace do (x) and dx’ by w, (x) do (x) and w, (x") dx’, where
Wy (x") = wy (x', /1 — ||x’||?). Second, when making the change of variable x" + b;_ (u) — x’,
we need to use the estimate w, (x" — bj_1(u)) < (1 + n|lul)*w,(x"), which follows from (4.3).
Third, Lemma 4.3(i) and (4.3) have to be used several times in the proof, and it is often necessary
to replace G, ¢ by G, ¢—s when (4.3) is used.

We also refer to the proof of Lemma 3.1 in [6] for details. O

Part 2. Approximation on the unit ball

This part is organized as follows. In Section 6 we derive a pair of new modulus of smoothness
and K -functional on the ball from the results on the sphere. In Section 7, we study another pair of
new modulus of smoothness and K -functional, which are extensions of those defined by Ditzian
and Totik on [—1, 1] to the ball. Finally, in Section 8, we discuss extensions of our result on the
unit ball to W, with u being a non-negative real number.

5. Approximation on the unit ball, part I

We consider approximation on the unit ball B¢ and we often deal with the weighted L” spaces
LP(IB%d, W) for 1 < p < oo, where the weight function is defined by

W) = (1= 1272 w>o0. G.1)

For 1 < p < oo we denote by || f|l p,, the norm for LP(BY, W),
» 1/p
1A llpop = </|f(X)| WM(X)dX> ; (5.2)
B4

and || flleo, := I flloo for f € C(Bd). When we need to emphasis that the norm is taken over B9,
we write || fllp,. = 1/ lLr@e,w,)-
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5.1. Preliminaries

There is a close relation between orthogonal structure on the sphere and on the ball, so much so
that a satisfactory theory for the best approximation on the ball, including modulus of smoothness
and its equivalent K -functional, can be established accordingly [35, Sect. 4] and [36, Sect. 3].

For f € LP(BY, W), the modulus of smoothness in [36] is defined by

O (fo ) py = sup = )’/2f||w 1< p< oo, (5.3)

11t

where Teﬂ is the generalized translation operator of the orthogonal expansion, which can be
written explicitly as an integral operator [36, Theorem 3.6]. A K -functional K(f,t),, , thatis
equivalent to this modulus of smoothness is defined by

KF (.0 p=inf{If = gllpu+1] D¢, .} 1<p<oo, (5.4)

where D,, is the second order differential operator

d d
Zl—x =2 Y xixjdi0j— (d+20) ) xid;, (5.5)

1<i<j<d i=1

which has orthogonal polynomials with respect to W, as eigenfunctions, see (5.9). Both
of (f;t)p,u and KF(f;1)p,, satisfy all the usual properties of moduli of smoothness and K-
functionals, and they can be used to prove the direct and inverse theorems for

En(f)ppi= it [f=glpu (5.6)

gl

The approach in [35] is based on treating both T9“ and D,, as multiplier operators of the orthog-
onal expansions, and the results can be deduced from weighted counterparts on the unit sphere.
We shall define a new modulus of smoothness in the case of u = m=1 and m € N. The reason
that we consider such values of u lies in a close relation between the orthogonal structure on
S4+tm=1 and the one on BY, which was explored in [34].
Given a function f on B?, we will frequently need to regard it as a projection onto B? of a
function F, defined on S*"~1 by

F(x,x’) = f(x), (x,x/) esitm=l v eBY, X' eB". (5.7)

Under such an extension of f, Egs. (2.11) and (2.12) become, for example,

/ F()do (y) = o / FO(1 = 212" d (5.8)

Sd+m—1

where o, denotes the surface area of S”~! for m > 2 and oy = 2.
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Let V,”ll (W,,) denote the space of orthogonal polynomials of degree n with respect to the weight
function W, on B?. The elements of V,‘f (W) satisfy (cf. [17, p. 38])

DyP=-nn+d+2u—1)P forall P eV (W,). (5.9)

We denote by Pj'(x, y) the reproducing kernel of V¢(W,,) in L2(B?, W,,). It is shown in [34,
Theorem 2.6] that

Py(x,y) = / Znarm ({6, 9) +4/ 1= Iy 12 (x', §)) do () (5.10)

§m—1

for any x,y € B and (x,x") € S¥"~1 where Zy.4(t) is the zonal harmonic defined in (3.2)
i

and u = "5 L For 5 being a C*°-function on [0, 0o) that satisfies the properties as defined in
Section 3.1, we define an operator

VIEf(x) = au/f(y)K#(x,y)Wu(y)dy, xeB, (5.11)
Bd

where q,, is the normalization constant of W, and

2n

k
K (x,y) :=Zn<;>P,§‘(x,y). (5.12)

k=0
The operator V,* is an analogue of the operator V,, in (3.3), and it shares the same properties sat-

isfied by V,, f. In particular, the kernel K/ is highly localized [27, Theorem 4.2] and an analogue
of Proposition 3.3 holds for V' f [35, p. 16]:

Lemma 5.1. Let f € LP(BY, W,) if 1 < p < oo and f € C(BY) if p = 0o. Then
() Vi'ferd and V' f = f for f e ITY.

() ForneN, Vi fllp <cllflip-
(3) ForneN,

| =VEFl, . < CEnf)pon-
The following result shows a further connection between V, F' and 1% f.

Lemma 5.2. Let V,, denote the operator defined in (3.3) on St~ For x e BY, (x,x/) €
S4tm=1 and F in (5.7),

(VnF)(X,X/) = (Vn“f)(x), where i = mT—l
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Proof. By the definition of V,, and (5.8),

(VaF)(x,x") = 0asym / FWKn(((x.x"),y)) do ()

Sd+m—l

=Gd+m/f(v) / Kn((x,v) +/1 = [v]*(x', §)) do (§) W, (v) dv
B4 gm—1

= Od+m f FWKEx, VW, (v)dv= (Vn”f)(x),
B4

where the third step follows from (5.10) and the definitions of K, and K. O
5.2. Modulus of smoothness and best approximation

For a given function f € L? (B4, WmT—l ), the extension F in (5.7) is an element of

LP(Sdtm=1y according to (5.8). This relation can be used to define a modulus of smoothness
on the unit ball.
We denote by f the extension of f in (5.7) in the case of m = 1; that is,

f,xas) = f(),  (x,xq41) eRITL x eBY. (5.13)

Recall that A; j 9 = N and Q; ;¢ is the rotation in angle 6 in the (x;, x;)-plane.

Definition 5.3. Let 1w = 251 and m € N. Let f € LP (B¢, Woif1<p <ooand f e C(BY) if
p= ooForreNandt>O

CL)r(f t)p/,t = S‘UP {1<Izr:ajx<d“Al j@f”LP(Bd W) 11232(‘1”Al d+1, gf”Lp(Ed-H W, 1/2)}

(5.14)
where, for m =1, |1 A7 .\ o Fll ot w, ) is replaced by A7 4 o FllLr ).

Several remarks are in order. First, the second term in the right-hand side of (5.14) is neces-
sary, as for any radial function fand 1 <i < j <d, A{’jﬂf = 0. The first term is also necessary,
as will be shown in our examples in Section 10 (see the discussion after Example 10.4). Also,
the second term in (5.14) can be made more explicit by, recalling (2.8),

s o ‘
Al oS xar)) = Apf(x1, .., X1, xi cos(-) — Xgq1 $in(), Xig1, ..., Xd),

with the forward difference in the right-hand side being evaluated at 0. Second, when u = 1/2,
or m =2, we have the unweighted case, whereas if m =1 then W,,_1,> becomes singular and
the following limit holds:

MIE&_H A;,d+l,9f|iLP(Bd+lsWM—1/2) - “ A{,dﬂﬁf”ua(sd)’
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which follows from the limit relation that, for a generic function f,

Jim e L/1.f(X)(1-— 1) dx

Bd+1

= lim cﬂ/l/f(sx/)do(x/)sd(l—sz)u_lds:/f(x’)do(x/), (5.15)

n—>0+
0 s

where ¢, = ad+1(de+l (1= |lxI>)*~'dx)~1. Third, in (5.14), we have used the notation W, for
both weight function on B¢ and B¢*! which implies that x in the definition of W, is assumed
to be in the appropriate set accordingly. Finally, just as we remarked after Definition 2.2, the
modulus w, (f,1)p,, is not rotationally invariant and it relies on the standard basis ey, ..., ¢4 but
independent of the order of ey, ..., e4.

We can also define w,(f, t), in an equivalent but more compact form:

t = AT f . 5.16
orl D |ZFE;1<:I<nJa§d+1” ”J’9f||L”(B"“’Wu71/z) (5.16)

Indeed, if 1 <i < j <d, then A;jﬁf(x,xdﬂ) = Af’j’ef(x) by the definition of Q; jex
in (2.1); consequently,

| & ]ef”LpaBdH W 1)2) C”Al j@f”LP(Bd W)’

which follows from, for a generic function f and A > —1,

A 1=]x?
/f(y)(1_||y||2)*dy=ff(x) / (1= 11x]? — u?)* dudx
B+ B BV N
=c/fu) — 12 ax, (5.17)
d

where ¢ = f_]l(l — t%)*dt. Thus, (5.14) and (5.16) are equivalent.
To emphasise the dependence on the dimension, we shall write the modulus of smoothness on
the sphere as w,(f, 1), = o, (f, I)Lp(gd—l) in the following.

Lemma 5.4. Let 1 = "> and m € N. Let f € LP(BY, W,,) if 1 < p < o0 and f € C(B?) if
p =00, and let F be deﬁned as in (5.7). Then

wr(f, I)LP(Bd,Wll) ~ o (F, 1) psdtm-1y.

Proof. If 1 <i < j <d, then A’J F(x,x') = A’lef(x) by (2.1) and, hence, for m > 1, it
follows by (5.8) and (5.17) that
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m—2
|A;,-,9F(y)|”da(y>=om/|A:,9f(x>| (1= 1IxI?) "2 dx.
§d+m—1 B4
If1<i<dandd+1<j<d-+ m, then it follows from (2.8) that A’ F(x,x’) =
Ai’dﬂﬂf(x,xj), where x eIB%d, so that for m > 2,
r p m3
|67 6 FD|" do (y) = o1 / |A] 410 FOLP (1= N1x]1?) 7 dx

sd+m—1 Bd+1

by (2.11) and (2.12), whereas there is nothing to prove for m = 1 by the modification in the
definition of w, (f, t)Lp(]Bd)Wu) in that case. O

Theorem 5.5. Let o = 5L and m € N. For f € LP (B¢, W) ifl1< p<ooand f e CBY)if
p = 00,

En(fp Scor(fin™)), o 1< p <o (5.18)
on the other hand,
n
o (fin™"), <en Y KT E(pu (5.19)
k=1

where Ey(f)p . and wy(f,1)p,,, are defined in (5.6) and (5.14), respectively.

Proof. Let F be defined as in (5.7). By Lemma 5.2, (V,{Lf)(x) = (V, F)(x, x'), so that by (5.8)
and the Jackson estimate for F in (3.9),

[vir=rly,.= /|Vn“f<x) — fO" W) dx

B4

—e / VaF () = F)| do (3)

§d+m—1

gcwr(F,n_ )Lp(Sd+m I) Ca)r(f n )p’”j
which proves (5.18). The inverse theorem follows likewise from
En(F)ppgan—ry < cllVig) F = Fllppgasn—yy =c|[ Vi f = [, , cEi)(Hpu

and the inverse theorem for F in (3.10). O
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5.3. Equivalent K -functional and comparison

Recall the derivatives D; ; defined in (2.3). We use them to define a K -functional.

Definition 5.6. Let u = "5~ Landm e N. Let f € LP(B?, W), if 1 < p <ooand f e C(BY) if
p=oo.ForreNand? >0,

. r
Ko (fi)pn = med){llf glleriw, +17 max 1D gl w,)
r
T | D&l g, Wi 1/2)} (5:20)

where if m = 1, then ”Dir,dJrlg”L”(W“,W,kl/z) is replaced by 1D} ;& Lr(sd)-

Although g(x,xz41) = g(x) is a constant in x44; variable so that d;418(x, x44+1) = O,
we cannot replace D£d+l by (x;9;)", since Dl.”dH %+ (x;0;)" if r > 1. Observe also, that if
f(x) = fo(lx|D is a radial function and 1 <i < j < d, then D; ;(fg)(x) = fo(llx])D; jg(x);
in particular, this implies that D; ; f = 0 for any radial function f.

In the case of m > 2, we can also define the K -functional in an equivalent but more compact
form

K (ft = inf [ — 4+ max D }
- Dps geCr (B) I/ = 8llr@.w, 1<i<j<d+1” ’fg”L"(W“W -172)

The equivalence of the two definitions follows from (5.17). Just as in the case of modulus of
smoothness, these K-functionals are related to the K-functional K, (f,1)p = Ky (f, 1) p(sd-1y
defined on the sphere.

Lemma 5.7. Let,u—TandmeN Let f e LP(BY,W,) if 1 < p <ooand f € CB?) if
p =00, and let F be defined as in (5.7). Then

Kr(f, t)p,/t = Kr(f, t)Lp(Bd,Wh) ~ Kr(F, I)Lp(ScH»mfl).

