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0. INTRODUCTION 

0.1. Let G be a connected simply connected complex semi-simple 
Lie group with Lie algebra 6 and Bore1 subgroup B. 

There are basically two different approaches to the study of simple G- 
modules. The first one is connected with the Flag manifold X= G/B and G- 
modules are related to vector bundles and sheaves on X. The second 
approach, the so-called Kirillov-Kostant “orbit method,” links represen- 
tations with coadjoint orbits in the dual space 6* of the Lie algebra 8. In 
1981 Borho and Brylinski and the author independently developed the idea 
of joining these two pictures together, thus describing B-modules and 
primitive ideals by their characteristic varieties in 6* x X. 

In a recent paper Kashiwara and Tanisaki [KT] related characteristic 
cycles of holonomic systems on the Flag manifold to Weyl group represen- 
tations. Here we explain that relation by means of a new “Lagrangian” 
construction of Springer’s representations. We also show that Springer’s 
representations are in turn just a special case of the general bivariant 
theory of Chern classes for singular varieties. 

With regard to B-modules we will give two proofs of the irreducibility of 
the associated variety of a primitive ideal in an enveloping algebra of a 
complex semi-simple Lie algebra. The first of them (see Section 1) appeared 
in [KT] and is heavily based on results of Joseph. The second (see Sec- 
tion 8), while independent of Joseph’s results, .uses a certain property of 
Kazhdan-Lusztig cells, verified by Barbasch and Vogan and Lusztig. 
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0.2. Most of the recent advances in primitive ideal and represen- 
tation theories were based on the observation that irreducible B-modules 
are related somehow to irreducible Weyl group representations. The sim- 
pliest way to explain this phenomenon is to refer to a finite field case. So let 
G(IF,,) be a split reductive group over a finite field [F, and let B be a Bore1 
subgroup of G(IF,) (defined over IF,). A considerable amount of simple 
G( If,)-modules arises from decomposition of the regular G(ff,)- 
representation on the space @(G(ff ,)/B) of complex-valued functions on 
G([F,)/B. This decomposition is governed by the Hecke algebra H(q) con- 
sisting of B-bi-invariant functions on G(5,) (with respect to convolution). 
H(q) acts on C(G(F,)/B) on the right commuting with G(IF,)-action on the 
left. So irreducible G(IF,)-modules appearing in @(G(F,)/B) are in l-l 
correspondence with irreducible H(q)-modules. Further, the algebra H(q) 
is known to be (unnaturally) isomorphic to the group-algebra @[IV] of 
the Weyl group. Whence a desired correspondence: G([F,)-modules cf 
W-modules. 

What one wants to have for complex groups is a similar correspondence: 
B-modules c) H(q)-modules (where q is regarded now as an indeter- 
minate). This is beyond our reach. At present we are able only to establish 
some kind of that correspondence with H(q) replaced by the group algebra 
@[ W] that is by putting: q = 1. Although H(q) is isomorphic to C[ W] this 
isomorphism is unnatural. Moreover, there is a strong evidence to expect 
that there is a natural geometric parametrization of irreducible H(q)- 
modules degenerating to Springer’s theory [Spr l] when q = 1. It is essen- 
tial however that this (conjectural) parametrization depends on q in a con- 
tinuous fashion when q # 1 but has a discontinuity at q = 1. We believe that 
B-modules should be related to the “assymptotical parametrization” as 
q 2 1 rather than to that given by Springer for q = 1. The parametrization 
for q # 1 seems to be related to Kazhdan-Lusztig cells [KL 1 ] in the same 
way as Springer’s theory is related to “geometric” cell’s constructed in Sec- 
tion 5 of the present paper. The difference between these two pictures is 
perhaps responsible for various visible complications such as: non- 
irreducibility of Kazhdan-Lusztig cell’s under W-action, non-irreducibility 
of characteristic varieties of simple Q-modules, appearance of the “special” 
nilpotent orbits, etc... _ 

