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Abstract 

Nyikos, P.J., Subsets of “‘w and the FrCchet-Urysohn and n,-properties, Topology and its 

Applications 48 (1992) 91-116. 

Arhangel’skii defined a number of related properties called (Y, (i = 1,2,3,4) having to do with 

amalgamating countably many sequences each converging to the same point. Here we use the set 

ww of functions to produce examples of Frtchet spaces in the various classes and to study the 

relationships between the classes. We also introduce an intermediate class CX,.~. Under various 

set-theoretic hypotheses we produce a countable Frechet a,-space that is not first countable, and 
several that are (Ye but not a,, including one which is LYE 5 and another which is not. It is now 

known to be consistent that none of these kinds of spaces exist, but we also construct a countable 

Frechet-Urysohn Lu+pace that is not first countable using only ZFC. 
The existence of an cu,-space which is not (Y, in any given model of set theory is reduced to 

the existence of a certain kind of space whose underlying set is (w x w) v 00, with neighborhoods 

of cc defined using graphs of partial functions. Alan Dow has recently shown that every cuz-space 

is 01, in the Laver model. A proof using the reduction theorem is outlined here and the result is 

used to obtain other information about this model. 

An example of a countable a,-topological group that is not first countable is given, and it is 
shown to be Frechet-Urysohn under the relatively mild assumption p = b, as is a related separable 
nonmetrizable topological vector space. 
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The cardinal p has to do with the similar relation c * on p(w): A c* B if A\B is 

finite and B\A is infinite. 

p = {l!%l: 53 is a subbase for a free filter on w, and there is no infinite A 

such that A c* B for all BE 95’3). 

The following concepts are due to Arhangel’skii [l, 21. 

Definition 1.1. A shea~at x in a space X is a family y of sequences converging to 

x. For i = 1,2,3,4 we call x an cu,-point if for each countable sheaf y at x there is 

a sequence c+ converging to x such that ran u intersects: 

l ff 1 : each ran r, T E 7, in a cofinite set; 

l (Ye: each ran T, r E y, in an infinite set; 

l (Yj: infinitely many ran r, 5-E y, in an infinite set; 

l LYE: infinitely many ran r, 5-E y in a nonempty set. 

A space is called an ai-space if each point is an n,-point. 

These concepts are important in determining when the product of Frechet spaces 

is Frechet: [l, 2, 23-251. Of course, they could be satisfied vacuously. 

In [2], Arhangel’skii uses a different numbering than with the a,-properties. The 

“2” position is taken up by the following property: if (a,,: n E w) is a sheaf at x, 

then there is a sequence u converging to x whose range meets infinitely many ran a,, 

in a cofinite set. As stated, this is equivalent to LY, , because we can replace each a,, 

by a T, whose range is U:=, ran a,. And, of course, (7,: n E W) is also a sheaf at x. 

However, if we require that the (Y,, have disjoint ranges, we get a property which 

is strictly weaker than (Y, in many models. In this respect the property is different 

from the a,-properties above, all of which are equivalent to their disjoint versions. 

The hardest one to see this for is cyz, and the following lemma takes care of that. 

Lemma 1.2. Let {B,}~=, be u family of injinite sets. There is a family {A,}~=, of 

disjoint in$nite sets, such that A, c B,, for all n. 

Proof. Let B,, = B, for every m E o. Define an order on w x w as follows: (n, m) > 

(n’,m’) if either n+m>n’+m’ or n+m=n’+m’ and n>n’. Choose a,,,,,~ 

B,, -{Uii: (i, j) < (n, m)}. Then A, = { anm: m E w} is as required. q 

I am indebted to Nogura for the above short proof: its use of w x w as a tool is 

typical of much of this paper. 

For the sake of convenience we will say that a countably infinite set A converges 

to a point x when any 1-l listing of A converges to x. Also, of course, any sequence 

whose range is a subset of A, and which lists each element of A no more than 

finitely many times, converges to x. 

Definition 1.3. A point x in a space X is an a,.,-point if whenever (a,: n E w) is a 

sheaf at x with ranges disjoint, there is LY converging to x such that ran (Y,, c* ran (T 

for infinitely many n. A space X is an LY ,.s-space if every point is an a,,,-point. 
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This notation is motivated by the fact that every cu,-space is CY,.~ and every 

a,.,-space is (Y*: given a collection (A,,)Fcl of disjoint sets, each converging to x, 

let A,, be the disjoint union of infinite sets (A~)~=, and let B, =lJr=:=, A:. Each 

B, converges to x, and if B,,, c* B for infinitely many B,, then B meets every A, 
in an infinite set. 

A rule of thumb in ai-spaces is that if there is one that is not in one of the other 

classes, then there is a countable one: just look at the union of the ranges of the 

sheaf members plus the point that together witness the original space not being in 

the more demanding class. 

Definition 1.4. A space is a v-space [respectively v’-space] [respectively w-space] if 

it is an Q, [respectively cr,.J [respectively (YJ FrCchet space. A space is countably 

bisequential if it is an LYE Frtchet space. 

The term “w-space” is due to Gruenhage [13], who defined it in terms of a 

topological game. Sharma [38] showed a characterization similar to that in Definition 

1.4, but with “nonempty” in place of “infinite” in (Y*. The concepts are easily shown 

equivalent [23]. Countably bisequential spaces were studied in [21,36]. In [26] it 

was shown that every FrCchet topological group is countably bisequential, and 

recently Shakhmatov has shown that in any model produced by adding uncount- 

ably many Cohen reals, there is a Frtchet topological group which is not (Ye, 

“consistently” answering the main problem of [26]: 

Problem 2. Is there a Frechet topological group which is not a w-space? 

It is still not known whether there is such a group in every model of ZFC. 

Shakhmatov also showed that in the same models, there is a Frechet w-group which 

is not a v-group. In this paper we show that such groups also exist if p = d. 

Of course, first-countable spaces are v-spaces, as are countably tight spaces in 

which every countable subset is first countable. A remarkable recent result of Dow 

and Steprans is that it is consistent that these are the only examples of v-spaces or 

even u’-spaces. In this paper we will show that there are other examples if either 

b> w,, orb = d. Since the Dow-Steprans model has c = w2, the latter example shows 

that b = w1 and d = w2 in this model. It overlaps a general construction that can be 

done “in ZFC” to form a countable w-space that is not first countable. This is only 

the second such example (the first was constructed by Isbell [36], see [24, 301) and 

the first with a compactification that is also a w-space. A third example, the “Cantor 

tree over a A’-set”, is described in [ll, 27,321. 

A remarkable fact about all three examples is that it is independent of ZFC 

whether they can/must be v-spaces or u’-spaces. In the Dow-Steprans model they 

cannot; but Dow has also shown [7] that in Laver’s model [18] every a,-space is 
LY,. In this paper I will give a number of “consistent examples” that distinguish 

between v-, v’-, and w-spaces and thereby deduce some facts about how things 
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behave in Laver’s model. The examples predate Dow’s discovery by over four years 

in some cases, and fit under the following heading: 

Definition 1.5. A space is T-like [terminology due to van Douwen] if it has a 

countable dense set D of isolated points, is locally compact, and its nonisolated 

points form a closed discrete subspace. 