Proof. The estimate K (F, 1) pgitm—1) < cKr(f, 1) ppma, W) follows directly from the defini-
tion, and the fact that for any g € C"(B?)

| D} jg”LP(JBdH Wioi/2) — | zr,jG||Lp(§d+m71)v I<i<js<d+1,
where G (x, x") = g(x) for x € B¢ and (x, x") € S¢tm—1,

To show the inverse inequality, we observe that on account of Lemma 5.2, (2.11), and (2.12),
If— Vrftf”Lp(Bd,Wu) =c||F — VnF||Lp(sd+m—l), and

”Dt j'n fHLI’(]B%d‘*" Wi—1/2) C”Dir,jV"(F)HL/’(SdM—l)’ ISi<jsd+l

The inverse inequality K (f, I)Lp(]Bd’WM) < Ky (F, 1) p(sa+m-1) then follows by choosing g =
Vi f withn ~ % in Definition 5.6, and using Corollary 3.7. O
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By Lemmas 5.4 and 5.7 and the equivalence in Theorem 3.6, we further arrive at the following:

Theorem 5.8. Let r € Nand let f € LP(BY, W,,) if | < p < oo and f € C(BY) if p = 0c. Then,
forO<t <1,

wr(f»t)p,u'\’Kr(f’[)p,;u 1< p<oo.

Next we compare the moduli of smoothness w, (f, 1), With @} (f, 1), defined in (5.3). By
Theorem 5.8 and [36, Theorem 3.11], it is enough to compare the K -functional K- (f, t) p,, with
K} (f, t)p, . defined in (5.4). We start with an observation on the differential operator D,, defined
in (5.5). To emphasize the dependence on the dimension, we shall use the notation Ag 4 = Ag
for the Laplace—Beltrami operator on S?~!.

Lemma 5.9. Let 1 = mT_l and m € N. Let F be defined as in (5.7). Then
Ao,d+mF (x,x") =Dy f (x), x eB, (x,x") e §dtm=1,

In fact, this follows immediately from comparing the expressions (2.7) and (5.5). Since both
are multiplier operators, their fractional powers are also defined and equal. Thus, as a con-
sequence of Lemma 5.7 and Corollary 3.7, we see that the comparison of the K -functionals,
Theorem 3.10, and the comparison of the moduli of smoothness, Corollary 3.11, on the sphere
carry over to the comparison on the ball.

Theorem 5.10. Let 1 = m771 and m € N and let f € LP(SY™1), 1 < p < o0o. For r € N and
0<t<l,

o (fi) pu <cof(f,)p,, 1<p<oo. (5.21)
Furthermore, forr =1 or 2,
o (f,)pu~0r(fi)pu, 1< p<oo. (5.22)
An equivalent result can be stated for K -functionals.
5.4. The moduli of smoothness on [—1, 1]
When d = 1, the ball becomes the interval B! = [—1, 1]. It turns out that our modulus of

smoothness appears to be new even in this case. For 1 = #5- L and m € N, the definition in (5.14)
becomes, written out explicitly,

1/p
o (fit) poy = sup <CM/|A9f x1 cos(+) + xp sin(- ))|" (x)dx) (5.23)

for 1 < p < oo with the usual modification for p = oo, where on f B l(x)dx The

dlfference Ag in this definition can be evaluated at any fixed point #p € [0, 271] More pre-
cisely, Agf(xlcos() + xp8in(+)) = Aegxl x, (o) for a fixed #p € [0, 27], where gy, ,(0) =
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f(x1cos8 + x2sinf). Clearly, the definition is independent of the choice of 7y, and makes sense
for all real u such that u > 0, whereas for 1 = 0 the integral is taken over S' upon using the
limit (5.15).

This modulus of smoothness is computable, as shown by the following example.

Example 5.11. For g, (x) = (1 —x)*, a >0andx € [—1,1], u >0and 1 < p < o0,

2u+1

P ——2’;:1 <a<l-— —2’521,
©2(8ar D pp~ 3 12 logt]V/7, a:l—%, p # 00, (5.24)
2 a>1-— 2‘;;].

This is proved later in Lemma 8.2. Notice that for u = ”‘T_l, this modulus of smoothness is
the restriction of the modulus of smoothness from the sphere.

In this setting, several moduli of smoothness were defined and studied in the literature; we
refer to the discussion in [16, Chapter 13]. In particular, o} (f, ), was studied by Butzer and
his school and by Potapov. The most successful one has been the Ditzian—Totik modulus of
smoothness [16], which we now recall.

Let ¢(x) = /1 —x2 and let wy(x) := (1 — x*»#*~Y2 on [—1,1]. The Ditzian-Totik K-
functional with respect to the weight w), is defined by

K (0= int{1f = glpuut " 0"s 7, ) (525

This K -functional is equivalent to a modulus of smoothness @, (f, t) .- called the Ditzian—Totik
modulus of smoothness and usually denoted by a)gro( fo ) p,u (see [16]):

K (i) pp~ar(fit)pun 1< p<o00, 0<t <ty (5.26)

In the unweighted case (i.e. in the case of yu = %), the Ditzian—-Totik modulus of smoothness is
defined by, as in (1.9),

I<p<oo, (5.27)

or(f.1)p :=0s122t||22¢f| »
<nNx

where 32 is the r-th symmetric difference defined by

Ay fO0) =Y (=) (Z)f(x + (% - k)@gp(x)),
k=0

in which we define ngf(x) =0 whenever x + rho(x)/2 or x —rhe(x)/2isnotin (—1, 1). In
the weighted case with ;> 1/2, the Ditzian—Totik modulus of smoothness is more complicated
and defined by, for 1 < p < oo,
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R —~ <«
or (f,Dp,p = 02121;”Alrwf”u(l,,,;wﬂ) + 0<hiugr2t2 I AUHUUWW

% ’ 5.28
+0<hS<ulI:;r2[2 ” hf”Lp(-]—l,rt;wl‘-) ( )

where the norms are taken over the intervals indicated with
=[-1+221-27), Je=[1-1221],  Jog=[-1 -1+ 1207,

and & (f, )oo,u = & (f, t)oo is defined as sup, ¢(_; 1 |zz(pf(x)|.
One important property of &, (f, 1), is the following equivalence established in [16, (2.1.4),
(2.2.9)]:

t

a),ft),,~—/||A fl5dh, 1< p<oo, (5.29)
0

with the usual change when p = oo. In the weighted case, the right-hand side needs to be replaced
by a sum of three integrals on the respective intervals [16, (6.19)].

The success of the @, (f, 1), lies in the fact that it is computable and can be used to estab-
lish both the direct and inverse theorems for algebraic polynomial approximation on [—1, 1].
The definition of @, (f,t) p,u for the weight w,, is more complicated and will be discussed in
Section 7.8. For even more general weight, see the book [16].

The connection between our modulus of smoothness and that of Ditzian—Totik is given in the
following theorem.

Theorem 5.12. Let p = "5~ m=l meNandreN. Let f € LP([—1,1],w,) if 1 < p < oo, and
f e C[—1,1]if p = co. Assume further that r is odd if p = oo. Then

o (i, Dpu<cor(f,)pu+ct | fllpu 0<t<t, (5.30)

where the term t" || f|| p, . can be dropped when r = 1.

Proof. By Theorem 5.8 and the equivalence (5.26), it suffices to prove the inequality for the
corresponding K -functionals:

K(f t)pu CK (ft)pu+0t ”f”pp.: 1<P<OO

with the additional assumption r is odd when p = oo. This inequality, together with the equiva-
lence K1 (f,1)p,u ~ K1(f,1)p, . 1s given in Theorem 6.2 of the next section. O

It is worth to point out that (5.29) and (5.30) imply that

. dxi d
/|Agf(x1cos(-)+x2sin(-))| _anan /||A JFDdn+etIfIp, (531
2

1-— xl —x2
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with the usual modification when p = oco. This highly non-trivial inequality will play a pivotal
role in Section 6.3.

We do not know if the reversed inequality of (5.30) holds when r > 2. We note, however, that
the order of @, (g, t)p,, given in (5.24) coincides, when p = 1/2, with the computation in [16,
p. 34] for @, (g4, t)p and 1 < p < oo except when o = 1. For o =1, g, (¢) is a linear polynomial
so that &, (ga, ) p =0, whereas w,(gq, t)p’% is non-zero.

6. Approximation on the unit ball, part IT

In this section, we introduce another pair of modulus of smoothness and K -functional on the
ball that are in analogy with those of Ditzian and Totik on [—1, 1], and utilize them to study best
approximation on the unit ball. Both the direct and the inverse theorems are established.

6.1. A new K -functional and comparison

Let ¢(x) :=+/1—||x||? for x € B?. Recall that the Ditzian—Totik K -functional fr(f, Dp.u
on [—1, 1] is defined in (5.25). We now define its higher dimensional analogue on the ball B¢.

Definition 6.1. Let f € L (B¢, Woifl1<p<ooand f € C(BY) if p=o00. For r € N and
t > 0, define

Re(fot)pyi= gecirrlde){ If = &llputi”, max [Df el , +1" max o 3fg]], n:

We establish a connection between I/(\,( fst)p, and the K-functionals K, (f,1)p,, defined
in (5.6). The result plays a crucial role in our development in this section. Recall, in particular,
that the proof of Theorem 5.12 relies on the theorem below.

Theorem 6.2. Let j1 = "5 L and m e N. Let f € LP (B¢, W) if1 < p <oo, and f € C(BY) if
p = oo. We further assume that r is odd when p = oo. Then

Ki(f,0)pp ~ Ki(fo D) popes (6.1)

and forr > 1, there is a t, > 0 such that

K (f,)pu < ck, (fiDput+ct I fllpu. O0<t<t. (6.2)

The proof of Theorem 6.2 relies on several lemmas. The first one contains two Landau type
inequalities. In the case of no weight function and r is even, this lemma appeared in [16, p. 135]
with || f1l, in place of ||¢" f |, in the right-hand side of the inequalities. The proof of the general
case follows along the same line, but there are enough modifications that we decide to include a
proof.

Lemma 6.3. Let ;1w > 0 and r € N. Assume f defined on [—1, 1] satisfies ¢” f) € LP[—1, 1].

() Ifl<p<oocand 1 <i<5orp=occand1<i<3,then
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||g0r_2if(r_i) Hp,u < ||<,0rf(r) ”p,u + CZH‘Prf”p,M' (6.3)

@ii) If r is even, set §, := 0 and assume 1 < i < % 1< p<oo;Ifrisodd, set 6, :=1 and
assumeléig%, 1< p<oo. Then

le* £ 1, <etlle fON,  +ele’ 71, . 6.4)
Proof. First, we show thatfor 1 < p<ooand 1 <i<r—1,

17N, <eUlF N, 0+ 1 p)- (6.5)

In the case when there is no weight function, this inequality is well known. We only need to
establish it for 1 < p < co. We derive it from the following result in [20, p. 109],

) 00 1_;_' 00 %
/x“|g(i)(x)|pdx<c</x°‘|g(x)|pdx> (/x“|g(r)(x)|de>
0 0 0
for all « > —1, which implies, by the elementary inequality |ab| < |“Iy) + % for % + é =1,
that for 0 <i <r,
o0 o o0
/x”‘|g(i)(x)|pdx <c/x°‘|g(x)|pdx+c/x°‘|g(’)(x)|pdx. (6.6)
0 0 0

For f defined on [—1, 1], we write f = f1 + fo = f¥ + f(1 — ), where ¢ is a C* function
on R such that ¥ (x) =1 for x < —1/2 and ¥ (x) =0 for x > 1/2. It then follows by (6.6) that
forO<i<r

100, <l 70, el filpn < el £71, el fllpp  G=1,2.

Thus, the proof of (6.5) is reduced to showing

Hf;r) “p,u <cllfllpu +C”f(r) Hp,l/-’ j=12 ©.7)

To see this, we observe that ¥’ is supported in [— %, %]. Thus, by the Leibnitz rule, we obtain

150 <l e 17y g

SEa FA PSS Vol Mee ya Vi Py

7-31
<c|rON, el fllpas

where the second step uses the unweighted version of (6.5). This proves the desired inequal-
ity (6.7), and hence completes the proof of (6.5).
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Now we return to the proof of (6.3) and (6.4). For f = fi + f» decomposed as above, us-
ing (6.7) and the fact that "’ w,, = w,p 24, we deduce

”gorfj(r) ||p,;,¢ < C(”(prf(r) ||p,,u + ”werp,u)’ J: 1’ 2. (68)

Thus, we can work with f;, j = 1,2 instead of f. However, by symmetry, we can assume,
without loss of generality, that f is supported in [—1, %]. We claim that if j € Z, and g €
Ci[-1,1]1is supported in [—1, %] then

le%sll, . <cle® ¢, , (6.9)

whenever u + % + % >0and 1 < p<ooora>0and p=oo. Clearly, once (6.9) is proved,
then (6.3) follows by setting g = ", a =r — 2i and j = i, whereas (6.4) follows by setting
g=fD,a=68and j=r —i.