Let us now indicate how @modules are related to W-modules in this 
paper. The first more traditional way (see Sect. 1) is to consider a (formal) 
character of a B-module as function on a Cartan subalgebra h. Suppose 
for instance that VA is a finite dimensional irreducible module. Its charac- 
ter is given by the classical formula of Weyl: xn = C a, exp w  * (2 + p)/ 
rI oL, ,, (exp(cr/2) - exp( -a/2)), where a, = E(W) is the irreducible “sign”- 
representation of the Weyl group. The same formula holds for an infinite 
dimensional Q-module V, provided E(W)‘S are replaced by certain integers 
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a,. If V is irreducible then a,% generate a W-module which is almost 
irreducible in the sense that it contains a distinguished irreducible sub- 
module and all other submodules are “smaller” (with respect to a certain 
ordering) than this main one. This irreducible W-submodule is attached to 
the original B-module. 

There is another way to establish (essentially the same) relation between 
O-modules and W-modules. It consists of three steps. First, to a B-module 
A4 we associate, following [BeBe] and [BK], a %module &! = 
% @“u(6) M. Then we consider its characteristic cycle gr d which is a 
Lagrangian cycle in the cotangent bundle T*X. Finally the “Lagrangian” 
construction for Springer’s representations developed in Section 5 is used to 
relate Lagrangian cycles to W-modules. 

0.3. Let us fix some notations in order to state a few conjectures. 
Let b= b + n be the Bore1 subalgebra, corresponding to B; W be the 
Weyl group; d - be the negative Weyl chamber in b*; and p be half the 
sum of positive roots. For x E A - denote by M,. x the Vex-ma module 
of the highest weight w  * x-p, by L,., its simple quotient, and by 
I,,,. x = Ann L,, x the corresponding primitive ideal in the enveloping 
algebra U( 6). 

On the Flag manifold consider the Schubert cell stratification: X= lJ X,. 
and the twisted holonomic system Y,,,, x corresponding to L,.., . Its charac- 
teristic variety SSYM.. x is a union of certain conormal bundles TXwX. On 
the other hand consider a non-holonomic module, corresponding to 
U( @)/I,. x, and set S( I,.,) = SS(gz OU U( 0)/Z,,.,) Note that according to 
Proposition 8.3: 

Conjecture. For each w  E W one can find x E b* such that S(Z,.,) = 
G . T:J. 

This conjecture is supported by [BV, II, Theorem 4.53. Of course, the 
weight x may be non-integral. 

0.4. Next suppose 2 = -p is the integral weight. We set 
I, = I-, P, Yw = 9-,, ,.__, etc. 

THEOREM. The associated variety Var (I,) is the closure of a nilpotent 
orbit in (si*. 

This was proved by Joseph and Kashiwara-Tanisaki [KT] (see also 
Sections 1 and 8.6 of the present paper) and by Borho and Brylinski [BB]. 
The following strengthening of the theorem still remains a challenging 
problem. 
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Conjecture. ’ S(Z,) is irreducible. 
It is natural to suggest the following: 

Conjecture. S(Z,,) c S(Z~,) iff ZY c I,.. 

0.5. Let M= M, be the Verma module of the zero highest weight. 
For any primitive ideal Z= Zw the quotient M/Z. M is known to contain the 
unique simple submodule L,. c M/Z. M. The corresponding element 
y = y(Z) E W is actually an involution. 

Conjecture. S(Z) = G. Tz., X for y = y(Z). 

1. IRREDUCIBILITY OF THE ASSOCIATED VARIETY 
(AFTER[JOd; Jo5; KT]) 

1.1. We keep to the notations of 0.4. On U(B) consider the natural 
increasing filtration U,, c U, c U, c . . . . Then gr U(6) N O( Ui/Ui- 1) = 
@[Q*]. The associated variety Var(Z,,.) of the primitive ideal I,,. c U(B) is 
by definition the zero variety of the associated graded ideal 
gr I,,, = @(I,,, n Ui/Z,,. n UjP ,) c C[S*]. We prove here, following [KT], 
that the variety Var(Z,,.) is irreducible. 

THEOREM 1.1. [KT]. Var (I,,.) is the closure of a nilpotent orbit in 6*. 