Note that if one assigns to each nonisolated point z of a q-like space a compact 

neighborhood Vz missing all other nonisolated points, then V, is clopen and the 

V, - {z} are an ADF of subsets of D: 

Definition 1.6. Two subsets of a countable set are ahnost disjoint if their intersection 

is finite. A collection of infinite subsets of a countable set is an almost disjoint family 

(ADF) if any two members are almost disjoint. 

This gives a recipe for constructing all q-like spaces, like that for the original !P 

[12, Exercise 511 except that the ADF is not assumed to be maximal: let D be the 

discrete topology, let Sp be an ADF of subsets of 0, and to each A = SI attach a 

point z,, decreasing N to be a nbhd of z, iff z, E N and A = * N. Local compactness 

is obvious, while “almost disjoint” is equivalent to the Hausdorff property. It is 

also easy to show that every F-like space is a Moore space. For more on q-like 

spaces in general, see [40], whose results we will frequently cite without identifying 

their original discoverer. 

Theorem 1.7. Let a denote the least cardinality of an infinite maximal ADE The 

one-point compacti$cation of a T-like space of cardinality <a is Frkchet. 

Proof. Let 2 denote the set of nonisolated points of the q-like space X, and 00 

the extra point of the one-point compactification. Since any countably infinite subset 

of Z converges to ~0, it is enough to consider what happens if cc is in the closure 

of A c X -Z = D. The V, trace an ADF on A, and no finite subcollection of these 

traces covers A since ~0 is in its closure, so there is an infinite subset A’ of A that 

is almost disjoint from all the (<a-many) infinite traces, so that A’ converges to ~0. 0 

This even gives a characterization of a: if one uses a maximal ADF, no sequence 

from X-Z converges to co. 

Notation. If X is a locally compact space, we let X +CO denote its one-point 

compactification. 

All examples in this paper, except in the proof of Theorem 1.8, are built using 

one-point compactifications of V-like spaces. 

I have named another important technique after Rothberger [37] and Hechler 

[ 14, 151. 
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The RH transfer. Variation 1. Let {A,,}YeO be a collection of disjoint infinite subsets 

of a countable set A. Let (I,: A + w x w be a bijection defined by distributing the 

elements of A - lJFCp_, A,, into the bottom row w x {0}, and then sending A,, bijectively 

to either the (n + 1)st column {n} x w minus its first element, or to the whole column, 

depending on whether the column contains $(a) for some a E A -UT=:=, A,. 

Variation 2. Let {B,}~=i=o be a collection of subsets of an infinite set A, such that 

for each n there exists m > n such that Bf, = B,\Uy=i’ B, is infinite. Let {A,}~zO 

list all the infinite Bf,, and define + as above. 

A key observation about the RH transfer is that if SC A is almost disjoint from 

all the B,, then its image meets each column in a finite set and hence is below the 

graph of some function from w to W; and conversely. An application is: 

Theorem 1.8. Every space of character <b is a,. On the other hand, there is a space 

of character b that is not even LQ. 

Proof. Let x E X have a local base V of cardinality <b. Let y be a sheaf at x, and 

let { B,,}zCO list the ranges of the members of y. If there are only finitely many injinite 

B$, let u list their union in l-l fashion. Clearly, (T converges to x and its range 

meets each B, in a cofinite set. If there are infinitely many infinite Bz, apply the 

RH transfer. The complement of each V E 7f is almost disjoint from each BE, hence 

there is a function fv whose graph is above the G-images of all the points of X - V 

in the domain of I/J. Since {fv: VE M} is <*-bounded, there exists f: w + w such 

that all but finitely many X - V images are below the graph off, the only possible 

exceptions occurring in those columns where f is below fv. Let (T be any l-l listing 

of 4-f T, the inverse image off r = {(i, n): n 3 f(i)}. Then o converges to x and its 

range meets each B, in a cofinite set. 

Conversely, let {fm: a < b} be a <*-unbounded family of increasing functions in 

‘“w, and let X have underlying set o x w u {p}, where a local base at p is all sets of 

the form f L LJ {p}. The columns converge to p, but any sequence whose range meets 

infinitely many columns will also be below the graph of some fa in infinitely many 

terms and hence will fail to converge to p. Indeed, let f(n) be the highest member 

of ran u in {k) x w, where k is the least integer 2 n such that (ran (T) n ({k} x w) # 0; 

since the fa are increasing, one of them must dominate f on an infinite subset of 

rr,(ran a). q 

The last sentence in the above proof is an important motif, often expressed by 

saying that a <*-unbounded family of increasing functions is <*-unbounded on 

every infinite subset of o. This remains true if “increasing” is replaced by “nonde- 

creasing”, meaning that f (n) <f(m) whenever n < m. Also, a <*-dominating family 

of functions is <*-dominating on every infinite set whether or not the functions are 

nondecreasing; and if a family of nondecreasing functions is <*-dominating on 

some infinite set, it is <*-dominating on every infinite set [40, proof of 3.61. 
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Besides the notation f’ above for functions, we will also use the notations: 

f’ = {(i, n): n Sf( i)}, 

f”” = {(i, n): n <f(i)}. 

[Aside: The proof of Theorem 1.8 suggests a property even weaker than (Ye: given 

a countable sheaf y at x, with the ranges disjoint, there is an infinite set A meeting 

each sequence in at most one point, with x in the closure of A. An easy modification 

of the above proof shows that the least character of a space failing to have this 

property is d. For the converse, the sequential fan, the quotient of w x (w + 1) formed 

by identifying the nonisolated points, is homeomorphic to the natural analogue of 

(w x w ) u { p} above.] 

Corollary 1.9. If b > w, , there is a countable v-space which is not$rst countable. 

Proof. Use a W-like space X of cardinality or and the fact that bca [40, Theorem 

3.11. Take the one-point compactification and remove all nonisolated points of X. 0 

In the proof of Theorem 1.8, (w x w) u{p} is not Frechet unless the family of 

functions is actually <*-cofinal. Of course, this requires b = d, which is ZFC indepen- 

dent: it is implied by MA [40, 5.11 but fails in the original Cohen model [40, 5.21. 

It is equivalent to the existence of a scale, a <*-cofinal subset of ww which is 

<*-well-ordered [40, 3.51. Hechler [14,15] used “scale” to mean any <*-cofinal 

family, but this usage is out of favor. 

Notation. We write % _L 9 to indicate that every member of 3 is almost disjoint 

from every member of 9’. 

The proof of the following 

[40, 3.31. 

theorem is virtually identical to that for Theorem 1.8 

Theorem 1.10. b is the least cardinal A for which there are families 93 and 6.2 of subsets 

of a countable set, with 9 countable and I9a( = A and 93 I 9, such that if Bc* C for 

all BE 93, then C n D is injinite for some DE 9. 

It makes no difference if we confine our attention to the case where 9 and 3 are 

ADF’s [ibid.]. 

The following lemma is similar in spirit to Theorems 1.7 and 1.8, but its proof is 

even more straightforward [40, proof of 6.21. 
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Lemma 1.11. p is the least cardinal K for which there is a countable space of character 

K that is not Fre’chet. 