Clearly, for the proof of the claim (6.9), it suffices to consider the case of j = 1. For p = oo,

1
we use the inequality |g(x)| < |fx7 g'(t) dt] to obtain, for —1 < x < %,
1
2
o ()g(x)| < el +x)? f|g/<r)|dr
X
1

”oo’

2
el | (142 /(1 +07 7 dr < o2
X

where we used the assumption a > 0 in the last step. This proves (6.9) for p = co.
Next, we show (6.9) for 1 < p < 0o. Again, we only need to consider j = 1. Our main tool is
the following Hardy inequality: for 1 < p < oo and g > 0,

0, 0 p 1/p o0 1/p
</</|f<y>|dy> xﬂ—‘dx> < %(f}yf(y)!”yﬂ“dy> S 610
0 X 0
Setting G(y) = g(%y — 1) with y € [0, 1], we obtain

1

2 1
le“sl? . <Cf|g(x)!”(1 + xS dx =c/|G(y)|”yﬂ—%+% dy

1 1 » ]
<C/</|G’(X)|dx) y“7%+% dng/|yG/(y)|pyM—%+% dy
’ 0

0
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1

2
=C/|g/(x)|p(x + I)M—%-‘r%-i-pdx < CH(pa-‘ng/H;M
-1

proving the claim (6.9) for j = 1. This completes the proof. O
Lemma 6.4. Let f be defined as in (5.13). Then
r .
Dy g1 f(x, xa41) = ij,r(m,x(zﬂ)a{f(X), xeB?, (x,x441) € BT,
j=1

where py (X1, Xg+1) = xZH and

@r)y_j—2v_ 2
Pj2r(X1, Xd+1) = Z a,; x) 7 xgt (6.11)
max{0, j—r}<v<j/2

@r=1) j=1-2v 2v+1
Pj2r—1(x1, Xa11) = > R (6.12)
max(0,j~r}<v<(j~1)/2

. . , (r)
for1 < j<2r—1land1<j<2r—2, respectively, and a,; are absolute constants.

Proof. Recall that f(x, Xd+1) = f(x), so that 8d+1f(x, xg4+1) = 0. Starting from
r .
Dfi}ilf(xl,xdﬂ) = (Xg4+101 — X104+41) ij,r(X1,Xd+1)3ff(X),
j=1

a simple computation shows that p; , satisfies the recurrence relation

Pjr+l =Xa+1Pj—1,r + (Xa+101 —x10a+1)pjr» 1< j<r, (6.13)
where we define po , := 0, and p, 41 41 = Xg+1pr,r. Since p1 1 = xqg41, we see that p, , = xO’lJrl
by induction. The general case also follows by induction: assuming p; , takes the stated from,

we apply (6.13) twice to get p; 42 and verify that they are of the form (6.11) and (6.12). O

We will also need the following integral formula, which is a simple consequence of a change
of variables.

Lemma 6.5. For l <m <d —1,

/f(x)dx: / |:/f(,/1—||v||2u,v)dui|(l—||v||2)%dv. (6.14)
BY B

d—m Bm
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We are now in a position to prove Theorem 6.2.

Proof of Theorem 6.2. We give the proof for the case m > 2 only. The proof for the case m = 1
follows along the same line. The only difference in this case is that we need to replace the integral
over B4t! by the one over s4 according to Definition 5.6, and use (2.12) instead of (6.14).

By definition, we need to compare || Dir,d+1 gl LP B+ W,y ) with |l¢" 9/ gll ... where

. ~1/2
I-lpp=I- ||L,;(dewﬂ). More precisely, we need to show

1Dias 18l Logast w, o~ 10818 lpu.  1<i<d (6.15)

and forr > 2

”Dir,d—&-lg”LP(Bd“,Wﬂ_,/z) S C”(prairg”p,# +ellgllpu, 1<i<d. (6.16)

If r =1, then by (2.8) Dy 4+18(x, X44+1) = x4+1018(x). Hence, by (6.14),

~ 2 2 —1
IIDi,d+1g||Zp(Bd+1,Wﬂim)= / |[xa11018(0)| 7 (1 = lIx 11> = x7,1)" d(x, xa+41)

Bd+!1

—1/2
=cf}<o<x>alg<x>|”(1 —1x1?)* 2 dx = cllpdiglh i,
Bd

where ¢ = [ 711 Is|”(1 — s*)*~1 ds. The above argument with slight modification works equally
well for p = oco. This proves (6.15).

Next, we show (6.16) for r > 2. By symmetry, we only need to consider the case i = 1. We
start with the case of even r = 2¢ with £ € N. In this case, 1 < p < 00, and by (6.11), we have

20

20 = J=2v 2v o)
D (x,xq+1)| <c E max X X5 107 g(x)|.
Ld+18 + ‘ = max{0,j —€}<v<j/2 1 d+1°18 |

This implies
¢ 20
I D]2,£d+]g”LP(IB“'H,WM_]/Z) S¢ , Ognvlg’;/zlj,v t+c Z j_gg‘éjﬂ Ijv, (6.17)
j=1 j=t+1
with
i = f ol x310] g0 (1 = el = x31) " e xa)

Bd+1

= C/|x{_2v¢2v(X)3ljg(x)|p(l _ ||X||2)u_l/2dx,
Bd
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where the last equation follows by (6.14). Let x = (x, x’) € B, Using (6.14) again, and setting
g (1) =g(top(x"), x"), we see that

~//W2” oo 0d g (<) x)|" (1 = 2 e (1= )" d

Bd—1 —1

1
c/[fwam¢MM%L4%““w{u—wwwwﬂ
Bd-1 =—1

where the inequality is resulted from |#/72V| < 1.
f1<j<e= % and v > 0, then <p2”(t) < 1, so that we can apply (6.4) in Lemma 6.3 to
conclude that

wee [ b

Bd-1 =—1

dze I I P - / /
22(t)dtu[ gle(x)e, x)]| (1- )" l/zdtj| (1=« Hz)”dx

e [ [lel@y) (=) P ar - Py

Bi-1 —1

—1/2
=c / 02 ()2 g ()P (1 = Ix12)" " dx +cliglh .

If€+1<j<2¢ and v > j— ¢, then 2" (1) < ¥ =2 (1), so that we can apply (6.3) in
Lemma 6.3 w1th i =2¢ — j and r = 2¢ to the integral over ¢, which leads exactly as in the
previous case to [, < cllwzealﬂg“ﬁ,ﬂ + CIIgllﬁ,M.

Putting these together, and using (6.17), we have established the desired result for the case
of even r = 2{. The proof for the case of odd r follows along the same line. This completes the

proof. O
Remark 6.1. In the case of r =2 and 1 < p < oo, the reversed inequality (6.2) holds:

CIKZ(f Dpu < K2(f,)pu < C2k\2(fvt)p,u+Ct2||f||p,,uy I<p<oo. (6.18)
This will be proved in a more general setting in Theorem 7.5.

We do not know if the first inequality in (6.18) holds for » > 2, but they have to be close as
both direct and inverse theorems hold using either K -functional.

6.2. Direct and inverse theorem by K -functional

For the K-functional given in Definition 6.1, we establish both the direct and the inverse
inequalities.
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Theorem 6.6. Let o = "5, m e Nand r e N. Let f € LP(B, W,,) if L < p <00, and f €
C(BY) if p=o0. Then

Ea(fpse <cKp(fin™"),  +en™ I fllps (6.19)
and
n
Ko (fin™"), , <en™ Y KT E(f)pou- (6.20)
k=1

Furthermore, the additional term n™"|| f| p.,. on the right-hand side of (6.19) can be dropped
when r = 1.

Proof. When 1 < p < oo and r € N or p = 0o and r is odd, the Jackson type estimate (6.19)
follows immediately from (5.18) and Theorem 6.2. Thus, it remains to prove (6.19) for even
r =2¢ and p = oo. Since we already proved (6.19) for I?gg+1(f, )0, it suffices to show the
inequality

Kot 1(f, Doo < cKae(fs oo (6.21)

For d =1, (6.21) has already been proved in [16, p. 38]; whereas in the case of d > 2 it is a
consequence of the following inequalities

|07} el < clDijello and o™ 07 el <clo"d g

which can be deduced directly from the corresponding results for functions of one variable; see,
for example, (6.9).

The inverse estimate (6.20) follows as usual from the Bernstein inequalities: for 1 < p < oo
and P € IT¢,

1<?1gx<d||D PH <en”||Pllp, and max ||¢ ay P|| <en”||Pllpy.  (6.22)

The second inequality in (6.22) has already been established in [5, Theorem 8.2], so we just need
to show the first inequality. Without loss of generality, we may assume (i, j) = (1, 2). We then
have, for 1 < p < oo,

9ar15, = [ | [1P7arewm o) (- -y Fan s
B2

Bd-2

X (1 - ||u||2)”+% du

1
/ /|:/|D1 2 f(p)pcost, p)psing, u)|” d9i|

BI-2 0

x (1= p%)""2 pdp(1 = ul?)"** du
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- / /I[ﬁ <r>(e)ypd9}( 2)‘“%pd,o(l—||u||2)‘“%du

B-2 0 -0

1
<on'? //[flfupw)l”de}( P pdp(1 -l du

Bd-2 0

=cn"P || fllp,us (6.23)

where f,, ,(0) = f(p(u)pcosb, p(u)psinf, u), and the inequality step uses the usual Bernstein
inequality for trigonometric polynomials. Using (2.4), the same argument works for p = co. This
completes the proof of the inverse estimate. O

Remark 6.2. Since the Bernstein inequality (6.22) is proved for all u > — %, the inverse estimate
(6.20) holds for all > —1 as well.

6.3. Analogue of Ditzian—Totik modulus of smoothness on B¢

Recall the definition of the Ditzian—Totik modulus of smoothness in (5.27). We define an ana-
logue on the ball BY. Since the definition for the weighted space has an additional complication,
we consider only the unweighted case, that i is, the case Wy2(x) dx = dx, in this section. Let ¢;
be the i-th coordinate vector of R and let A’ _ be the r-th central difference in the direction

of ¢;, more precisely,
hes [ (x) = kzo(—nk(;)f<x + (% - k>he,->.

As in the case of [—1, 1], we assume that Kzei is zero if either of the points x + r%ei does
not belong to BY. We write L”(B%), || |, and K, (f, 1), for L? (B¢, W 2), I £ 1l o e, w, ) and

I’(\,( f,t)p.1/2 respectively. The modulus of smoothness @, (f,?), in (5.27) for the case d = 1
suggests the following definition:

Definition 6.7. Let f € L?(B?)if 1 < p <ooand f € C(BY) if p=o00.Forr e Nand r > 0,

oy (f, ), = sup {
0<|h|<t 1<l<]<d

x N8%inf 1, max |80 £, I (6.24)
As in the case of Definitions 2.2 and 5.3, the new moduli are not rotationally invariant, they
depend on the standard basis ey, ..., ez of RY but independent of the order of this basis. In the
case of d = 1, there is no Euler angle and the definition becomes exactly the one in (5.27).
Much of the properties of the modulus of smoothness @, (f,t), follows from the correspond-
ing properties of the moduli of smoothness on the sphere and on [—1, 1]. For example, we have
the following lemma.
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Lemma 6.8. Ler f € L?(B?) for 1 < p < 00 and f € C(B?) for p = <.
(1) For 0 <t <ty, @r1(f, ) p < cap(f,1)p.

(2) For)» > 0; d\)r(fv )‘ft)p < C()"+ l)ré)r(fvt)p'
3) ForO<t < % and everym >r,

1
B0 (f1)p < cn (ﬂf%dwr’nfup).

t
(4) ForO0<t <ty, & (f,1)p <cllfllp

Proof. For 1 < p < oo and Alf T f, we use the integral formula

85018 = /d ! /|A,@f (53| do (<) ds

and apply Proposition 2.5. For Eg ei f, we use (6.14) with m = 1 and the fact that if x =
(p(u)s, u) then ¢(x) = p(s)p(u) to conclude that

6B £12 = [ 167 Bt FCO1

BB4

f f |0 9" () Dfyypure; (@5, u)|” dsp(w) du

Bd-1 —1
= / ((p(u) VP+1|:/|§0 (S)Aé)(p(s)e,fu(s)| dsi|
Bd-1

where f,(s) = f(¢(u)s, u) and apply the result of one variable in [16, p. 38, p. 43] to the inner
integral as well as the equivalence (5.29). O

Next we establish the direct and the inverse theorems in @, (f, ) p» one of the central results
in this section.

Theorem 6.9. Let f € L?(BY) if 1 < p < 00, and f € C(BY) if p = oo. Then forr € N

En(f)p <car(fin™"), +n7" I f1p (6.25)

and

n

o (fin™"), <en™ Y K TVEL(S)). (6.26)

k=1
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Furthermore, the additional term n™"|| f| , on the right-hand side of (6.25) can be dropped when
r=1.

Proof. We start with the proof of the Jackson type inequality (6.25). By (5.18), it suffices to
show that for the modulus w, (f, 1), given in Definition 5.3,

a),(f,n_l)P < con(f, n_l)p +en | fllp- (6.27)

However, using Definitions 5.3 and 6.7, this amounts to showing that for 1 <i < d

sup 187 a1l o @ast wyy < €or(fiD)p + et 1 Fllp, (6.28)

1<t

where f(x,xd+1) = f(x) for x € B and (x, x44+1) € BT!. By symmetry, we only need to
consider i = 1. Set

fU(s)zf((D(v)ss U)s UEBd717 Se[_lvl]a
where ¢(v) = /1 — ||v||2. We can then write, by (6.14),

” AT,d+l,9f”1[:!7(1534&1"4/0)

_— d
= / | &5 £ (x1c08() + X441 8in(), X2, . .., xq)|” al

1 V1=

erv X1 ¢0s(-) 4+ Xg41 sin(+) pM e)dv.
|25 1 )|

B [ _2_ .2
Bi-1 -p2 1= ~ Xd+1

Applying (5.31) to the inner integral, the last expression is bounded by, for |6] < ¢,

1
/ / |:/|A2w(s)fv(s)|pds:|(p(v)dvdh+trp / /va(s)Ipdsgo(v)dv

0 Bd-1 -— Bd-1 —1

t 1
1 -~
—ci [ [ [Bisiumina ws )| dsow dvan+ i

0 Bd-1-1

/ [ 1B f I i+ et 1715 < 6,105 + 11,

0 B4

For r = 1 the additional term ¢"?|| f ||§ can be dropped because of Theorem 5.12. Obviously, the
above argument with slight modification works equally well for the case p = oco. This proves the
Jackson inequality (6.28).

