outcome of the HTA recorded and the impact of the biomarker test on the submission outcome was graded as high, medium or low according to its influence on the final decision. These findings were summarised, and 6 drugs were selected as case studies in order to identify key lessons relating to the risks, consequences, and ethical considerations of Decision-making in treatment partnering. RESULTS: The review identified 5 biomarkers in the five treatment areas of: HIV, Gastrointestinal stromal tumour (GIST), Non-small cell lung cancer (NSCLC), Colorectal cancer (CRC), and Breast cancer. Markers Her2 and K-RAS had a high impact in all included submissions, with 100% and 63% of these submissions resulting in a positive recommendation. In contrast, marker EGFR had a lower impact (not mentioned in 4 out of 10 submissions), with 60% of these submissions being approved, and 40% rejected. The agencies most likely to reject a surrogate-outcome submission were PBAC (Australia) and SMIC (Scotland) with rejection rates of 57% and 66% respectively, whereas CADTH accepted inclusion of all submissions. CONCLUSIONS: Findings indicate firstly that substantially different evidence requirements exist between HTA bodies in the markets considered (e.g. differing accuracy acceptability thresholds, prospective/retrospective analysis and the importance of cost-effectiveness), and secondly there are several ethical considerations to the selection or deselection of patients for treatment.

HTAINsITE: A DATABASE OF NICE SUBMISSIONS AND DECISIONS
Howard S, Harper C, Poppe P
Abacus International, Bicester, Oxford, UK
OBJECTIVES: HTAInSITe is an on-line, subscription-based database of all NICE Technology Assessment (TA) TAs. It includes information relating to the submission process and final decision and enables assessment of associated trends. METHODS: An academic steering group designed and agreed the data extraction protocol. A team of reviewers conducted the initial data extraction, which was validated by a second reviewer. Historical extraction is complete, with on-going TAs extracted. TAs in the database include: 181 TAs and an additional 15 TAs (20%) resulted in an appeal, no appeals were upheld entirely, all appeals were upheld partially. HTAInSITe also allows detailed analysis of individual TAs and cross-comparison between TAs as well as identifying trends between submitted evidence (acquisition costs, budget impact, cost-effectiveness and clinical effectiveness) and final outcome. These additional analyses will be further explored in the poster and preliminary results will also be updated. CONCLUSIONS: HTAInSITe is a useful tool for anyone interested in understanding the relationship between submitted evidence and ultimate NICE decision. The HTAInSITe format may be useful for other HTA bodies, depending on the public availability of relevant information.

ECONOMIC EVIDENCE REQUIREMENTS: COMPARISON BETWEEN HTA AGENCIES AND IMPLICATIONS FOR MANUFACTURERS
Balvanyos J, Alnwick K, Proudfoot C
Healthcare Development Ltd, London, UK
OBJECTIVES: Mathematical models are required by decision makers to provide insight into pharmacoeconomic benefits associated with a product. It is therefore essential that manufacturers understand economic evidence requirements when submitting an application to a Health Technology Assessment (HTA) agency. METHODS: A literature search of economic recommendations from the following HTA agencies was conducted: CADTH (Canada), HAS (France), IQWIG (Germany), NICE (England), PBAC (Australia), PHARMAC (New Zealand) and SMC (Scotland). RESULTS: The choice of economic models used to inform clinical decision-making, reimbursement and/or for pricing decision-making differs between HTA agencies. Almost all agencies provide evidence of the importance of economic evidence at the SO level, whereas CADTH accepts inclusion of all economic models at the HTA level. CONCLUSIONS: There are very few commonalities across all agencies, therefore requiring a high degree of flexibility. PBAC has historically rejected a large number of submissions in which economic evidence is not provided.

CLINICAL EVIDENCE REQUIREMENTS: COMPARISON BETWEEN SEVEN HTA AGENCIES AND IMPLICATIONS FOR DRUG MANUFACTURERS
Balvanyos J, Alnwick K, Proudfoot C
Healthcare Development Ltd, London, UK
OBJECTIVES: Health Technology Assessment (HTA) agencies require various types and qualities of evidence for clinical effectiveness evaluations due to differences in health care systems and policies. It is essential for manufacturers to understand these requirements when submitting an application to each individual HTA agency. METHODS: A literature search of clinical recommendations from the following HTA agencies was conducted for comparison: CADTH (Canada), HAS (France), IQWIG (Germany), NICE (England), PBAC (Australia), PHARMAC (New Zealand) and SMC (Scotland). RESULTS: The choice of evidence requirements varies between HTA agencies, the optimal comparator is defined differently across all HTA agencies. Most agencies require comparison versus the most frequently used intervention, whereas CADTH allows all interventions to be compared. CONCLUSIONS: There are very few commonalities between HTA agencies, therefore requiring a high degree of flexibility. PBAC has historically rejected a large number of submissions which do not provide clinical evidence.

HEALTH CARE USE & POLICY STUDIES – Population Health

PHYSICIANS’ VIEWS OF THE RELATIVE IMPORTANCE OF SELECTED MEDICAL INNOVATIONS ON THE GREEK POPULATION HEALTH STATUS
Arvanitaki K, Karampeli E, Kyropoulous J
National School of Public Health, Athens, Greece
OBJECTIVES: To identify the pharmaceutical and medical interventions that contributed most to the improvement of Greek population health status during the last three decades, according to physicians’ views. METHODS: Building on the methodology by Fuchs and Sev, a questionnaire based survey was conducted on a representative sample of 500 Greek internists and general practitioners aged ≥50 years old. The study questionnaire was formulated by a panel of experts, with the use of the Delphi method and included one list of 22 pharmaceutical and a second list of 20 medical innovations. Physicians were asked to identify the seven more important and seven least important