Theorem 1.12 [3, comment following Question 261. If p > w, , there is a countable 

v-space which is also a topological group, but is not metrizable. 

Proof. In a product of w, two-element groups, take a countable dense subgroup. 

The character is wi, so it is not first countable, but it is (Y, because of Theorem 1.8 

and p G h, and is Frechet by Lemma 1.11. 0 

2. Column and graph examples 

This section is concerned with a F-like space constructed using the graphs of 

functions and the columns of w x w which always gives a countable w-space that 

is not first countable. In some models of ZFC, cases of it are u-spaces, others are 

not even v’-spaces. It and the similar Example 3.1 have been studied before, but 

for different reasons [40, 11.6 and 12.21. 

Example 2.1. Let 9 = {_&: a < h} be a <*-well-ordered, <*-unbounded family of 

nondecreasing functions from w to w which we will identify with their graphs. We 

let X be the q-like space that results from letting w x w be the set of isolated points 

and using the almost disjoint family %Yu 9 where % is the set of all columns 

C,, = {n} x w. In other words, to the product space w x (w + 1) we are adding points 

pa (a < h) which we attach to the graphs fa as their one-point compactification, in 

the manner outlined after Definition 1 S. Then the one-point compactification X + co 

of X is obviously not first countable. 

Theorem 2.2. X + 00 is a w-space. 

Proof. As with all P-like spaces, it is enough to verify that D u {CO} (in this case, 

(w x w) u {CO}) is a w-space: see the proof of Theorem 1.7. Let CO be in the closure 

of S c w x CO. To show the FrCchet property, we will find an CY such that S nfi’ = S’ 

has cc in the closure. Then the only fp which trace an infinite set on S’ are those 

jkwer than h (sa) graphs which precede fa, so that we can argue as in Theorem 

1.7 to find an infinite subset of S’ that converges to ~0. 

Since the columns each converge to something other than ~0, S must meet infinitely 

many columns. By the comment following the proof of Theorem 1.8, {fa: (Y <h} is 

<*-unbounded on every infinite subset of w, so there is some fe, such that S n f it 
is infinite. If this set does not have cc in its closure, then its closure in X is compact, 

which means that there is a jinite set FI of ordinals <LY, such that Sn 
f it\u {fp: p E F,} is finite. In general suppose fa,,_, has been defined and S n f it,_, 
does not have 03 in its closure. Let (Y,, be such that (S n f "k;,)\f it,_, is infinite. If this 



Subsets of ww and the Fre’chet- Urysohn and a,-properties 99 

set does not have cc in its closure, there is a finite set F, of ordinals in the interval 

[(~,_r, a,) such that all but finitely many points of this set are in the union of the 

graphs indexed by F,,. 

If this process must continue for w steps, let (Y = sup, (Y,. Now S nfi’ contains 

all but finitely many points of each Snf if’;, , so its closure in X is noncompact, 

hence it has cc in its closure, as desired. 

Toshowthat(wxo)u{co}isa,, note that every sequence converging to cc from 

w x w must meet each column in a finite set. So if {(T,: n E o} is a sheaf at 00, we 

can find for each n an (Y, such that (ran a,,) nfit, = B, is infinite. Let (Y = sup,, (Y,. 

By Theorem 1.10, there is a subset C off;’ such that B, c* C for all n, and C nfp 

is finite for all p < cr, hence for all /3, and of course C meets each C, in a finite set, 

so C converges to 00. 0 

When is X + ~0 a v-space? Part of the answer is: 

Theorem 2.3. Let { fU: a <b} be a scale, and dejne X as in Example 2.1 [the fa do 

not have to be nondecreasing]. Then X + cc is a v-space. 

Proof. To show (Y, , argue as for 13~ above, but choose (Y, so that ran a,, c* f it”;,. 

Then ran G,, c* C for each n. The proof of Frechet is as before. 0 

Corollary 2.4. If either w, <b or b = d, there is a countable v-space that is not first 

countable, and has a compactijication that is the one-point compactijication of a P-like 

space and is also a v-space. 

On the other hand, in the Dow-Steprans model, Example 2.1 is never a v-space. 

At the opposite extreme are models [5, 6, 181 where every <*-unbounded <*-well- 

ordered family of nondecreasing functions is a scale, so there Example 2.1 is always 

a v-space. The following construction shows that the mere existence of a scale is 

not enough to guarantee that it is a v-space or even a v’-space. This construction 

is the most complicated in the paper and will be used one more time, to establish 

the existence, under the given hypotheses, of Frechet w-groups that are not v’-spaces. 

Definition 2.5. A descending complete tower (which we will call simply a tower) on 

an infinite set D is a family {A,: a < T} of infinite subsets of D such that A, *x A, 

whenever p < LY, but if no infinite subset C of D can satisfy C c* A, for all cr < T. 

The least cardinality of a tower on a countably infinite set is denoted t. 

A standard result is that w , s pi ts bcdsc. A diagonal argument shows the 

first inequality, and the others are trivial except t G b, whose proof may be found 

in [40] along with much information on all these cardinal numbers. 
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At this point, readers may skip to either Theorem 2.8, Section 3, or Section 5 

without loss of continuity. 

Example 2.6. (a) [t = d]. A version of Example 2.1 in which (w x w) u {CO} is not 

(Y,, and (b) [t =c] a version in which it is not (Y,.~. 

Construction. For k E w, let gk be the function sending n to (n + 2) kt2. For the t = c 
version, let (2,: (Y CC) list all subsets 2 of w x w such that g, c* 2 for infinitely 

many k. For the t = d version, let (2, : a cd) be a family of subsets of w x w such 

that gk c * Z, for all k and, whenever Z c o x w is such that gk c * Z for all k, we 

have Z, c* Z for some (Y. One of the basic characteristics of d is that such a family 

of Z, exists for any countable collection of infinite subsets of a set, in this case the 

gk; as usual, the proof is by RH transfer, similarly to the proofs of Theorems 1.8 

and 1.10 [40, Theorem 3.31. If b = d, it even is possible to choose Z, c* Z, whenever 

(Y > p, although this is not required for this example. 

For either version, enlarge the set of gk to a scale (ge: cy <b) of nondecreasing 

functions. We will choose fn so that it meets Z, in an infinite set, is above the graph 

of each earlier fP almost everywhere, is above the graph of g, infinitely often, and 

is almost disjoint from the graph of each gk. Once this is done for all (Y G b, the 

graphs of the gk will converge to co, but no set Z satisfying gk c* Z for all k can 

converge to ~0, because Z “almost” contains some Z, and hence meets fa in an 

infinite set. Of course in version (b), no set Z satisfying gk c * Z for infinitely many 

k can converge to 00. 