Fmally, the inverse estimate (6.26) follows by (6.20) and the inequality &,(f,?)p . <
CK (f. 1) p,u» which will be given in Theorem 6.10 in the next subsection. O
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6.4. Equivalence of &,(f,1), and K. (f. Dp

As a consequence of Theorem 6.9, we can deduce the equivalence of the modulus of smooth-

ness @ (f, ), and the K -functional I?r (fiD)p:

Theorem 6.10. Ler f € L?(BY) if 1 < p < 00, and f € C(B?) if p = oc. Then for r € N and

O<t<t,

T (fo0)p <K (fi1)p <@ (fi0)p + et I f -
Furthermore, the term t" || f || , on the right side can be dropped when r = 1.
For the proof of Theorem 6.10, we need the following lemma.

Lemma 6.11. For | < p<ooand f € 17,;1, we have

n7r||Dlr,jf||p,MN Sup ||A j@f”pu l<l<]<d’

161<n
and

n!

w5 I [ (B sl an 1<i<a

with the usual change when p = oo.

(6.29)

(6.30)

Proof. The relation (6.29) follows directly from (6.23) and the corresponding inequality for
trigonometric inequality (see, for instance, [31]). The relation (6.30) can be proved similarly. In

fact, setting i = 1 and f,,(s) = f(¢(u)s, u), we have

!
"_rp”wraff”ZZ”_rp / |:/|<ﬂr(S)for)(S)\pds}<p(u)du
pd-1 5

n!1

" / |:/ /|z2w(s)f“(s)|pdeh:|<ﬂ(u)du

Bd-1 =0 -1

n!

=1 [ |Bhye, 71 an

0

where we have used the equivalence of one variable in [18, p. 191] and (5.29).

a

(6.31)



FE Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310 1281

Proof of Theorem 6.10. We start with the proof of the inequality

O (f.)p <cKp(fi)p, O<t<ty. (6.32)

Let g; € C"(BY) be chosen such that
If = gllp <2K,(fi1)p, 1 lgf‘f‘}‘gd“ D g, <2K:(f.0)p,
and

" max o795, <2K:(f.0),.

From the definition of @ (f, t), and (4) of Lemma 6.8 it follows that

wr(f t)p wr(f glvt)p+wr(gtvt)p CK (f, t)p+wr(gtst)p

Consequently, for the proof of the inequality of (6.32), it suffices to show that for g € C"(B),
|47 j08ll, <cO"|Df gl and |&j,.8], <co"[o"o]g], (6.33)

First we consider Kg ver f, for which we will need the corresponding result for [—1, 1]. It is
known [16, (2.4.4)] that there exists ¢ € (0, 1) such that for 0 <k < ¢,,

||Z;t(pgf ”Ll)[—l,l] <ch’ ”‘/’rgt(r) ”LP[—I,I]' (6.34)

For p = oo, the proof of (6.33) follows from the usual relation between forwarded differences
and derivatives. For 1 < p < 0o, we only need to consider the case of i = 1. Using (6.14) with d
replaced by d — 1, we obtain by (6.34) that

1

|850e81; = / / |2 retsrer & (05, ¥)| ds o(y) dy
Bd-1 —1

1
= / f@?)q;(s)gy(S)!”dw(y)dy

Bd-1 —1

p

orp <p(s)— (es.y)]| dse(y)dy

—ce”’f]go )3 g()|" dx = o™ [ ¢" 3] g},
Bd

where g, (s) = g(¢(y)s, ). This proves the second inequality of (6.33).
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Next, we consider A} .08 for which we will need the corresponding result for trigonometric

functions. Let 2 be a 27 periodic function in L?[0, 2] and let ||k, := (foh [h(0)|P d6)V/P in
the rest of this proof. Then it is known (see, for example, [11]) that

|Z5n], <ch[n7] . (6.35)

We consider only the case of (i, j) = (1, 2). By (2.8),

85208l = [ [187208(000000) P02 dvan

B2 B2

f / /|A pcost,psint,go(p)u)|pdt<p(p)d_2dpdu.

Bd-2 0

Setting g, ,(t) = g(pcost, psint, p(p)u), we deduce from (6.35) that

1
|a% 26 f1) < Cerp/ / /|g(r) 0|7 dt 9(p)*~*dp du

Bd-2

=c0 p/|D§ 2g(x)|p x—c@rpHD
B4

which proves the first inequality of (6.33). Consequently, we have proved the inequality (6.32).
We now prove the reversed inequality

Kr(f.0)p <ctp(f,0)p+ct I fllp- (6.36)

Setting n = L%J, we have

ReCh0p < = VEr, +07 s DLV, 4 mas o v p ],

1<i<j<d

The first term is bounded by c@(f, 1), + cn™ || fll, by (6.25). For the second term, we use
(6.29) to obtain

t"  max HD’ V“f” Lcap (VI fin~ ) <cc?)r(Vn“f—f,nfl)p—i—cc?)r(f,n*])

1<i<j<d ijon I

<l f =Vl fl, +ean(fin™), <car(fi0)p + et I fllp-

The third term can be treated similarly, using Lemma 6.11. This completes the proof of (6.36). O
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6.5. Analogue of Ditzian—Totik modulus of smoothness with weight

For w, (x) = (1 — 1?)#=1/2 the Ditzian—Totik modulus of smoothness &, ( f, 1) p,u 1s defined
in (5.28), with two additional terms of forward and backward differences close to the boundary,
which are shown to be necessary in [16, p. 56].

For the unit ball, we can define the modulus of smoothness with respect to W, for p > 1/2
in an analogous way. For this purpose, we first need to define the analogues of /; and J4; ;. For

x eB? and 1 <i <d, we define X; := (xq, ..., Xi—1,Xi+1, ..., Xg). For 1 <i <d, we define
Xi d Xi
]Ii,:z{erBd:ieI,}, Jilitzz{xe]B%:ieJi“}.
V1—lI%i12 V1—=%i2

Definition 6.12. For 1 > 1/2 and 1 < p < 0o, define

or(f,t 1= su max ||A) + sup max |AT
D |€|£t1Si<j§dH ””Qf”f’”‘ O<h211<i<d” h*“ff||L”<Hf.rh’Wu>

<« —
+0<hS<ulgr2;2 lrgiaéd(uAze"fHL”(Jl,i,rrsWu) + ” A;’eif”LP(JfLi.rhWﬂ))’

with the usual change when p = oco.
The direct and the inverse theorems hold for this modulus of smoothness.

Theorem 6.13. Let 1 = ’"2_1 andm > 2, let f € LP (B¢, W,) if 1 < p < oc. Then forr e N

En(py <car(fin™), A0 I fllpu (6.37)
and
n
Or(fin™),  <en™ Y KT EK() p e (6.38)
k=1

Furthermore, the additional term n™"|| f| p.. on the right-hand side of (6.37) can be dropped
whenr = 1.

Proof. The proof of (6.37) follows along the line of Theorem 6.9 and we shall be brief. Since
(5.18) is established for W, with u = mT*], we again come down to showing that for 1 <i <d

l:}lf [ A{’[waHLP(EH.’WM/Z) <edr (fit)pu+ et |1 £l pops (6.39)
<t

where f (x, Xg4+1) = f(x) for x € BY and (x, x441) € B¢t!. The major difference is that instead
of (5.31), we have
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/|Z§f(x1 cos(-) + xasin()) |7 (1 = x7 — x3)" " dx
BZ

Mmdmwwww waMmMWM

ﬂAmmhmww+ﬂwmw

which follows from (5.30) and [16, p. 57]. Now, it is easy to see that if x = (¢(v)s, v), then s € I
is equivalent to x € I[; ; and s € Jy;; is equivalent to x € J11,1,, from which we can carry out
the computation and establish (6.39) exactly as in the proof of Theorem 6.9.

The proof of (6.38) follows again by (6.20) and Theorem 6.14 below. O

Two remarks are in order. First, it is worth to point out that, in the case of d = 1, this theorem
did not appear in [16], which gave the Jackson estimate for the weighted approximation in terms
of the main-part modulus of smoothness. The result was later proved in [22, p. 556] and, for
1 < p < 00, in [7, Corollary 7.3]. Second, in the case of p = oo, the norm in a)r(f oo, u 18
taken as || f|loco,, = Wy f lloo, Which is not what the norms in w, (f, )oo,;, OF K (f, oo, are
taken. Thus, we exclude the case of p = oo in the above theorem and the theorem below.

Theorem 6.14. Let n = = m>1andletfeL1’(IB3d W) if1 < p <oo. Then forr € Nand
O<t<t,,

& () pu K (F0pu <& (£ +ct I fll e (6.40)
Furthermore, the term t"|| f|| , on the right side can be dropped when r = 1.

Proof. The proof of this theorem follows along the same line as that of the proof of Theo-
rem 6.10 and we only need to point out the difference. For the left hand inequality &" (f, 1), ;. <
ck, (f, 1) p,u of (6.40), the counterpart on A; Ix) f follows as in the unweighted case without
further complication, so that the essential part 1s to show that

Hzgweigum(ﬂ,,e,wﬂ) Scllfllp, s H Aewezg”m(ﬂw,wﬂ) <t ”‘praz‘rng,w

sup 8508l oy, wy <CNFllpus
o< Tt W)

|9|<Slll£‘2[2 || Age'z'g HLP(J]IJ,H’WM) <et’ “(pr alrg || p.u

and a similar inequality for Zg a8 with g € C"(B?). As in the proof of Theorem 6.10, the proof
of these inequalities reduces to the corresponding inequalities in one variable, and the weighted
version of (6.34), which however follow from the results given in [16, p. 58].

For the right hand inequality of (6.40), we can follow the proof of Theorem 6.10 verbatim
once we establish the relation, for f € H,‘f,
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U / B V25, 00

\/.”A;‘lf”l,l’(‘l n—1> Wﬂ)dh+n /’|Ahf”L[)(J ',rnil’w“')dh’

1.i

which is the analogue of (6.30). The proof of this relation follows as that of (6.30) from the
corresponding result in one variable, and the equivalence in one variable follows from [16, p. 57]
and [18,p. 193]. O

It should be mentioned that [16] considers far more general weight functions than w,, in the
case of d = 1, but we can only deal with W, as our results depend on Section 6.2, in which
weight is W, with = *5—. On the other hand, it is possible to consider doubling weights and
establish the results as in Secnon 5.

We note that it is more involved to derive properties for the weighted modulus of smoothness,
which requires us to verify that the corresponding results hold for the weighted L? space on
[—1, 1]. Such results are stated mostly for weighted main-part modulus of smoothness in [16]
and a close look at the proof in [16] indicates that the weighted case requires caution and perhaps
further work. Since the result is not needed in this paper, we shall not pursue it here.

7. The weighted L? (B¢, W,) space with u # (m —1)/2

The results that we obtained in the previous sections are established for the space L? (B¢, W)
with p = mT_l The definitions of the moduli of smoothness and the K-functionals, however,
make sense for all u > 0 A natural question is if our results can be extended to the case of
LP(BY, W) with p # ™= This, however, appears to be a difficult problem. Below we give a
positive result for the case of r =2.

7.1. Decomposition of D,

Recall the second differential operator D, givenin (5.5) and the operators DZ i 1<i<j<d
defined in (2.3). We further define ‘

—1 .
D} =W &[(1— IxII)We0) ], 1<i<d.
It turns out that D,, can be decomposed as a sum of second order differential operators.
Proposition 7.1. The differential operator D,, can be decomposed as
d
2 2 2
Du=)_Dhi+ ) D= ) D 7.0
i=1 1<i<j<d 1<i<j<d

The proof is a straightforward computation. In the case of d = 2, D12 , is simply the second
partial derivative with respect to 6 in the polar coordinates. In this case, it is tempting to write
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the decomposition entirely in terms of polar coordinate (r, ) but it does not seem to offer further
structure.

The decomposition (7.1) implies immediately that |D,gllp,,. is bounded by the sum of
||Di2, jg|| p,u for all g for which the norms involved are finite. More importantly, however, the
reversed inequality holds. For this, we relate D, with a differential operator, D, 7 on the sim-
plex T4 .= {x cRY: 1 —x1—--—x4 20, x; 20, 1<i<d} and use aresult for D, 7. Let
BY :={x eB?: x; >0, 1 <i<d}andlet

VU, ug) €T (Vur, ..., Jug) € BL. (7.2)

This change of variables leads immediately to the relation

1 du
/f(x1,...,Xd)d)C=Z—d/f(«/ul,...,q/ud)m. (73)
Bd Td
In particular, it maps the weight function W, to the weight function
- - -1/2
Wl =x; 2 P =) xerd, (7.4)

where |x|; = x1 + - - - + x4. Furthermore, the mapping (7.2) sends the differential operator D, to

d
1 d+1
Z xinaiaj-i-Z(E—(H‘f‘ ) >xi>3i7 (7~5)
i=1

d
. § : 2
D[L,T = xi(l —xi)ai -2
i=1 1<i<j<d

and D, 1 has orthogonal polynomials with respect to WHT on T¢ as eigenfunctions. Much of the

analysis on B¢ or T¢ can be carried over to the other domain through this connection (see, for
example, [37]). It is known that D, r satisfies a decomposition [2,12],

d
Dur=) UL+ Y U= ) Ul
i=l1

1<i<j<d 1<i<j<d

where, with 9; j :=9; — 9;,

T
Ui,i

(W] o[ (1 - )Wl 0]o,  1<i<d,

Ul =Wl o] o [xix Wl la,, 1<i<j<d.