In subsequent sections we will give proofs for some of the statements 
below. 

1.2. Let b = b + n be a Bore1 subalgebra and T be the Cartan sub- 
group, with Lie algebra h. Consider the polynomial algebra C[n] and 
adjoint T-action on it. Suppose A4 is a C[n]-module of finite type with a 
T-action on A4, compatible with that on C[n], i.e., g. (a. m) = (g . a). 
(g . m), g E T, a E C[n], m EM, Furthermore, we assume this action to be 
locally finite so that there is a root-space decomposition: M= @ j.c ,,*M, 
where w  = (m E M( h. m = I(h). m, h E h 1. Introduce the formal character 

xM(h) = 1 dim Mi. pi.“‘), hEh. 
i E h’ 

PROPOSITION 1.2. (i) x,,,, is a meromorphic function on h of the form 

‘See also: Open problems suggested by W. Borho, J.-L. Brylinski, and R. MacPherson, 
in “Open Problems in Algebraic Groups,” Conference held in Katata (Japan), August- 
September 1983. 
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where P is a holomorphic function on h and JJ,, 0 denotes the product for all 
positive roots CI. 

(ii) For regular h the meromorphic function t H X,,,(t . h), t E C, has a 
pole at 0 of order equal to dim supp M. 

This is in fact nothing but the T-equivariant version of Hilbert-Serre’s 
theorem on Poincare series of a graded module. The proof is also usual 
(see, e.g., CAMI) 

In view of 1.2(i) we have the asymptotic expansion into a Laurent series 

~,,,(t.h)=(tk~p~(h)+fk+‘~p$+l(h)+ . ..) n a(t.h) 
1 *>a 

where pL is a certain homogeneous polynomials on h of degree j. Note that 
according to (ii) the degree of the first of them equals k= dim n - 
dim supp M. Set p,+, =pk. 

1.3. Let Co c 6* be a nilpotent orbit. 

LEMMA 1.3.1. [Gil]; see also Section 4.3 of the present paper). All 
irreducible components of Co n n are of the same dimension, equal to 4 ’ dim 0. 

Clearly each irreducible component of &% is a homogeneous T-stable 
subvariety in n. For such a component F consider the graded @[n]-module 
UFI. Let pF=pCCFl be the corresponding homogeneous polynomial on h 
of degrees dim n - 1. dim 0. Consider the action of the Weyl group on 
CChl. 

PROPOSITION 1.3.2 ([H2]; see also the preprint version of [Gi3]). The 
polynomials pF (F runs through the irreducible component of 0 n n) form a 
basis of an irreducible W-module. This module coincides with the irreducible 
W-module, associated with 0 via the Springer correspondence (see 
[Hl; BM; Sprl]). 

Recall that according to Springer’s theory there is a l-l correspondence 
between irreducible W-modules and pairs (0, pL”), where U is a nilpotent 
orbit in Q* and p. is an irreducible representation of its Poincare group 
rr r(O) (see, e.g., [BM] ). W-Modules emerging in the proposition are 
exactly those corresponding to pairs (0, pc; = 1). 

1.4. The proof of the following fact is standard: 

LEMMA 1.4.1. Let M be a graded C[n]-module with a T-action as in 1.2. 
Suppose that the variety S = supp M is irreducible and let m be the mul- 
tiplicity of M at a generic point of S. Then 
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COROLLARY 1.4.2. Let M be a graded @[n]-module with a T-action, 
d = dim supp M and let { Si} be the collection of d-dimensional irreducible 
components of supp M. Then 

where mi is the multiplicity of M at Si. 

1.5. Consider the simple @-module L,,. (see the Introduction). 
Recall that its formal character looks like 

(1.51) 

for certain integers x,,.,~. As in 1.2, one has an asymptotic expansion 
XL,(t. h) = (tk. q;,(h) + tkf ’ . q:,+‘(h) + ... )/&,O cr(l. h). It clearly follows 
from (1.5.1) that qz,=c x ,,,, l.’ y-’ .pk. 