If CY = /3 + 1 and fp has been defined, the construction of fm will be done one 

coordinate at a time, setting ourselves w tasks. An odd-numbered (2k-t 1) task will 

be to get below g, - k while increasing, staying above fp, and avoiding all the gj 

such that j < k. An even-numbered task (2k + 2) is to hit gk in an element of Z, 

while increasing, staying above fp, and avoiding all the g, such that j < k; and then 

on the next coordinate, to jump up above g,. The point of the odd-numbered tasks 

is to be able to carry out the first part of each even-numbered task for later f,, in 

particular fa+l. As part of our induction hypothesis, we therefore assume fp also 

got below g, - k for each k E w. 
While performing task 2k + 1, we increase by at most two in going from one 

coordinate to the next, unless that causes us to go under or to coincide with fp, in 

which case we go above fp by at most two. In either case, we go up by only one 

unless this causes us to hit some g, (j< k), in which case we go up by two. [Of 

course, the g, are spread far enough apart on each coordinate !] The gap between 

fa and fp can never grow by more than k since the beginning of the task, so eventually 

fa gets below g, by at least k units, ending the task. 

On task 2k + 2, we increase fa exactly as on task 2k + 1, until we get to an i where 

(i, gk( i)) E Z, and g,(i) is above fa (i - 1) and also fp (i). Since all but finitely many 

points of (the graph of) gk are in Z,, and fp gets below g, infinitely often while fa 
never gets more than k higher above fp than at the beginning of the task while the 
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task is underway, this eventually does happen, and then we let fn( i) = gk( i), and 

then make fa (i + 1) > g, (i + l), ending the task. 

If (Y is a limit ordinal, we first construct an auxiliary function h,. Let Ai denote 

the set of coordinates on which fP is below g, by k or more. For a fixed k, these 

form a *I-well-ordered sequence and, using the fact that cr <t, we take an infinite 

A% c* A; for all p < a; then we take an infinite A, c* Ai for all k. 

Let $a( i) equal g,(i) whenever i E A,, and be defined backwards on the line of 

slope 1 through (i, g,(i)) from this point to the previous i’ E A,. Then fp <* $e - k 

for all k E w: it is enough to see this on the coordinates in A, A A:+‘, where it is 

obvious. By Theorem 1.10, there is a set Bc w x w almost disjoint from all the 

($cla -k)’ and almost containing eachfL. For each i, let (i, h&(i)) be the least point 

of {i} x o not in B. The h& thereby defined satisfies fP <* h& <* (CI, -k for all k, as 

does the least increasing function h, 2 h& . [This is defined by induction, thus: 

h,(O)=h~(O),andh,(i)=h&(i)unlessh&(i)~h,(i-l),inwhichcaseweleth,(i)= 

h,(i- 1)+ 1.1 Indeed, since h& is infinitely often above any given g,, we have h, 

coinciding with h; infinitely often. If N is one of these coordinates, and $a (i) - k > 

h&(i) for all i z N, then also “$a (i) - k > h,(i) for all i Z= N” is true, because $,,,(i) - k 

is increasing. 

Now we proceed as in the case (Y = p + 1, using h, in place of fp. 

Example 2.7. A simplified version of the above constructions gives a version under 

t = c of Example 2.1 which is a v-space even though the _& do not form a scale. Let 

{Z,. . (Y CC} list all infinite subsets of w x w which meet each column in at most 

finitely many points. Disregard all g, except g,. Otherwise odd-numbered tasks are 

as before, while on an even-numbered task we meet Z, unless Z, c* (fp + k)’ for 

some finite k if (Y = p + 1, with h, replacing fp if (Y is a limit ordinal. Every sequence 

converging to cc in the resulting space must be eventually below the graph of some 

fa. Details are left to the reader. 

I do not know whether it is consistent for there to be a version of Example 2.1 

which is a v’-space without being a u-space. If not, then the t = c construction in 

Example 2.6 becomes redundant. 

Example 2.1 has another interesting property which is convenient to mention here: 

Theorem 2.8. Let X be as in Example 2.1 or the proof of Theorem 2.3. Then every 

pseudocompact subspace of X + co is compact, yet X is not realcompact. 

Proof. In a compact scattered Frechet space, every pseudocompact subspace is 

compact [44]. On the other hand, X is not wD: that is, it has a countable closed 

discrete subspace D (the nonisolated points of w x (w + 1)) such that, given any 

infinite E c D and any family { Ue: e E E} of open sets such that U, n E = {e}, the 

family must fail to be discrete. But every realcompact space satisfies WD [42]. 0 
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Thus X + 00 provides a new answer to a question of E.K. van Douwen (Topology 

Proc. 8 (1983) 395): Does there exist a compact space Y such that every pseudocom- 

pact subspace is compact, yet Y is not hereditarily realcompact? The first “real” 

solution was T+ + CO, where T+ is a Moore version of the space of positive tangent 

vectors over the long line [29]. A difference is that T+ is wD; in fact, it is pseudonor- 

mal, meaning that disjoint closed sets, one of which is countable, can be put into 

disjoint open sets. 

3. Examples with graphs and partial graphs 

A natural idea for modifying Example 2.1 to avoid getting a v’-space is to “leave 

the columns open”, as in the next example. By not definining the functions for all 

integers, we even get an example which is “universal” in the sense of Theorem 3.9 

below. We do not know whether this cutting down of domains is really needed for 

this (Remark 3.11). 

Example 3.1. Let (fu: a < h) be a <*-unbounded, <*-well-ordered family of nonde- 

creasing functions from o to o. Let X be the q-like space for which w x w is the 

set of isolated points and the ADF is {fa: (Y < h}. Then X + cc is FrCchet, but not 

(Y,.~. Indeed, the columns converge to M, but a set which meets infinitely many 

columns in a cofinite set must also meet (the graph of) some fu in an infinite set. 

The proof that X + cc is FrCchet is the same as for Example 2.1, except that a set 

can meet only finitely many columns in an infinite set and still have ~0 in its 

closure-but any infinite set that meets only finitely many columns will automatically 

converge to co. 

A generalization is: 

Example 3.2. Let X be defined as in Example 3.1, except that the domain of each 

fa is merely required to be an infinite subset of w. We call such functions “partial 

functions” and to each partial function f we associate the function g : w + w such 

that g(n) =f(m) where m = min{k 2 n: f(k) is defined}. We then define f’” to be 

g” and similarly for f” and f’. Note that if f is nondecreasing, so is g. We also 

define (fa: (Y < 7) to be <*-unbounded iff the family of associated functions from 

w to w is <*-unbounded. The proof that X +CO is Frechet is as before, and it is 

not a, because no set meeting all columns in a cofinite set can converge to ~0. 

At the end of this section we construct, assuming the axiom p=c, a version of 

Example 3.2 which is a v/-space but not a v-space. Of course, some of the functions 

will have to be partial functions. Except for this example, we will only be concerned 

with the question of when Example 3.2 can be made (Ye. This reduces to the question 

of whether, given a family of disjoint infinite sets, for each subset of some column 
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{k} x w, there is a set converging to cc which meets each member of the family. 

Indeed, given a sheaf converging to ~0, those sequences whose ranges meet infinitely 

many columns can be handled together like the (T,, in the proof that Example 2.1 

is a,; while those sequences which meet only finitely many columns can first have 

their ranges cut down to inside a single column, and then replaced by subsequences 

with disjoint ranges, using Lemma 1.2. 