Let | - ”;,u denote the norm of L? (W) = LP(TH, W1). In fact, the decomposition of D, can
also be derived from the mapping (7.2).

Lemma 7.2. For g € CZ(IB%d), 1<i<j<danduc T4,

D, g(¥ ) =4Dyur(go¥)(w) and D} jg(vw) =4U] (g0 y)w). (7.6)
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Proof. Under the change of variables x; = /u;, 1 <i <d so that (g o ¥)(u) = g(Juy, ...,
Jua) = g(x), the relation for D, follows from a straightforward computation and so is the
case Diz"l., since x; = ,/u; implies that 9y, = 2,/u;9,,. We now consider the case of DZ j with
i < j. First we note that

-1
D} =[Wu(x)]™ (it — x;0) Wy (¥) (x; 0, — x,0,).

In fact, the above identity holds if any differentiable radial function is in place of W. Setting
x; = \/u;, we see easily that x; 8xj —Xj0y, =2 /Ui (Bu_/. — 9y;). Consequently, it follows that

D2 g(x) = 4(1 — uly) ™7 Yty (0, — D) 77 (1 — 1a11)" ™2 @y — ) (g 0 ¥) (0)
=4[W )] @, — ) (i, W @0)]@u, — ) =4U] (g 0 ¥ ),
which verifies (7.6). O

7.2. Differential operators and K -functional

The following result was established in [10] recently: for f € CX(T%,

T
1wt Fleeaawn~ o N0 loawry, 1<p<oo. (1.7)
1<i<j<d

With the connection in the previous subsection, it immediately leads us to an analogous result
for D, on B.

Theorem 7.3. For g € C*(BY),

IDugllp~ Y, |Del,,. 1<p<oe.
I<isj<d

Proof. By (7.1), it suffices to prove that
2
H Di,jg”p,u <clDpglp.u (7.8)

for 1 <i,j <d. This is the same as in the proof in [10], which amounts to showing that for
feC¥ (T and 1<i<j<d,

” Uiij”Lp(Td’WZ) < C”DIL,Tf”LI’(Td,W[)v I<p<oo. (7.9)

We shall deduce (7.8) from (7.9) and the change of variables (7.2). Now, for ¢ = (g1, ...,&4) €
{—1, 1}¢, we define g, by g.(x) = g(x1€1,...,X484), X € B“. We claim that

(D} ;8),(x)= (D} 8:)(x). 1<i<j<d, xeB’ (7.10)

Indeed, since 9; g, (x) = €;(9; g)s(x), this can be verified via a straightforward computation. Us-
ing (7.3), (7.6) and (7.10), we obtain
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/|D,2,g(x)|”w (dx= Y /| 7:8), (0] Wy (x) dx

Bd ee{—1, l}d

- Z /|Dz]g8(x)|pwﬂ(x)dx
se{—l,l}dB
4

4P

T od Z /|Ui,Tj(geOW)(M)V)W,f(u)du.
se(—1,114 g

Consequently, using (7.9), followed by using (7.6) and (7.10) again, we conclude that

leﬁ,»g(x)VWu(x)dx <c Z f|DMT<g8ow>(u)|”WT<u)du
B4

e€{=1,1}9 q

1
Segg Do [ 1Pue@| Wy dx
86{—1,1}”’Bd
¢

:c/}DMg(x)|pWM(x)dx
d

for 1 < p < o0o. This completes the proof. O

The differential operators Dl.2 i for i < j are second order derivatives with respect to the Eu-

ler angles, whereas D?i does not have such simple interpretation. Our next result shows that
||Di2ig||p,u can be further reduced. Recall ¢(x) = /1 — ||x||2.

Theorem 7.4. For | <p <oo, 1 <i<dandgce CZ(IB%d),

282

i g”p,/j, < ” Diz,ig”p,u S H(pzaz

cifle 7ell, . +e2lglpu-

Proof. It is enough to consider Dil. We make a change of variables, x — (s, y), where y =

(y2, ..., y4), by setting x; =+/1 — ||y||%s and x; = y; fori =2,...,d. It follows immediately
that ¢ (x) = @(¥)@(s). Furthermore, a quick computation shows that

d2

d
—_ s =
ds? 2+ )Sds’

D} 1g(x) = Asgy(s),  Agi=(1—+)

where g,(s) = g(s@(y), y). Let w,(s) = (1 — s2)=1/2 Tt is easy to see then that A, can be
written as

d d
Ay =wy(s)™! [(1—s )wu(s)]a.

It is known that the differential operator A; satisfies [10]
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et 08" | Lo, < NAs8llLran, < 20?8 | Lo, +e2llglrw, (7.11)
for 1 < p < oo, where the norm is taken over [—1, 1]. By (6.14), applying (7.11) we obtain

1

[PLiel}, = f /|Asgy<s>|”wu<s>dsWM%(y)dy
BI-1 —1

1
]

Bd-1 —1

d2 p
o' )52 (50 )] wu()ds W, ) () dy

1
=cf / /prz(s)zwz(y)(alzg) (59 3) | wu(s)dsW, 1 () dy
Bd-1 —1

:cf/“ﬂz(x)i)]zg(X)VWu(x)dx=Cf“‘ﬂzalzg”p,u’
Bd

where in the last step we used (6.14) again. This proves the lower bound. The upper bound is
proved likewise. 0O

As a consequence of this theorem, we can replace | D¢l ., in K-functional K3 (f;1)p 4.
defined in (5.4) by the sum of ||g028i2g||p,u and ||Di2,jg||p,w at least for 1 < p < oo, which leads

to a comparison between K (f, 1), and fr(f, t)p, defined in Definition 6.1. Indeed, from
Theorems 7.3 and 7.4, and the triangle inequality, we obtain the following:

Theorem 7.5. For f € L? (B¢, Wu), 1<p<oo,and0<t<1,

ARy (fi0)pu <KZ(fi0ppu < aKa(fs0)pu+ 2t fllpo- (7.12)

Recall that both direct and inverse theorems for best polynomial approximation are established
for K*(f,t)p,u, the above shows that the same can be stated for K2 (f, Bp.p-

In the case of u = ’"T_l, K3 (f.t)p,y is equivalent to Ka(f,1)p,, for 1 < p < oo by the K-
functional counterpart of Theorem 5.10, which gives the inequality (6.18).

Part 3. Computational examples

In this part we give examples of functions for which the asymptotic orders of our new moduli
of smoothness and best approximation by polynomials are explicitly determined. The first section
contains a lemma, upon which most of the computations of our examples are based, and one of
its applications. The examples for moduli of smoothness on the sphere are given in Section 9 and
examples on the ball are given in Section 10.
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8. Main lemma for computing moduli of smoothness

One of the advantages of our new moduli of smoothness lies in the fact that the divided
difference in Euler angles can be reduced to the forwarded difference for trigonometric functions
(cf. (2.8)), which are classical and well studied. Our claim that the new moduli of smoothness are
computable is based on this fact. Below we present a lemma that gives the asymptotic order of the
modulus of smoothness for a simple trigonometric function, upon which most of our examples
in the following two sections are based.

Lemma 8.1. Assume that |a]| <1, 1 < p<Looand a #0. If a # %, then there exists 54 € (0, 1)
depending only on « such that for 0] < 8,1,

2r 1/p
(/|Z (1 —acos(¢+(}))" |pd¢>
0

1
(1—la|+1alp>)* V"2 o <1- L

2p°
~lalo? § [log(1 —lal +1al6®)],  a=1- 4, ®.1)
1, a> 1 —ﬁ,

with the usual change of the LP-norm when p = oo, where the constants of equivalence are
independent of a. If o = % then the upper estimates in (8.1) remain true, whereas the lower
estimate holds under the additional condition 3662 < 1 — la| when p > 1, and the lower bound
becomes c0* when p = 1.

Proof. Without loss of generality, we may assume a > 0, since cos(w + ¢) = — cos ¢p. We shall
prove the lemma for p < oo only. The case p = oo can be treated similarly, and in fact, is simpler.
Let us set hq(¢p) = (1 — acos¢)®. We will use the fact that Azh (¢) = (1/2)0%h!)(¢ + &) for
some & between 0 and 26, and

hy(¢p+ &) =al@—1)(1—acos(¢ +&))" 242 sin®(¢ + &)
+a(l —acos(¢+$))a71acos(¢+$). (8.2)

To show the upper estimates, we can restrict the integral in (8.1) over [0, 7] instead of [0, 2],
since we allow 0 to take negative values, and Azh (—o+{hH= A2 “oha(¢ +{-}). Using (8.2)

21//

and the identity 1 —acosy =1 —a 4 2asin” 5, we have

a—1
|R2he ()] = = 92|h”(¢+s)| ca92<1—a+2asin2¥) ) (8.3)

We break the integral of |K§ha (¢ + {-}|? into two parts:

310] T

;\Kéha(¢+{~})!”d¢=f~~+/~~-=:11+12.
0

0 316
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If b2 > 1 —a, thena>1— 062> ap > 0, and using the definition of Zz, we obtain
|A2hq (@ + {-D] < c(1 —a +abd?)® for |¢| < 3|0], which in turn implies

31

_ 1

L<C [ (1—a+ab?)dp~10P a®? ~aP|61P (1 —a +a0?) @~ "PF7,
0

On the other hand, if a9 < 1 — a then using (8.3), we have |K§ha @+ {D| <cab*(1 —a)*!
for |¢| < 3|0], and hence

_ 1
I <ca? 0P (1= @)@ VP < cal 0P (1 —a+ap?) 2,

where the last step uses the fact that 1 —a ~ 1 when 0 < a < % Finally, using (8.3), we deduce

b Jar
L < calo?? /(1 —a +a¢2)(“—1)17 de ,\,aP—%QZP / Wl—a+ ¢)2(d—1)[’ do,
30 3 /a6

which is estimated by the desired upper bounds. This completes the proof of the upper estimates.

For the proof of the lower estimates, we shall use §], or §, to denote a sufficiently small
positive constant which depends only on «, and may vary at each occurrence. Note thatif 1 —a >
8/, > 0 then the desired lower estimates follow immediately since, by (8.2),

N 1
|&3he(9)| = 592|hg;<¢ +&)| > cqab?

whenever 3|0| < ¢ < 6{1. Thus, for the rest of the proof, we may assume that |6| + /1 —a < 6(/);.
We claim that for o # % there exists a constant ¢, > 2 such that

— 1
|R2ha(9)] = 592|h;;(¢ +8)| = co?¢p?? (8.4)

whenever cq (10| ++/1 —a) < ¢ < §,,. Indeed, setting ¢ = ¢ + &, and using (8.2), we obtain, for
ca(|0l+v1—a) <9 <35,

a—2
|hg(w)|=a|a|<l—a+asin2%> |easin® ¢ —a + cos y|

a—2
=a|ot|<l —a—f—asinz%) (a — %>w2+ 01 —a)+ O(y?)

o — l ¢20l—2

2 clal 2

provided that (1 — %) > c8),. The assertion (8.4) then follows. Now raising (8.4) to the power p,
and integrating it with respect to ¢ over co(|0| + /1 —a) < ¢ < 8, gives the desired lower
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estimates in (8.1) for o # % The lower estimate for o = % can be proved similarly. Indeed,
setting ¥ = ¢ + £, and using (8.2), we obtain

h/{/z(w)— (1—acos¢) 2a(2cosw—acos Vv —a)> i(l—acosd/) Zacosvy,

I—

provided that 1 —a > 2sin® 4. Thus, if 30| < ¢ < /(T —@)/2 then 1 —a >2¢* > Ly? >
2sin ¥ , and hence

—_ 1
|B3m2@)] = 56%|1])p(@ + )| > clalo® (1 —a)"2.

Integrating the p-th power of this inequality with respect to ¢ over 36| < ¢ < /(1 —a)/2 and

using 1 — a + alf| ~ 1 — a, which holds for c0?<1—a, give the desired lower estimate for
1

o= bR O

As an application of Lemma 8.1, we prove the asymptotic of w;(gq, t) p,, in Example 5.11.
The proof also suggests what to come in the following two sections.