Choose a good filtration on L,,. and consider the associated graded 
@[(Si*]-module gr L,,.. Since the action of T on L,,. is locally finite 
supp gr L,. is a homogeneous T-stable subvariety of n. Further note that L,, 
and gr L,. have the same formal character. Hence pL,, =pgrL,, = qf: . Thus we 
get 

PROPOSITION 1.5. (i) pIv = C x,,,? .,I- ’ * pd(“‘), d(w) = dim supp gr L,,.; 

(ii) ifk<d(w) then xx ,,.,.,, .yP’.pk=O. 

It follows from (ii) that pIv is a harmonic polynomial on h with respect to 
W-action (see [ Jo41 ). 

1.6. The following results of A. Joseph are crucial. Their proof 
involves a complicated analysis of Goldie-rank functions. 

THEOREM 1.6.1 [JOT]. The polynomial pw generates an irreducible 
W-module. 

THEOREM 1.6.2 [JOT]. I, = Z,,,, iff pw = const p,+,,. 

1.7. The following proposition was proved by Borho and Brylinski 
[BB J and the author (see Section 8.2). 

PROPOSITION 1.7.1. Var(Z,) = G. (supp gr L,). 

From this proposition it is possible to deduce (see Section 8): 

PROPOSITION 1.7.2.[Jo6]. dim Var(Z,) = 2. dim supp gr L,,. 
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One also has 

THEOREM 1.7.3 [(Gabber and Kashiwara, see [Le] and also [Gi4])]. All 
irreducible components of supp gr L, are of the same dimension. 

1.8. Proof of Theorem 1.1. It is easy to see that Var(Z,,,) is con- 
tained in the nilpotent variety in (li*. 

Since the number of nilpotent orbits is finite each irreducible component 
of Var(Z,) is the closure of a certain orbit Oi so that Var(Z,) = U fli. For 
trivial reasons supp L, c Var(Z,) and supp L,c n. Hence supp 
L, c U(Bi n n). Let Si be the part of supp L, contained in ain n. 
Proposition 1.7.1 implies that each Si is non-empty. According to 
Lemma 1.3.1 we have dim Si < 1. dim Loi < 4 * dim Var(Z,). 

Theorem 1.7.3, combined with Proposition 1.7.2, shows that dim Oi= 
dim Var(Z,) for all i, and that Si is a union of some irreducible components 
of fli n n. Proposition 1.3.2 together with Corollary 1.4.2 implies 
Pw=PgrL,=CPi, where pi generates an irreducible W-module, 
corresponding to Oi via 1.3. Since the module C[ W] .pw is itself irreducible 
(Theorem 1.6.1) there is actually the only one orbit Oi, so that pw=pi. 

Q.E.D. 

2. @MODULES AND ~-MODULES (AFTER [Bebe;BK] 

2.1. We keep to the previous notations. In particular we assume 
that G is a complex semi-simple Lie group with Lie algebra 8. Let 8* be 
the space dual to 8 (and identified with Q via the Killing form), and let X 
be the Flag manifold. It will be convenient for us to consider X as a set of 
all Bore1 subalgebras b c 8 on which G acts by conjugation. For a point 
XE X let b, be the corresponding Bore1 subalgebra and let n, be its 
nilpotent radical. There are natural identifications of tangent and cotangent 
spaces at x: T,X= Q/b,, T-:X= (6/b,)* = b.t =n,. Hence T*X= 
{(x,n)lxEX,nen,}cXxB *. The corresponding projections of T*X to X 
and to 8* will be denoted by rc and p, respectively. While n : T*X -+ X is 
the usual projection the map /*: T*X + 8* is called either the “Springer’s 
resolution” or the moment map. 

PROWSITION 2.1 (see, e.g., [Spr2]). (i) The image p( T*X) is the 
nilpotent variety N c 6*. 

(ii) p: T*X + N is a resolution of N (i.e., p is birational and proper). 
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(iii) The defining ideal of N is generated by the set I+ of G-invariant 
homogeneous polynomials on (si* of positive degree. 

(iv) If Gex is the sheaf of regular functions on T*X, then 
,u* : C[N] s I-( T*X, O,*,) is the isomorphism. 