Example 3.2 cannot be made CY~ in the Laver model, because it is not Q~. One 

hypothesis under which Example 3.1, hence 3.2, can be made CY~ is the existence of 

a tower [recall Definition 2.51 of cofinality b. This hypothesis can be weakened 

further, using the following concepts. 

Definition 3.3. A collection 2 of subsets of a set X is called an ideal on X if it is 

closed under the taking of subsets and of finite unions. An ideal 2 is called a P-ideal 

if whenever % is a countable subcollection of 2, there exists A E 2 such that A c * C 

for all C E %. 

The dual concept of a [ P-Iideal is a [ P-Ifilter, i.e., 2 is a [ P-Iideal iff its dual 

{X\A: A ~2) is a [P-Ifilter. A well-known kind of P-filter is a P-point in w* = 

pw -w. But there are examples not requiring special axioms beyond AC, including 

ones whose duals satisfy: 

Definition 3.4. Let K be a cardinal number. A K-minimax ideal is an ideal 2 on w 

with K generators, such that: 

if A c* B for all AE~, then w\B is finite, (*) 

and such that no subideal with fewer than K generators satisfies (*). An ideal is 

called minimax if it is K-minimaX for some (obviously unique) K. 

The number p can be characterized as the least number of generators for an ideal 

2 satisfying (*) and containing no cofinite subsets of w. It can also, clearly, be 

characterized as the least injinite K for which there is a K-minimax ideal. 

An example of a minimax P-ideal is the dual of a filter whose base is a tower, 

so that t-minimax P-ideals exist. In Section 4 and [33] we give other constructions. 

The following concept generalizes that of a P-ideal satisfying (*). 

Definition 3.5. A family Y of subsets of a countable set X is w-hitting [respectively 

w-splifting] if, for every countable collection (B,),,, of infinite subsets of X, there 

is a member S of Y that hits [respectively splits] them all, i.e., B, n S is infinite for 

each n [respectively and so is B,\S]. 

By Lemma 1.2, one obtains an equivalent definition if (I?,,) is assumed to be 

disjoint. Parts (b) and (c) of the following lemma now follow easily. I am indebted 

to the referee for observing (c). 
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Lemma 3.6. (a) Every w-splitting family is o-hitting. 

(b) Every w-hitting ideal is w-splitting. 

(c) The dual ideal of an ultrafilter is w-hitting (hence w-splitting). 

(d) Every P-ideal satisfying (*) of DeJinition 3.4 is w-hitting (hence w-splitting). 

Proof. (d) Let 2 be the ideal and for each B, as in Definition 3.5, let J, E$ 

be such that J,, n B, is infinite. Let J E 2 satisfy J, c* J for all n. Then J hits 

every B,. 0 

Now we come to the main result of this section. 

Theorem 3.7. Each of the following statements implies the ones after it. 

(a) b<d. 

(b) There is a <“-unbounded, <“-well-ordered family of nondecreasing functions 

that is not <*-cofinal in ww. 

(c) There is a tower of cofinality b. 

(d) There is a b-minimax P-ideal. 

(e) There is a b-minimax w-hitting ideal. 

(f) There is a w-space that is not a v-space. 

(g) There is a w-space that is not a v-space. 

Proof. (a) + (b), (c) + (d) -+ (e) and (f)+(g) are all either obvious or have been 

established above. 

(b) + (c): Let ( fa: a < A) be as in (b). If b < d, also let A = b. Let g be an increasing 

function which is not dominated by any of the fa; then the sets B, = {n: g(n) > fa (n)} 

are easily seen to form a tower. If b = d, then the cofinality of A necessarily equals 

b, because otherwise we could use a scale and a cofinality argument to show 

{ fa : (Y < A} is bounded. So again we can let A = b and argue as before. 

Finally, we show (e) + (f). We will construct a version of Example 3.1, which is 

not a v’-space, using (e) to make the space (Ye. 

Let {A,: a <b} be a cofinal subset of a b-minimax w-hitting ideal, and let 

{g,: a <b} be <*-unbounded. For each CY < b let fa: w + w be an increasing function 

such that g, <* fa and f< <” fa whenever [< CY, and such that (the graph of) fu is 

almost disjoint from all w x A,, B <a; this last feature can be insured by using 

minimaxity of {A,: a < b}. Our example is Example 3.1 with this choice of fa. 

We have already seen why X + ~0 is Frechet and not CY,.~. To show CY~, it is enough, 

by the reduction result after the description of Example 3.2, to take care of every 

sheaf at 03 such that the range B, of each member is a subset of some column 

{k,} x w, with B, n B, = 0 whenever n # m, although we do allow k, = k,,,. Let A, 

hit every v2Bn (in an infinite set). Then C = (w x A,)\f 3, meets each B, in an infinite 

set and is almost disjoint from every fp, hence converges to ~0. 0 

The set-theoretic hypothesis in (a) is already enough, by (a) + (g), to give us a 

nice “complement” to Corollary 2.4. That in (b) is very weak: besides the Laver 



Subsets of ww and the FrCchet- Urysohn and a,-properties 105 

model we have only two other published models where it fails [5, 61. It holds, for 

example, if t = b: if b<d this is obvious, while if b =d we use Theorem 2.3 and 

Example 2.6. 

Problem 3.8. In Theorem 3.7, which of (b)+(c)+(d) + (e)-+(f) + (g) can be 

reversed? 

We will show below that (e)-(g) are equivalent if b = c. The proof will hinge in 

part on the following theorem. 

Theorem 3.9. If there is an a,-space that is not CY, , then there is one which is a version 

of Example 3.2. 

Proof. If b<d this follows from the proof of Theorem 3.7. So we may assume the 

existence of a scale {fa: (Y < b}. 

Let X be a space with an a,-point x that is not a,, let y be a sheaf at x witnessing 

this, and let {&,}~=O be the set of ranges. Then with {A,}:=” as in variation 2 of 

the RH transfer, any sheaf with the A,, as its set of ranges still witnesses (Y* but not 

(Y, . Let 4 be a transfer function and let 9 be the filter on w x w which is the image 

of the set of traces of the neighborhoods of x on lJ’lp_, B,. Of course, each FE 9 

meets each column in a cofinite set and hence its complement is in fe for some 

a <b. Also, the image of each A,, is a column which converges to ~0. 

Let g, =fO = h,,. If an increasing function g, : w + w has been defined for each 

p G a, let A = gi . By the way a, fails for X, there is a member F of 9 that excludes 

infinitely many elements of (w x w)\A, and only finitely many of these are in any 

one column, so there is a “partial function” h, whose domain is an infinite subset 

of w and whose graph consists of such excluded elements. Since g, is increasing, 

we take h, to be increasing (by cutting down its domain, if necessary). Let g,,, be 

an increasing function that is everywhere greater than h, and fa. If (Y is a limit 

ordinal <b, let g, be an increasing function <*-dominating all the earlier gP. 