Lemma 8.2. Let hy (s, @) := (1 —scosp)*, a #0, u > 0 and let

1

25(he, 0)p,p = (/

0

2 1/p
s/|Z§ha(s,¢)|pd¢(1 —sz)“‘ds> , (8.5)

0

where for p = o< it is defined as maximum of |Z§ha(s, @) over 0 <s < 1,0< ¢ < 2m. Then
there is a to > 0 such that for 0 <0 <tg, u 2 0and 1 < p < 0o,

|9|2a+2"+’ ’ 2,;+1 ca<]1— 2%:1’
25 (he, 0) .~ 62| 1og|0]|'/P, a=1—%, p # 00, (8.6)
02, a>1— %
Proof. Again we only consider 1 < p <oo. If e <1 — 5= and a#l 5. then we apply (8.1) with
a = s to obtain that
1
22(ha, 0)h ~ |9|2Pfsp+1(1 — 5 +5602)@TIPRI (- 2ty
0
1-62 1
~ |9|2P[ / sPH(1 — )@=Drti=d gg 4 / 9] =DP+l (] — gypt ds:|,
0 1-62
which, when integrated out according to (o — )p+u — 1/2 < —1, = —1, and > —1, is easily

seen to be equivalent to the p-th power of the right-hand side of (8.6). Similarly, by (8.1) applied
toa=s, we have, fora =1 — ﬁ # 1,
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1
Q2(h, 0) ~ (0127 / s+ |log(1 — 5 +56%)[ (1 - 52)" " ds

0
1-62 1
~|9|2P[/ sp+1(1—s)“_lloglisds+ f (1—s)"_1|10g|0|’ds:|
0 1-62
~ 1017,

whereas for o > 1 — ﬁ,

1
22(ha, 0)h ~ |9|2p/s”+1(1 —sz)“‘lds~ CIRS
0

Finally, in the case when o = %, the desired upper estimate for £22(h1,2, 9)5 can be obtained
exactly as above, while the lower estimate for £2>(h1/2, 9)5 can be obtained using the second

statement of Lemma 8.1:
1-3662 27
— -1
2(hip,0)h > f S/|A§h1/2(s,¢)’pd¢(1 5" ds
0 0

1-3662
_p_1
> c|0)P / sPH (1 — )"z 2t gy,

0

which, by an easy calculation, gives the desired lower estimate for the case of a = 5. O

=

Remark 8.1. In the previous two lemmas we considered only the second order difference. Our
proof can be adopted to give the upper estimates for r > 2. For examples, let r > 2 and define

1 2 1p
$2r (ha, ) p = ( / s / [ Rhhas.9)|” do (1 —s2)“—1ds)
0 0

for 1 < p < oo and the usual convention for p = co. Then we can show that

Do+ 2t 2u+1 2u+l

6] P, —’é—p<a<%—’§—p,

27 (ha, 0)pp < € 0% log|0]]'/7, a=5— 2L, pstoo,
2 r 2u+1
6°, a>5—= 5.

Although we believe that the lower estimate should also hold, it is much more difficult to estab-
lish. For this reason, we only considered r = 2.



1294 F. Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310

For the same reason and because the computation for r = 2 is already rather involved, we shall
consider only r = 2 in most of our examples in the next two sections. In all cases, our method
can be adopted to establish the upper estimates for all r > 1.

9. Computational examples on the unit sphere

In this section we compute the modulus of smoothness , (f,1)p = @, (f, 1) p(se-1) defined
in (2.9) and the best approximation Ey, (f)p := En(f)pp(ga-1y of (3.1).

9.1. Computation of moduli of smoothness

We start with a simple example that follows directly from the modulus of smoothness for
trigonometric functions.

Example 9.1. For x € S9! and d >3, let f,(x) = x* witha = (a1, ..., 00) 0. If0 < et < 1
for 1 <i<d,thenforr >2and 1< p < o0,

8+1/p, 8 = min{ay, ..., aq). 9.1)

Q

wr(f, f)Lp(Sdfl) ~t

Indeed, we only need to consider A%,Z,G f, which, by (2.8), can be expressed as a forward
difference

Al g fa(x)=x57 x84 R (cos ) (sin )2

where (x1, x2) = (scos ¢, s sing). Hence, by (2.13) we obtain

2 1/p
(sl =e{ [[Eiliomoricmnoras)
0

Furthermore, using the well-known relation

r

Ky (fa) @)= <”>Z§f<¢)Zg—kg(¢ +k0),

k=0 k

we can consider the differences for cos(¢ + -) and sin(¢ + -) separately. Since the sine and cosine
functions cannot be both large or both small, we can divide the integral domain accordingly and
estimate the integral in the L” norm. Furthermore, in our range of «;, we only need to consider
the second difference (r = 2) upon using (1) of Proposition 2.7. Eq. (9.1) also holds for r =1
and p = oo.

Our second example is more interesting and appears to be non-trivial.

Example 9.2. For d >3 and « # 0, let go(x) = (1 — x1)%, x = (x1,...,xq) € SY~1. Then for
1< p<oo,



FE Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310 1295

2a44=L d—1 d—1
t ro _W <O{<1—W,

02(8a» D posd-1) ~ § t2logt|V/P, a=1-— —, p # 00, 9.2)
12, a>1— ;1.

For o =0, w(ga. 1) p =0.

If neither i nor j equals to 1, then Al.z,/.ﬂga (x) = 0. Thus, we only need to consider A%jﬂga
and we can assume j = 2. Since x € S landd >3 imply that (x1, x2) € B2, by (2.8),

|88 auselly = [[103 aogater, |71 =2 = )"

2

1
=c/s/]Z§(1 —scosd)®|”dgp(1— 5" ds,
0 0

where u = 2 2 and the forward difference acts on ¢; for p = oo the integral is replaced by the
maximum taken over 0 < s < 1 and 0 < ¢ < 27. Hence, (9.2) follows from Lemma 8.2.

Our next example is more complicated and it should be compared with (9.2). In particular, we
note that its asymptotic order is independent of d, in contrast to the order in (9.2).

Example 9.3. Letd >3 and let f(x) = (x7 +x3)* forx € SY~! and & # 0. Then for 1 < p < o0,
2

t2a+F, if—Ll ca<1-1;

p p

1
w2 (f, D) pp(sa-1) ~ |logt|?, ifa=1-—1;

p’
12 1

ifao>1-—-—.
p

)

Proof. Since Aij,ef(x) =0if (,j)=(1,2) or 3 <i < j <d, it suffices to consider

A7 5o f(x). Forafixed x € S9!, let g, (1) = f(Q1,3,x). Clearly, g, (1) = (v(t)> + x3)*, where
v(t) = v, (t) = x1cost — x3sint. A straightforward computation shows that

/() =4a(a — (N +x3) (0w )
+2a (0@ +x3) 7 [(V ) + v )] (9.3)
Let us start with the proof of the lower estimate. Setting ¢, = 8(1 + |«|) and

1
Eg:{xeSdl — > |x2| = 24/Cq IX1| = 4:/Cq 16], and |x3] >

NI'—‘
—_—

.p

we assert that for « # 0,

|g7()| = clx2|**2,  whenever |t| < 2/0] and x € Eq, 9.4)
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where c is a positive constant depending only on «. (9.4) together with the mean value theorem
will imply that for 6 € (0, é4]

|AT 30 ()| > ClOP[x2/** 72, whenever x € Ep.
Integrating the p-th power of the last inequality over Eg will give the desired lower estimates.

To show the assertion (9.4), we observe that if x € Eg and |t]| < 2|6], then |v(?)| < |x1| + |t] <
2|x1] < |x2|//Ca, Which implies

2 2
41 — ol (v()? +x3)* (' (1)) < 4(1+ Jal) (v + xg)“—”(;)% (v' ()

< (0 +23) 7 (W)
Thus, using (9.3), we deduce that if x € Ey and |¢| < 2|0| < 244, then
220|221l (v(0)? +x3)* T [(V'(0)) = [p@)" O] = el (v +23)* (v ()

= ol (v(@)? +x3)" " [v' (1) = 2| )]

> clal(v@)? +x3)" " [(Ixal = 121)” = 2(1x1 1 + 121)°]

a—1 2002

> c|a|(v(t)2 —i—x%) ~ (x% +x%)a71 ~ |x2]

proving the desired assertion (9.4).
For the upper estimate, it is easy to see by (9.3) that if , /xl2 + x% > 4]t| then

g/ < e +37)* " ~ (kP +x3)

which, using the mean value theorem, implies that

|8} 50 F )] < clOP (6] +x3)* 9.5)

whenever , /)c1 + x2 > 86]. On the other hand, however, if ,/xl + x2 < 86, then using the defi-

nition of Ai,j,&’ we have
|87 3.6.f (0] < clOP* + el 9.6)
Now we break the integral into two parts:

/ 873,007 do(x) = / et /
§d—1

{xeSd—1: x24+x2 <6462} {reSd=1: x24x2>6402}

=L+ 1.

Using (9.6) and the condition ap + 1 > 0, we have
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d—4
2

L <c / (Gzo‘p + |x2|20lp)(1 - x12 - x%) dxi dxy < c|0)?*P T2,

x2+x2 <6462

whereas using (9.5) gives

L <clo]*? / |x%+x§|(a_l)p(l —x%—x%)%_zdxldxz
6462 <xP+x3<1
1
<clo?r / POaDpH (] 2872y,

816
which, by a simple calculation, leads to the desired upper estimates. O
Our last example includes a family of functions and will be useful in the next section. Note

that the asymptotic orders in (9.7) and (9.8) below are different for || yg|| = 1 and ||yo|| < 1, as
can be expected.

Example 9.4. Let yj be a fixed point in B?, let 0 # o > —%, and let f, : S?~! — R be given
by fou(x):=|x —yol>*. o #1— dz——pl then

2(a—1)+4=1
2 (foos D o1y ~ ol (2 + 1= Iyl ™7+ 1yoll?, 9.7)

where the constants of equivalence are independent of ¢ and yg. Moreover, if « =1 — dz;pl, then

<=

¢ Myollt? < @2 (far ) po(si-1) < cllyollt*[log(t + 1 — llyoll) |7 (9.8)
where c is a positive constant independent of yg and ¢.
Proof. We start with the proof of the upper estimates
|87 .0 fall Loa1y < e@a(101),  1<i<j<d, 10 <5,
where @, (¢) denotes the desired upper bound of wa(fy, 1), P(sd-1) defined by the right-hand side
of either (9.7) or (9.8). By symmetry, it suffices to prove this inequality for (7, j) = (1,2). We
write yo = (0,1, Y0,2, - - -» Y0,a) =7y, With0 <r < 1 and y; € S9! Let

Ey:={xeS"" |lx —yol <4/0]} and E;:={xeS"": |x —yoll > 4/0]}.

We break the integral of |A%’2’9 fo(x)]P into two parts:

/ ‘A%,z,efa(x)’pdg(x)=/"'+/"'=:I(E1)+I(E2)'
sd-1 E; Er
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To estimate I (E1), we assume, without loss of generality, that r = ||yg|| > 1 — 4|0] > % since
otherwise E1 = {. Then, for x € E1, [lx — yjll < llx — yoll + (1 — r) < 86, which is equivalent
tol— (x, yo) < 3262 or arccos (x, yo) c6. Hence, we can deduce from the definition that

I(E) <4 sup /|fa(Q1,z,fx>|”da<x)

\t|<2|9|
E,

=4 sup f | fu0)|P do(x) < 4 f | fu ()| do (x)
I11<216]
01.2,—(E1) llx—yoll <1016

=c / |- r)? +2r(1 = (x, y(’)))|ap do (x)

lx—ypll<10/6]
clé|

<c / [161%7 + (1 — cos v)*? ] sin® 2 v dv
0

< C|9|20tp+d71 ~ rp|9|2p(l —r + |9|)2(05—1)P+d—1’
where the last step uses the assumption 1 —r < 4]0 < 5. To estimate I (E>), we set gy y, (1) =
Ja(Q1,2,+x) for a fixed x € E;. We then claim that

|gv o (O] <crllx — yol** 72, whenever |¢] <2|0| and x € E. 9.9)

To see this, recall that Q1 2,x = (x1(¢), x2(¢), x3, ..., xq), with x1(t) = xjcost — x2sint and
x2(t) = x1sint + xp cost. Thus, a straightforward calculation shows that

gl (1) = dale — D Q1.2.4x — Yol H((x1(0) — y0.1)x] () + (x2(1) — yo.2) x5 (1))’
+2(| Q1 2.0x — Yol 2 [(x] (1)) + (x1(6) = yo ) x| (1) + (x5(1))’
+ (x2(t) — yo,2)x5 ()] (9.10)
For x € E; and |t| < 2|0], we have ||Q12./x — x| =2 )c1 ~|—x2|sm 2| 210 < |lx — yoll /2, and
hence, ||Q1,2.:x — yoll ~ llx — yoll. Therefore, using (9.10), we conclude that

gy 5, (O] <cllx = yo ™2, whenever |1 <2/0] and x € Ea,

which proves the claim (9.9) when r = ||yp|| = 1/2. On the other hand, however, since the
function (x, y,t) — g)’c/’y(t) is continuously differentiable on {(x, y,7): x € Sy < 1/2,
1] < 7}, it follows that for |f| < 7, ||yo|l < 84 and x € ST,

27 o D] =187 3, () — gt o] <cllyoll =cr,

where the second step uses the fact that g, o(r) =1 for x € S9=1. This proves the claim (9.9) for
the case of r < 1/2.
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Now using (9.9) and the mean value theorem, we have, for some &y between 0 and 26,

1 _
|87 2,0 ()] = 56%|87 o) < er6?lx = yol 2.

Integrating the p-th power of the last inequality over E, gives

I(Ey) <crP|6?P /((1 — 2+ 2r(1=(x, y)) PP do (x).
Ey

Thus, if 1 —r <6, then 3]0| < [lx — v, |l < arccos (x, y;), so that

I(Ey) <erP|o?? / (A =r2+2r(1 = (x, )¢ P do(x)
{xeS4-1: arccos (x,y6)23|9|}
x
~rP|o*P / (1 =r 492 DPsI2 ds ~ (04 (161))";
316

whereasif | —r > |6|,then 1 —r 40| ~ 1 —r and considering r > 1/2 and r < 1/2, respectively,
we get

1(Ep) < crP|9)?P / (1 =12+ (1= {x, o))" do (x) + cr? 16177
§d—1

T
~rP|1o*P /(l —r + 02D sind =21 qt 41710127 ~ (04(101))”.
0
Putting the above together, we complete the proof of the upper estimates.