We let our ADF be {h,: LY < b}. The h, form a “dominating family” in the sense 

that if f~ ww, there is some h, such that f(n) < h,(n) for all but finitely many 

nEdom h,. By Example 3.2, the space is Frechet and not a,, and it is LYE because 

the “reduced question” following Example 3.2 has an affirmative answer: the 

columns already converge to 0~ in the RH transfer of the original topology, which 

is as. 0 

I am indebted to Alan Dow for the first paragraph of the following proof. 

Theorem 3.10. If b = c, the following are equivalent. 

(i) There is a w-space that is not a v-space. 

(ii) There is a b-minimax w-hitting ideal. 
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Proof. Because of Theorem 3.7, it is enough to show (i)+ (ii). By Theorem 3.9, 

there is a w-space which is not a v-space and is a case of Example 3.2. Let Y be 

the subspace (w x w) u {CO} and let (AX: (Y <b (=c)) be used to define the neighbor- 

hoods of cc as in Example 3.2. The following family of subsets of w x w is then 

w-splitting: 

Y = {S c w x w : S = T u W where W c * U for every neighborhood U of 

CO and there exists LY <b such that T c*fi}. 

Indeed, if (A,,),, is a family of infinite subsets of w x w, then for each n, A,, either 

meets some column {k} x w in an infinite set B,, or selse A,, meets some fi in an 

infinite set C,. Using Lemma 1.2, let D, c C,, be an infinite set such that D, n D, = (4 

if n # m. Let DC lJ, D, split each D,, hence each C,. Using the a,-property of Y, 

let B be the range of a sequence (T + ~0 such that B n B, is infinite for all n, and 

using Lemma 1.2 again, pick B’c B such that B’ splits each B,. Then D u B’ splits 

every A,,. 
Of course, the ideal 2 generated by Y is w-hitting. Because b = c, it is generated 

by b sets. For each SE 9, there exists an (Y such that the graph off, is almost 

disjoint from S for all y > cr. The same is true of each J E 2, since each is contained 

in a finite union of members of 9. Thus if 12’1 <b and 2’~ 2, then there is an f, 

whose graph is almost disjoint from each member of 2’. The complement of the 

graph is then a co-infinite subset B of w x w such that J c * B for all J E 2’, so 2’ 

does not satisfy (*) in Definition 3.4, and 2 is b-minimax. 0 

Remark 3.11. Although we used a version of Example 3.2 to prove (i) implies (ii), 

we actually obtain a version of Example 3.1 if we now run through the proof of 

Theorem 3.7. This raises the question of whether there is a version of Example 3.1 

which is a w-space in every model where there is a w-space that is not a v-space. 

Remark 3.12. At the opposite extreme from the versions considered so far, Example 

3.1 can be rigged so that it is not even crj if one assumes b = c: let {A, : a -CC} list 

all subsets of w x o that meet infinitely many columns in an infinite set, and have 

fa meet A, in an infinite set. On the other hand, Example 3.2 is always (Ye, as is 

any compact Frechet space [2]; a direct proof can be given for Example 3.2 similar 

to the proof of the Frechet property. 

Remark 3.13. Since Martin’s axiom implies p = t = b = d = c, it implies the existence 

of a w-space that is not a u’-space (Examples 2.6 or Theorem 3.7), a v’-space that 

is not a v-space (see the next example), a version of Example 3.1 that is not (Ye, 

and also (Theorem 2.2) a countable v-space that is not first countable, all of which 

are subspaces of one-point compactifications of q-like spaces. 

We close this section with a construction, assuming the axiom p = c, of a version 

of Example 3.2 that is a u’-space but is not a v-space. This example will not be 

used later, except to underscore the significance of Theorem 5.3. 
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The cardinal p can be characterized as the fewest number of clopen subsets of 

w* (= pw - w) with the finite intersection property having intersection with empty 

interior; or, taking complements, the smallest number of clopen sets whose union 

is dense without actually covering o*. We use w x w in place of w and transfer to 

it the standard notation A* = ~l~(,~,) A - (w x w). Recall that every nonempty clopen 

subset of (w x o)* is of this form [43, p. 741. 

Example 3.14 [p = c]. We will use the remainder (w x w)*. Let (g,: (Y cc) be a scale, 

with each g, nondecreasing and unbounded, and let C, = (gi)* for each (Y; then 

the C, form an ascending sequence of clopen sets, disjoint from each B, = ({n} x CO)*. 

[They also fill up the interior of (lJy=‘=, B,)“, but this is not needed here.] Let 

( Bn,: a < c) list all families of infinitely many disjoint clopen sets, with ga, = { Bn}z.=o = 

9,. These will be the candidates for remainders of ranges of sheaf members. 

Let V, = lJz=‘=, B,. Let h, = g,. Assume VP and h, have been defined for all j3 < cr 

(<c) with each VP, p > 0, a clopen set and no finite collection of VP covering any 

set of the form (C,)’ [all complements are taken in (w x o)*]. Then by p = c, UPC,, V, 

fails to be dense in any C;. Let 6 2 LY be such that h, <* g, for all p < cr. If U sd, 

covers any (compact) set of the form (Up<, V, u C,)‘, then some finite subset 

covers it, and we let V, be the complement of its union. Otherwise, let ga”, be an 

infinite, co-infinite subset of ga and let V”, and Vi be disjoint clopen sets containing 

U 9210, and U (9, -@iL respectively [43, p. 641. Obviously, at most one of these 

clopen sets can contain the interior of (Up<, V,) u C, for some ‘y, and we let V, 
be one that does not. In either case, there is a nonempty clopen set H, in the 

complement of Up__, V, u C,. Pick A c w x w such that H, = A*. Now A is almost 

disjoint from every column and from g h, so there is the graph of an increasing 

function h, with infinite domain such that h, c A, and so g, <” h,. 

Let X be the p-like space whose ADF is (h, : a CC). The proof that X +cc is 

Frechet and not (Y, is just as in Theorem 3.10. To see that it is LY,.~, let (A,)~zo be 

a family of disjoint infinite subsets of w x w, each converging to 00. Then this family 

is 9, for some cr cc, and U {AZ : n E S} = V, for some infinite S c w. Let A be such 

that A* = V,; then A,, c * A for all n E S. If y 2 (Y, h, is almost disjoint from A. Let 

B = A - gk, where h, <* g, for all /3 < LY. Then B clearly converges to co. By Theorem 

1.10, there exists C G A n gi such that A,, n gh c * C for all n E S while C is almost 

disjoint from all the h,, /i! < a. Then C converges to 00 and so does B u C, and we 

have A,, c* BuC for all rr~S. 

Example 3.14, together with the fact that t/-spaces coincide with v-spaces in the 

Laver model, allow us to answer Question 5.22.4 of [2] completely. That question 

can be interpreted as asking whether the classes of compact Frechet a,-, Q,_~-, (Ye-, 

and cY,-spaces coincide with each other. The answer is that they are all distinct 

except for LYE and (Y,,~, whose distinctness is ZFC independent: examples of compact 

cY,-spaces which are not (Y*, hence not (Y 1.5, and compact cy,-spaces which are not 

LYE were obtained earlier [lo], [ll], [27], [32], respectively [39]. 
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4. Properties of the Laver model 

With the machinery built up in Section 3, we can quickly outline a proof of Dow, 

different from that in [7] and included here with his permission, that every w-space 

is a u-space in the Laver model, and also extend some results of [33] about this model. 

Three properties of the Laver model, shown in [7], will be used. The first is that 

it is produced by iteratively adding, with countable supports, special functions 

f: w + w known as “Laver reals”, which dominate all functions appearing in earlier 

stages of the iteration, which is altogether of length oz. The second property is: 

Every w-splitting family in an initial or intermediate model A, 

remains w-splitting in each later model of the iteration. (**) 

The third property is mentioned in the course of the following proof. 

Theorem 4.1. In the Laver model, every a,-space is CY, . 

Proof. Recall that if there is an cY,-space that is not (Y,, there is one of the form 

as in Example 3.2. These spaces cannot be LYE, as explained in Example 3.2. So we 

will show they cannot be czl, either, in the Laver model. 

Let Y be as in the proof of Theorem 3.10. A standard reflection argument [7, 

Lemma 71 shows Yn J& is w-splitting in Ju, for some /3 < w2. 

Now we use (**): Y n JIZ, remains w-splitting in the Laver model A,,,, . However, 

since (fa: (Y < b) is <*-unbounded, there is an fa that is not dominated by the Laver 

real ho+, added in passing from JI& to J&+,. Let A be the set of points (n, fa (n)) 

in the graph of fa where f,(n) 2 hp+,( n). Now A is almost disjoint from each 

f”, E JI&, and the complement of A is a neighborhood of CO, so that no member of 

Yn .A$ splits A. This contradicts the allegation that X is an cy,-space. q 

The following concept was introduced in [33]. 

Definition 4.2. Let K be an infinite cardinal. A point of q E w* is a pseudo-P,-point 

if every intersection of fewer than K (wlog clopen) neighborhoods of q has nonempty 

interior. [As usual, w* denotes the Stone-tech remainder of w.] 

Note that q need not itself be in the interior: that would give the definition of a 

P,-point. A standard pair of facts about w* can be phrased: every point is a 

pseudo-P,,-point [43, 3.271, but not every point is a P,,-point [43, 4.311, that is, 

a P-point. 

Elementary correspondences between infinite subsets of w and clopen subsets of 

o* yield the fact that an ultrafilter q is a pseudo-P,-point iff whenever A < K and 

{A,: LY < A}c q, there is an infinite AC w such that A c* A, for all (Y <A. From 

this it immediately follows that the dual ideal of a pseudo-P,-point with a base of 
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cardinality K is K-minimax, and by Lemma 3.6(d) it is w-splitting. Thus from 

Theorem 3.7 we obtain: 

Lemma 4.3. If there is a pseudo-P,-point q with a base of cardinality b, then there is 

a w-space which is not a v-space. 

Corollary 4.4. If b = c, and there is a pseudo-P,,-point, then there is a w-space that is 

not a v-space. 

Proof. No free ultrafilter on w has a base of cardinality <b [40], so the hypothesis 

of Lemma 4.3 is satisfied. 0 

Corollary 4.5. In Laver’s model, every free ultra$lter is a pseudo-P,,-point but none 

is a pseudo-PW2-point. In other words, every point of w* is in a nowhere dense set which 

is the intersection of a family of o, clopen sets (but no fewer). 

The following theorem improves Corollary 3.8 of [33], where the P-sets involved 

were singletons. 

Theorem 4.6. In Laver’s model, every nowhere dense P-set in w* is contained in a 

nowhere dense P-set which is the intersection of a chain of o, clopen sets. 

Proof. Let N be a nowhere dense P-set. The idea1 of all A c w such that A* n N = 0 

is a P-ideal satisfying (*) in Definition 3.4. By Theorem 3.7 and Dow’s theorem, it 

cannot be b-minimax, so it must either have w, generators or else have a subideal 

satisfying (*) which has wr generators. In either case, the generators correspond to 

a family {C,: Q <w,} of clopen subsets of w* whose intersection is a closed nowhere 

dense set M containing N. Now since N is a P-set, we can, for each CY < w, , define 

clopen sets 0, by induction so that C, 3 0, and De 1 D, 1 N for all a. The D, 

thus form a chain of clopen sets whose intersection is automatically a P-set, and it 

contains N and is contained in M, hence is nowhere dense. 0 

Problem 4.7. Can w* be covered by nowhere dense P-sets in the Laver model? 

For information on other models, see [4; 35; 41, 1.91. 

5. Topological groups 

Given a filter 9, which we can assume without loss of generality to be the filter 

of neighborhoods of a point p in a space X, with all other points isolated, there is 

a very natural way of defining a topological group in which X can be embedded, 

with p sent to the identity element. We let G = +{{O, l},: x E X -{p}}, which we 
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Theorem 5.4. If [X - { p}]“” is cq, then it is (Ye. 

Proof. Let a,, be a sequence in [X -{p}]<” converging to 0, and let 7,(i) = 

a,(i)u. . . u a,(i). From Lemma 5.1 it is easy to see that tn converges to 0 for each 

n. Let T be any sequence converging to 0 whose range meets infinitely many tn. 

Then for each n, we can pick i, such that a,,(i,) is a subset of some 7(jn), and so 

that the j, are distinct. Another application of Lemma 5.1 shows that {v,(i,): n E w} 

converges to 0; in particular, the sequence is point-finite because T is. 0 

Corollary 5.5. rf [X - {p}] Q is Frkchet, then it is a w-space. 

Proof. Every Frechet group is cxq [26], so Theorem 5.4 gives (Ye. 0 

Theorem 5.5 severely restricts the X that can be used to produce a countable 

Frtchet topological group that is not first countable, but there is one if either w1 < p 

or p = b. In the former case, D u {co} works for any uncountable q-like space of 

cardinality <p (Lemma 1.11). In the latter case, there is: 

Theorem5.6. Ifp=b, andX=(wxw)u{a} asin Example2.1, then [X-(p)]‘” 

is a countable Frkhet topological group that is not jirst countable. 

Proof. Let G = [X - { p}]'", and let A c G have 0 in its closure. For each (Y <b let 

A, = {a E A: a cff}. 

Claim. For some a, A, has $3 in its closure. 

Once the claim is proved, let AP = {a E A,: a nfO = 0) for each p < (Y, and let 

Af, = {a E AP: a does not meet the first n columns of w x w}. Then the A! form a 

subbase for a free filter on A,, since each finite intersection has 0 in its closure. 

Since Icx I< p [this is the only place where p = b is used] there is an infinite C c A, 

such that all but finitely many members of C are in each A{, and C converges to 

P, because it is point-finite and only finitely many members meet any given f,, y > (Y. 

Proof of Claim. Suppose not; then for each a <b, there is a finite set F, of ordinals, 

all less than (Y, and n, E w, so that the union of the graphs of the fp, p E F,, meets 

every member of A, that does not meet n, x w. Since the cofinality of b is uncountable 

[in fact, b is regular] there is a stationary subset S, of b such that IF,1 = N for all 

(Y E S,,. By the Pressing Down Lemma of b, there is a stationary S, c S,, and a PO 

such that the least member of F, is PO for all (Y E S,. Repeating this argument N 

times, we arrive at a stationary subset S of b and a finite set E such that F, = E 

for all (Y E S. 