Next, we turn to the proof of the lower estimates. Without loss of generality, we may assume

that |yo.1| > ||lyoll/~/d = r/~/d. We then claim that if |6 < 8, and o % 1 — %

[AT o full ppganry = c®a(16]) for2<j<d ©.11)

from which the desired lower estimate will follow. By symmetry, it is enough to consider
A%’Mfa. For d > 3, using the formula (2.13), we can write

/ |A%,2,0fa(x)|pd0(x)
Sd—1
z 2
:/cosﬁ(sinlg)d*3 / |Z§gﬁ,§(¢+{'})|pd¢da(§)d13, ©.12)

0 sd-3 0
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where gg () = fu(cosBcosep, cosBsing, & sinfB) for & € S4-3, B [0, 7] and ¢ € [0, 27].
For d = 3, we need to use (2.12), which is an easier case. We shall assume d > 3 in the rest of
the proof.

We write yo = ry( = r(cosy cos o, cosy singp, vsiny), where v € S?3 and 0 < y <
84 < %, the latter follows from |yo 1| > r/vd > (1 —8)/v/d. Then

gp.t(P) = (1 +r2 =2 cosy cos B cos(¢p — ¢pp) — 2r sin Bsiny (€, v))a
= A%(1 = acos(® — ¢n))”,

where A := 1+ r? — 2r(sinBsiny)(&,v) and a = 2rcosy cos B/A. Since 0 < sinBsiny <
sindy < 1, we have

A=( —r)2 +2r(1 — (sinBsiny)(&, v)) ~1,
and

l—a= A—1<(1 — )% + 4r sin? ﬂ% +2rsinBsiny (1 — (&, v))>

~(1=r)?+r|B—yl*+rsinfsiny (1 — (&, v))
~ (= +1B -yl + By (1 — (€ ).

In particular, there exists a constant ¢y > 2 sothat | —r + |8 — y| > ¢1|6| implies 1| —a > 3662,
IfO<r <1—4 <1 for some small positive absolute constant §, then applying Lemma 8.1,
we deduce that for |0] < §/cq,

27
/|Z§gﬁ,s(¢ +{))|" dp = cl0*P A*P|a|P (1 — a) @~ DT/
0

> crP|1*P (cos B)P,

which, using (9.12), implies the desired lower estimate (9.11) in the case of 0 <r < 1 — 6.
For the rest of the proof, assume that 1 —§ < r < 1. We shall further assume that < 1 — % s
d—1

as the case o > 1 — 7, can be treated similarly, and in fact, is much easier. Since 1 — dz—_pl <

1— ﬁ, we can apply Lemma 8.1 to deduce thatfor 8 > y +c1|6| + 1 —r,

2
/ 1R28,6(¢ + ()|7dep = cl01?P A%P|a)P (1 — @)@~ DPH1/2
0

(a—1)p+1/2

~ 10?7 (cos B)P[(1 = r)? + 1B —y >+ ¥B(1 — (£, v))] :

where the last step uses the facts that A ~ 1, % <r<land 0Ly <ég < % Moreover, we can
further assume that 8 < o < 7 since y <8y < 5. Thus, applying (9.12) and the formula



FE Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310

1

/ l1’((§,bt>)do‘(§)=<7d—4/‘1’(llbt||Z)(1 —22)%6&01/3,

Sd-3 —1

we conclude that

Bo
I:=/|A%’2’9fa(x)|pda(x)>c|6’|21’ / g3
§d—-1 y4c1]0]+1—r

1
5

-1

To estimate /, we consider two cases.

x [ /(1 AT (A= 1B —yIP+yB( - z))(a_l)p+1/2dz:| dg.

1301

9.13)

Case 1.0 <y <1 —r+c1/|0]. Then, for 8 in the integral, y8(1 —z) < (1l —r +1|0]) <

B — y, and hence

Bo
1> clof / =3 (8 — y)2a=Dr+l gg
y+eilfl+1-r
Bo
> clo|*” / pHe-IPHa=2ap > e, (10])".
2¢110]+2(1—r)
2 2
Case 2.y > 1 —r +c1]0|. If B < min{3y, Bo} =: B then “’;y;) < fw < 3 < 1. Thus, we
can restrict the domain of the integral to
2
yralbl+1-r<p<p, L cio<,
4yB
and then obtain from (9.13) that
B1 1
I> C|9|2P / ﬁd73(yﬁ)(0(71)l7+% / Z%+(a71)p dZd,B
y+eilfl+1-r (B=7)?
4yp
Bi
<P [ e -y ag
y+clf|+1-r
Bi
> 10?7 / (B — ) H2eDr g ~ o 2P (6] 4+ 1 — )P VPR
y+eilfl+1-r

provided thatd — 1 +2(¢ — )p <0. O
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9.2. Examples of best approximation on the sphere

Our computational examples, together with Theorem 3.4 and its corollary, immediately lead
to the following examples on the asymptotic order of Ey, (f)p(sd-1y-

Example 9.5. For d > 3 let f,(x) =x“ with @ = (o1, ...,q) Z0. f 0 <oy < 1 for 1 <i <d,
then for n € N,

En(fa)u)(sd—l)’\'nfafl/p, 5=;1il?iéf(1){ala---,01d}-
Example 9.6. For d > 3 let g, (x) = (1 — x1)%, x = (x1, ..., xg) € S?~!. Then for —% <ua<
1— dz——pl anda #£0,
_og—d=1
En(f)Lp(Sdfl)“’n P, 1< p<oo.

It is interesting to compare the two examples. As functions defined on R¢, the functions x§
and (1 — x1)% have the same smoothness and a reasonable modulus of smoothness would confirm
that. As functions on the sphere S9! however, they have different orders of smoothness as seen
in Examples 9.1 and 9.2, and their errors of best approximation are also different as seen in
Examples 9.5 and 9.6.

Fora >1— dz;l, the asymptotic order of w2(gq, 1), in (9.2) does not lead to the asymptotic
order of E,(f)p, since our inverse theorem in (3.10) is of weak type. This remark also applies
to other examples below.

From our Examples 9.3 and 9.4, we also obtain the following results:

Example 9.7. For d > 3 let fy(x) = (x} +x3)%, x = (x1,...,xq) € S?!. Then for —% <a<
1— % and o # 0,

En(f)ppity~n 277, 1< p<oo.

Example 9.8. Let y be a fixed point in B¢, let o # 0, and let f, : S~! — R be defined by

. 2 d—1 d—1
Jou () :=|lx — yoll™*. If—ﬁ <a<l-— TR then
— - 2(ax—1 +ﬂ
En(f)Lp(Sd—l) ~n 2||y0||(n 1+ 1— ||y0||) =D+ .
d—1
In particular, if [|yo| = 1, then f, has a singularity and the asymptotic order is n~>*~ 7

instead of n =2,

10. Computational examples on the unit ball
In this section we compute the modulus of smoothness w, (f, t); P(Bd) ‘= @r (f,)p,1/2 defined

in (5.14) and the best approximation E, (f) Lr@d) = En( f)p,12 of (5.6), both with constant
weight function.
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10.1. Computation of moduli of smoothness

Since w,(f,1)1p ey 1s closely related to w,(f, 1) p(se) according to Lemma 5.4, our first
three examples are derived directly from those in the previous section.

Example 10.1. For o # 0, define f, : B¢ — R by fy(x) = (1 — ||x]|Z + |lx — yol|*)¥, where yg
is a fixed point on BY. If o £ 1 — dz—J;l, then

2 2=+ 2
@2 (for O Loy ~ 1 1yoll (£ 4+ 1 = Iyoll) ™ P+ 7ol
where the constants of equivalence are independent of yg and ¢. Moreover, if ¢« = 1 — %, then

1
cg 1Yol < @2(far ) Lo ey < cat?lyoll|log(r +1 = lIyoll)| 7.

where ¢y is independent of ¢ and yg.

Proof. Let F,, : St — R be defined by

Fo(x, Xg11. Xa42) = fu(x) = (Ilx = yoll* + x7 1 +x7.,)" = 1X — Yol ™,

where X = (x, X441, Xa42) € ST, x € B, and Yy = (9,0, 0) € B?*2. Since the moduli of
smoothness of F, on S?*! were computed in Example 9.4, the stated result follows from
Lemma54. O

Similarly, we can deduce directly from Examples 9.1 and 9.3 the following results:
Example 10.2. For e # 0, let f,(x) = (1 — ||x||*)¥ for x € B¢. Then

20+2 e 1 1
P f—<a<l1-—-=;
4 ) p (o4 p’

1
w2(for ey ~ \ 12|logt| 7, ifa:l—%;

2 . 1
t°, ifa>1 iR

Example 10.3. Let f,(x) = x% for x € B¢ and o = (a1, ..., 0q) # 0. If 0 < o < 1 for all
1 <i<dthenforl < p<oo,

s+ .
wz(fa,t)Lp(]Bd)Nt r, $:= mln{oel,...,ozd}.

(X,‘;ﬁo
Our next example is more complicated and requires a proof.

Example 10.4. Let o #£ 0, d > 2 and let f, : B¢ — R be given by f,(x) = [|x — eo||**, where
eo=(1,0,...,0) € BY. Then
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20+4 d d
t P, —g, <A< 1-— 2
1
@2(fa, Der@d) ~ | 2llogr]7, a=1-45, p#oo, (10.1)
2 d
te, a>1— 2

Before we give the proof of (10.1), several remarks are in order. First, it is interesting to
compare these examples. We consider the function smoother when the asymptotic order of its
modulus of smoothness is higher. Example 10.2 has a singularity at ||x|| = 1, the boundary of
B4, and is a radial function, for which the asymptotic order is independent of the dimension d.
Example 10.4 has a singularity at x = e, also on the boundary of the ball, but it is smoother than
the one in Example 10.2 ford >2 and o < 1 — zi- Furthermore, Example 10.1 with y = ¢¢ also
has a singularity at x = ep and its formulation is like the addition of the other two cases; it is,
nevertheless, the smoothest one among the three functions. This does not seem to be intuitively
evident. Second, the comparison of these cases shows the effect of the part of the modulus of
smoothness in the Euler angles. In fact, as the proof below will show, the part defined via differ-
ence in Euler angles in the definition of 2 (f, 1) »gay in (5.14) is dominating for Example 10.4.
We also note that the asymptotic order of Example 10.2 is independent of the dimension. Finally,
we should mention that the reason we restrict to eg in the last example is given after the proof in
Remark 10.1.

Proof of Example 10.4. The proof of (10.1) proceeds in three steps. The first step deals with the
difference in the Euler angles, which can be done, in fact, more generally.

Step 1. Let xg € S ! and f, (x) = ||x — x0|**, which includes the case of xo = eg as a special
case. We prove that for 1 <i < j <d,

2 d
|9|a+P, —%<a<l—%,
1
187 .6 Fall Loey ~ 1 1012110210117, a=1-4, p#oo, (10.2)
62, a>1—%.

For x € B¢, write x = ||x||x’, x’ € S?~!. We then have
2 2 2
lx —xoll” =1+ llx|I” — 2||x||(x’,x0) = ||X/—||X||X0|| .
Let go.r (x') = [lx" — y0?*, x” € S*~! and yy = rxo. Then the above equation shows

fa () = gy (), x' €S

Since AY i j.o commutes with ||x||, by using polar coordinates and the proof of Example 2.1, we
obtain for ¢ £ 0, 1 — dz—pl that

/|A129ga(x)| dx—/ - /|A129far )|’ do(x)dr
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1
< c/rd71+}7(|9|2p(1 +0 _r)2(a71)p+d71 + |9|2]))dr
0
< clgerte,

f2e—)p+d<—-lora<l1-— 2 ; moreover, the same computation also gives lower bound
if we select a pair of 7, j as in Example 2.1, the choice of which depends only on x¢ and is
independent of ||x||. The other cases of o can be handled similarly.

Step 2. Next we consider the term A%’ d+1.0 fu. We show that for o > —%

1
~ dx ?
( /‘A%,d+1,9fa(x)|pw> <t 4 o, (10.3)
— [|X

Bd+1
where fi (x) = fo (x") for x = (x', xg41) € B4T!. Let
Eypi={xeBM 1-20<x <1}, Eppi={xeB: —1<x <1-c%0%},

where ¢ > 1 is a sufficiently large absolute constant; we break the integral into two parts,
/ IS® 10f(x)‘p—dx _/"'+/'“=12(E21)+12(E22)
d+1,0Ja = = . :2)
VI=lxl?
Bd+1 Ep Erp

To estimate I>(E>,1), observe that for x € E3 1, |x;| < /1 — x1 Lclf|forall2 < j<d+1,
which implies, upon using (1 — xj cos ¥y — x44+1 siny) < c|6] for ¥ < 2|6], that |fa(x1 cosy +
Xar1siny, xa, ..., x0)] < c(101** + |x2/*), so that, by the definition, A, ,fu(xX)] <

c(l0* + |x2|2“). Thus,

1 1
d-1 u
D(E2 1) <c / (1-x7) 2 [/ |9|2°"’+|\/ - X S|2ap —s%) 2 ds} dxi
1-c202 1

< C|9|20tp+d+l.