Let B = {a E A: a n fp = 0 for all p E E}. Since B is just the members of A in a 

basic clopen subgroup, it has 0 in its closure. So, for each finite set of columns, 

there is a member of B that misses them; and so we can define {a,: n E w} c B so 
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that the least member i(n) of the projection of a, to the x-axis is greater than the 

greatest of a,_, . Let h be a function whose domain is {i(n): n E w} and is such that 

h(i(n)) exceeds the second coordinates of all the a,. Now there exists (Y E S such 

that fa (i( n)) > h( i( n)) for infinitely many i(n) [see comment at the end of the proof 

of Theorem 1.81, and since fa is nondecreasing, we will have a, cfiJ for infinitely 

many n. But this contradicts F, = E. !I 

It would be very interesting to know whether special axioms are really needed 

for making G Frechet in the above proof. Is it possible to derive the existence of 

C c A, just from Ial <b and the special nature of the fp ? Note the lack of any 

special axioms in: 

Theorem 5.7. Let X be as in Example 2.1. Then [X - { p}]<" is (Ye. 

Proof. Let a” converge to 0 for each n. Then lJ ran (T, meets each column in a 

finite set, so that, as in the last paragraph of the proof of Theorem 5.4, there is an 

(Y, such that infinitely many terms of a, are subsets of fit,. Let LY = sup,, (Y,, . Only 

finitely many terms of each a, meet the columns where fa,, is above fa, and so there 

is a subsequence T, such that each term is a subset of fi’. 

Let A = Uy=:=, ran 7,. For each p < (Y let BP = {a E A: a n fp f 0). For each n E w 

let B” = {a E A: a n ({n} x n) # 0}. Then each BP and each B” is almost disjoint 

from the range of each T,. So, by Theorem 1.10, there exists Cc A such that 

ran T,, c* C for all n and C is almost disjoint from each BP and each B”. Thus C 

converges to 0. 0 

In [26], I showed that every sequential cr,-topological group is Frechet, so we 

need “only” show G = [X - {p}]‘” is sequential, but, at present, that seems no 

easier than trying to show it is FrCchet directly. 

Whether G is (pi seems to have no bearing on whether it is Frechet. In the 

Dow-Steprans model, where it cannot be (pi, it is always FrCchet because p = b. In 

the “dominating reals” models [5,6, 181, where it is automatically (pi, we have 

W, = p < b and we do not know whether G is ever Frechet. In models where p = d, 

we can get G to be a,, and it is always Frechet. In these same models, however, it 

is also possible for G to fail to be cri: use Example 2.6 for X in the construction 

of G. 

6. Some topological vector spaces 

A construction related to that of the preceding section is that of the topological 

vector space V whose Hamel basis is X -{p} and whose base of neighborhoods of 

the identity is given by the sets 

B;={u,x,+.. *+a,,~,,: lull~.s whenever xiE F}, 
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where F is in the filter 3 of neighborhoods of p, and F > 0. In fact, the construction 

in the preceding section is the special case where the field of scalars is the two-element 

field. Here we are mostly concerned with when the field of scalars is [w or @ although 

our arguments work for any separable valuated field. 

This may seem like an artificial construction, but V “is” actually the space of 

continuous scalar-valued functions whose support is a finite subspace of the discrete 

space X - {p}, and whose domain is the open subspace U of /3(X - {p}) consisting 

of all ultrafilters which do not contain SIX -{p}. The topology is then the relative 

topology inherited from the compact-open topology on the space C(U). One of 

the keys to penetrating the disguise adopted above is the description of the compact- 

open topology given in [20]; another is that a subset of X -{p} has compact closure 

in U precisely when it is disjoint from some member of F. In [29] this viewpoint 

is developed and exploited. In this section, however, we will only need the bare 

definition given in the first paragraph. 

Lemma 6.1. If X -{p} is countable, then V is hereditarily separable and hereditarily 

Lindelof 

Proof. V is the union of subspaces generated by finite subsets of X -{p}, and each 

such subspace is second countable. 0 

Corollary 6.2. If X -{p} is countable, then V is countably tight, i.e., if v is in the 

closure of A, then v is in the closure of a countable subset of A. 

Proof. Obviously, every hereditarily separable space is countably tight. 0 

Corollary 6.3. If X -{p} is countable, and 9 has a base of cardinality <p, then V is 

Frechet- Urysohn. 

Proof. Every space of countable tightness and character <p is Frechet-Urysohn; 

this is essentially a characterization of p and is essentially shown in [40, 6.21. 0 

Theorem 6.4. If either w, < p or p = h, there is a separable version of V which is 

Frechet- Urysohn, but not metrizable. 

Proof. The case of p> w, is taken care of by Corollary 6.3 and a W-like space Y 

of cardinality w1 : we take the one-point compactification of Y, remove all nonisolated 

points of Y, and use that for X. For p = b, we let X = (w x w) u {co} of Example 2.1 

just as in Theorem 5.6. The proof is a routine variation. By Corollary 6.2 and 

translation invariance, it is enough to take the case of a countable A c V with the 

zero element in the closure. We now define, for each positive integer n, 

UEA: \rr,(a)i<i for all xEfi’ , 
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where ~~(a) is the x-component of a. Now the claim is that for each n, there exists 

(Y, such that Aln has 0 in its closure. Then if we let (Y = sup, (Y,, this (Y will work 

similarly to the one in Theorem 5.6. We define: 

A{= atA~:~~~(u)~<~forallx~(n~~)ufp , 
I 1 

and argue as before. To prove the claim, suppose it fails for some n, and argue as 

in the first paragraph of “Proof of Claim” that there is a stationary subset S of b 

and a finite set E such that, for all (Y E S, there is n, E w such that the union of the 

graphs of the fp, p E E, contains every x E n, x w such that ]~~(a)/ 2 l/n for some 

a E AZ. Then let B be the set of all a E A such that {x: Iz-~(u)~z l/n}nfp =0 for 

all p E E. In the rest of the argument, just as above, think of the coordinates of a, 

and a,_, on which it exceeds l/n as “the only ones that count” and derive a 

contradiction as in Theorem 5.6. 0 

For a nontrivial use of the Frechet-Urysohn property in topological vector spaces, 

see [9]. Unfortunately, completeness plays a key role, and V as defined above is 

not complete. It does have a natural completion, treated in [29], but the question 

of when that completion is Frechet-Urysohn is a difficult one. The best positive 

result so far assumes MA + c 2 wg to obtain a complete nonmetrizable topological 

vector space which is hereditarily separable, hereditarily Lindelof, and Frechet- 

Urysohn [29]. 

Afterword 

The first draft for this paper, which was originally combined with [33], was 

completed just two days before van Douwen’s death. I had been looking forward 

to showing it to him in Toronto and saying: “You should like this paper. It’s got 

so many [401’s in it, it looks almost like an advertisement for your Handbook 

article”. In a more serious vein, I was also hoping he could tell me whether some 

elementary results such as Lemma 1.2 were already in the literature. He was always 

very good for such odd bits of information. 
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