For the estimate of I2(E22), we write g, (u) = fa(Ql,dH,ux) for a fixed x € BY*+!. That is,
() = (L (u)* + Z?:z sz.)"‘ with #, (u) = 1 — xj cosu + x441 sinu. A straightforward calcula-
tion shows

d a—2
¢/ (u) =4a(a —1) (rx u)* + fo) (tc ), (u))2

j=2

d a—1
+ 2« (tx w)* + fo) (L) + £ )t w)). (10.4)

j=2
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Observe that if x € E» > and |&| < 2|6], then

|t.(&)| = Ix1 sin& + xg41 cosE| < 210] + [xa41| < V1 —x1,

and
2 24/2
|te(8) — (1 —x1)| <267 +2,/1 x%|9|<< +‘—f>(1—x1)

which, in particular, implies |7, (§)| ~ 1 — x; provided that ¢ is large enough. Thus, by (10.4) it
follows that for x € E5 > and |&] < 216],

d a—1
g7 (©)] < ((xl - 1)2+Zx3-) (1 —x),
j=2

which, using the mean value theorem, implies that if x € E> 7, then for some & between 0 and 26,

a—1
A%d+1efa<x>|——92|g ®] < c92<1—x1><<1—x1)+2x> . (105

j=2

If « > 1, then we can drop the (...)*~ ! term and the estimate of I (E> ) follows trivially. For
o < 1, integrating the p-th power of the inequality (10.5) over E3 > yields

1—c? d-1 (a=D)p J
u
I(E22) < cl0*” f (1 - 23+ f((l—x1)2+2 ) l—andxl
— U

—1 Bd
1—c?

= |02 / (1— 227+ /((1—x1)2+||v||2)(°“”"dvdx1dx1
-1 Bd—1

by (6.14). Hence, switching to spherical-polar coordinates, we obtain

1—c6? 1
d—1
L(Ez) <clf*? / (1) / V1 =x1 4 )X DrH=2 gr gy,
-1 0
1—co?

<cloPr [ (1 —x)PDrH T < Pt + o

-1

where we have used, in the last step, that~ 2op +d <4ap +2d.
Step 3. Finally we consider Aiz’dﬂﬂfa for 2 < j < d. We prove that for o > —%,
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2a44£L

clo) T 4 co2. (10.6)

([ 1 ansiol=2=)" <
= x?

Bd+1

Asin the case E» », the case of o > 1 is easy and we assume « < 1. Clearly, it suffices to consider
5 =
Azdeﬁf(x). Let

Ezq:= {x eBIt!: —x1 < 692},
Espi={xeB™ 1 —x; > 0% |xal>4/1-x2101},
Eszz:={xeB™ 1 —x; > 0% |nal<4y/1-x2101},
where c is a sufficiently large absolute constant. We break the integral into three parts,

~ 17)
/’A%,d+1,9fa(x)|p—x=/...+/...+f_,,
1— x|
E3 E3) E33

Bd+1

= I3(E3,1) + I3(E32) + I3(E33).

Clearly, I3(E3,1) can be estimated exactly as I>(E>,1) in Step 2. _
To estimate I3(E32) and I3(E3 3), we set, as in Step 2, g, (u) = fo(Q2,4+1,4x) for any fixed

x € B!, Since |xa], [xg11] < /1 — x3, itis easy to verify that

d a—1
| g ()| <c<<x1 - 1)2+tx(u>2+2x3.> (1—xy), (10.7)

j=3

where . () = x2 cosu — x4+ sinu. Observe that if x € E3 and |u]| < 2|0]| then

|x2 — tx(u)| = |x2(1 —cosu) + xXg+1 sinu|

. 1
g,/x§+x§,+l\/(1 —cosu)? +sinu < /1 — xFu| < 5kl

This implies |, (u)| ~ |x2| for x € E3». Thus, using (10.7), we have, for x € E3 3,

d a—1
~ 1
|A%,d+1,gfa(x>|=592|g;;(s>|<c92((x1—1)2+Zx5> (1—-xp),  (10.8)
j=2

where & is a number between 0 and 20. In particular, this allows us to estimate /3(E32) exactly
as in Step 2.

It remains to estimate /3(E33). Using (10.7) and the mean value theorem, we have, for
x € E33,
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d a—1
~ 1
|80 Ja 0] = 260%[{©)] < cez((xl -1+ fo-) (I1-x)),  (10.9)
j=3
where £ is a number between 0 and 26. For m > 2 let E(m) :={(x1,...,xn) € R™": 1 —x1 >

c6?, x| <4,/1— x12|0|}. Integrating the p-th power of (10.9) over E3 3 and using (6.14), we
obtain

d (a=Dp
13(E3,3)<c|9|2"f(l—x1>”<<1—m2+2x/2-> dx

E(d) j=3

< C|9|2p / (1 —Xl)p|: / ((1 —X1)2 + (] _x12 _x%)HUHZ)(O‘—l)P dv:|

E@2) Bd-2

d—2
X (1 —x12 —x%) T dxydxy + c|6)*P.

Note that if 0 < x; < 1 —c6? and [x2| < 4,/1 — x7|0| with ¢ > 32, then |x>| < 4|0] and 1 —x7 >
1 —x1 > 62 > 2x3, which implies 1 — x? — x3 ~ 1 — x7. Thus,

1—c6? 1

I3(E33) < clg)?Pt! / (1—x1>""+"%‘[ / <\/1—x1+r)2<°‘—“1’+d-3dr}dx1+c|9|21’
0

0

g C|9|4O[]7+2d + C|9|p g C|9|20{p+d+l + C|9|2p.
Putting the above together, we have established (10.6). The proof is complete. O

Remark 10.1. Our proof in Step 1 works for the more general case of f,(x) = |lx — xoll,
xo € S?~1. We notice that Steps 2 and 3 have smaller estimate, so that the dominating term is
in Step 1. We expect that (10.1) holds for fy(x) =[x — x0||2"‘. For the case of @ < 1 — %, this
is indeed the case, as can be derived from our direct and the inverse theorem, and the rotation
invariance of Ey (f)1pma), see (10.11) at the end of the next subsection.

10.2. Examples of best approximation on the ball

Our computational examples and Theorem 5.5 immediately lead to the following examples on
the asymptotic order of E,(f) ). We give two examples, one corresponds to Example 10.1
and the other corresponds to Example 10.4.

Example 10.5. For o # 0, let f,(x) = (1 — ||x||*)%. Then for —% <a<1-— %,

—Do—
En(fa)Lp(]Bd)"’n .
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Example 10.6. For o # 0, d > 2, let fy(x) = ||x — eo||**, where ¢g = (1,0, ..., 0). For _% <

d

a<1—ﬂ,

d

En(fo) oy ~n 077, (10.10)

Although our moduli of smoothness on the ball are not rotationally invariant, the best approx-
imation En(f)Lp(Bd) is; that is, En(f)Lp(Bd) = En(f(p'))Lp(Bd) for p € O(d). This implies,
since every point xo on S=1 can be rotated to eq, that (10.10) holds for fy ¢ (x) := |lx — x0||2“.
In particular, Theorem 5.5 shows then

d
2 (favgs Doy ~ 1077, =4 <a<1- 4, (10.11)

as we indicated in Remark 10.1.

Acknowledgments

The authors thank a referee for his careful reading and helpful suggestions, especially for his
suggestion of including explicit examples on the ball.

References

[1] H. Berens, P.L. Butzer, S. Pawelke, Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und
deren Saturationsverhalten, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968) 201-268.
[2] H. Berens, H. Schmid, Y. Xu, Bernstein—Durrmeyer polynomials on a simplex, J. Approx. Theory 68 (1992) 247—
261.
[3] G. Brown, F. Dai, Approximation of sooth functions on compact two point homogeneous spaces, J. Funct. Anal. 220
(2005) 401-423.
[4] A.P. Calderén, G. Weiss, A. Zygmund, On the existence of singular integrals, in: Singular Integrals, in: Proc. Sym-
pos. Pure Math., Amer. Math. Soc., Providence, RI, Chicago, IL, 1966, pp. 56-73.
[5] F. Dai, Multivariate polynomial inequalities with respect to doubling weights and Ao weights, J. Funct. Anal. 235
(2006) 137-170.
[6] F. Dai, Jackson-type inequality for doubling weights on the sphere, Constr. Approx. 24 (1) (2006) 91-112.
[7] F. Dai, Z. Ditzian, Littlewood—Paley theory and a sharp Marchaud inequality, Acta Sci. Math. (Szeged) 71 (1-2)
(2005) 65-90.
[8] F. Dai, Z. Ditzian, Jackson inequality for Banach spaces on the sphere, Acta Math. Hungar. 118 (1-2) (2008) 171-
195.
[9] F. Dai, Z. Ditzian, H.W. Huang, Equivalence of measures of smoothness in L” (Sd*l), 1 < p < o0, Studia Math.,
in press.
[10] F. Dai, H. Huang, K. Wang, Approximation by Bernstein—Durrmeyer operator on a simplex, Constr. Approx., in
press.
[11] R.A. DeVore, G.G. Lorentz, Constr. Approx., Springer, New York, 1993.
[12] Z. Ditzian, Multidimensional Jacobi-type Bernstein—Durrmeyer operators, Acta Sci. Math. (Szeged) 60 (1995) 225—
243.
[13] Z. Ditzian, A modulus of smoothness on the unit sphere, J. Anal. Math. 79 (1999) 189-200.
[14] Z. Ditzian, Jackson-type inequality on the sphere, Acta Math. Hungar. 102 (1-2) (2004) 1-35.
[15] Z. Ditzian, Optimality of the range for which equivalence between certain measures of smoothness holds, Studia
Math., in press.
[16] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, 1987.
[17] C.F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge Univ. Press, 2001.
[18] Y. Hu, Y. Liu, On equivalence of moduli of smoothness of polynomials in L, 0 < p < 00, J. Approx. Theory 136
(2005) 182-197.



1310 F. Dai, Y. Xu / Advances in Mathematics 224 (2010) 1233—-1310

[19] D.S. Kurtz, R.L. Wheeden, Results on weighted norm inequalities for multiplier, Trans. Amer. Math. Soc. 255
(1979) 343-362.

[20] M. Kwong, A. Zettl, Norm Inequalities for Derivatives and Differences, Lecture Notes in Math., vol. 1536, Springer-
Verlag, 1992.

[21] PI. Lizorkin, S.M. Nikolskii, Approximation theory on the sphere, Proc. Steklov Inst. Math. 172 (1987) 295-302.

[22] D. Lubinsky, V. Totik, Best weighted polynomial approximation via Jacobi expansions, SIAM J. Math. Anal. 25
(1994) 555-570.

[23] G. Mastroianni, V. Totik, Weighted polynomials inequalities with doubling and Ao weights, Constr. Approx. 16
(2000) 37-71.

[24] G. Mastroianni, V. Totik, Best approximation and moduli of smoothness for doubling weights, J. Approx. The-
ory 110 (2001) 180-199.

[25] S. Pawelke, Uber Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen, Téhoku Math. J. 24
(1972) 473-486.

[26] P. Petrushev, V. Popov, Rational Approximation of Real Functions, Cambridge Univ. Press, 1987.

[27] P. Petrushev, Y. Xu, Localized polynomial kernels and frames on the ball, Constr. Approx. 27 (2008) 121-148.

[28] D.L. Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math.
Soc. 162 (1971) 157-170.

[29] W. Rudin, Uniqueness theory for Laplace series, Trans. Amer. Math. Soc. 68 (1950) 287-303.

[30] Kh. Rustamov, On approximation of functions on the sphere, Russian Acad. Sci. Izv. Math. 43 (1994) 311-329.

[31] S.B. Steckin, A generalization of some inequalities of S.N. Bernstein, Dokl. Akad. Nauk SSSR (N.S.) 60 (1948)
1511-1514 (in Russian).

[32] N.Ja. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr., vol. 22, Amer.
Math. Soc., Providence, RI, 1968.

[33] K.Y. Wang, L.Q. Li, Harmonic Analysis and Approximation on the Unit Sphere, Science Press, Beijing, 2000.

[34] Y. Xu, Orthogonal polynomials and summability on spheres and on balls, Math. Proc. Cambridge Philos. Soc. 31
(2001) 139-155.

[35] Y. Xu, Weighted approximation of functions on the unit sphere, Constr. Approx. 21 (2005) 1-28.

[36] Y. Xu, Generalized translation operator and approximation in several variables, J. Comput. Appl. Math. 178 (1-2)
(2005) 489-512.

[37] Y. Xu, Analysis on the unit ball and on the simplex, Electron. Trans. Numer. Anal. 25 (2006) 284-301.



	Moduli of smoothness and approximation on the unit sphere and the unit ball
	Introduction
	Approximation on the unit sphere
	Approximation on the unit ball
	Organization of the paper

	Part 1. Approximation on the unit sphere
	A new modulus of smoothness and K-functional
	Euler angles and Laplace-Beltrami operators
	New modulus of smoothness and K-functional
	Properties of the modulus of smoothness

	Approximation on the unit sphere
	Preliminaries
	Direct and inverse theorems for best approximation
	Equivalence of modulus of smoothness and K-functional
	Comparison with other moduli of smoothness

	Weighted approximation on the unit sphere
	Definition of modulus of smoothness for doubling weight
	Properties of modulus of smoothness
	Weighted approximation on the sphere

	Part 2. Approximation on the unit ball
	Approximation on the unit ball, part I
	Preliminaries
	Modulus of smoothness and best approximation
	Equivalent K-functional and comparison
	The moduli of smoothness on [-1,1]

	Approximation on the unit ball, part II
	A new K-functional and comparison
	Direct and inverse theorem by K-functional
	Analogue of Ditzian-Totik modulus of smoothness on Bd
	Equivalence of omegar(f,t)p and Kr(f,t)p
	Analogue of Ditzian-Totik modulus of smoothness with weight

	The weighted Lp(Bd,Wµ) space with µ<>(m-1)/2
	Decomposition of Dµ
	Differential operators and K-functional

	Part 3. Computational examples
	Main lemma for computing moduli of smoothness
	Computational examples on the unit sphere
	Computation of moduli of smoothness
	Examples of best approximation on the sphere

	Computational examples on the unit ball
	Computation of moduli of smoothness
	Examples of best approximation on the ball

	Acknowledgments
	References