Here (i) and (ii) are easy; (iii) is due to Kostant [Kost] and (iv) follows 
from the fact that N is normal [Kost]. 

2.2. The natural G-action on X gives rise to a homomorphism of 
the enveloping algebra U(6) into the ring T(X, 9.Y) of global differential 
operators on X. Let Z(B) be the center of U(B) and Z + = 
Z(B) A 6. U(6) be the augmentation ideal in Z(6). 

PROPOSITION 2.2 [BeBe]. There are exact sequences: 

(i) O-+@[O*].I+ -@[O*] -r(T*X, 6,.,Y)+O; 

(ii) O+ U(B).Z+ -+ U(B)-+T(X,L%,)+O. 

Proof. Part (i) follows from Proposition Z.l(iii), (iv). 
The fact that the composite of both arrows in (ii) equals 0 is a property 

of the Harish-Chandra homomorphism. Further, consider the natural 
filtrations on U(6) and Dx. It is easy to see that after applying the functor 
“gr” (ii) turns into (i). 

Set U= U(O)/U(O). Z, . We identify T(X, ?&) with U by means of 
2.2 (ii). 

THEOREM 2.3 [BeBe]. (i) Any quasi-coherent 6&-module &Z is generated 
by its global sections (i.e., 9,@, r( X, 4) = A) and H’(X, J&) = 0 for i > 0. 

(ii) The categories of coherent $&-modules and of finitely generated 
U-modules are equivalent. The equivalence is given by the mutually inverse 
functors gxOu (-) and r(X, -). 

2.3. Recall that there are natural filtrations on U(B), U, and 9%X 
compatible with 2.2. Note that gr U(S) = C[S*], gr U= @[N] and 
gr 9X = rc. Q..,. Let M be a finitely generated U-module and let 
4 = gx@ u M be the corresponding 9Ymodule. On A (resp. M) choose a 
good filtration so that gr jke (resp. gr M) is a coherent gr 9X (resp. U)- 
module. Let SSA&’ (resp. SSM) be its support. This is a homogeneous sub- 
variety in T*X (resp. N). 

Suppose in particuiar that Zc U(B) is a primitive ideal such that 
In Z(0) = Z + . Then U(B)/1 is a U-module. We set S(Z) = 
SS(9,@, U(O)/Z). This variety takes part in the conjectures of the 
Introduction. Note that the image p(S(Z)) c 6* is the associated variety of 
the ideal 1, studied in Section 1 (see [BB2] or Section 8). 
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2.4. Choose a Bore1 subalgebra b = h + n with the Cartan sub- 
algebra h. Call the roots of h on n positive. Let p E h* be half the sum of 
positive roots. For x E h* denote by M, the Verma module of the highest 
weight x - p. 

Suppose that x E h* is a dominant integral and regular weight. Identify it 
with a character of Z((ti) by means of the Harish-Chandra homomorphism. 
Let Z, be the kernel of this character. In other words Z, is the annihilator 
in Z(B) of an irreducible finite-dimensional B-module E, with the highest 
weight (x - p). 

Set Ux = U(O)/U(O) + Z, and let 9, be the sheaf of differential operators 
on the hne bundle on X corresponding to E, via the Borel-Weyl theorem. 
As in 2.2, one can show that U, = r(X, gx). 

Let fix be the category of finitely generated U,-modules M such that dim 
U(b). m < co for any m E M. If W is the Weyl group and w  E W then 
M,.,E 6,. 

Let X= U X,, X, = B. w. B/B be the Schubert-cell decomposition of the 
Flag manifold X. The conormal bundle on a cell X,, is denoted by T$” X. In 
addition to Theorem 2.3 there is 

THEOREM 2.4 [BK, BeBe]. (i) The category of regular holonomic 9$- 
modules whose characteristic variety is contained in IJ T:,C X is equivalent to 
4, the equivalency being provided by 9X Ou, (-) and r( X, -). 

(ii) The natural duality M-+ M* for U(B)-modules (see, e.g., 
[BGGl ] ) corresponds to the Verdier duality for @modules. 

Remark. If x = p then U, = U and gx = ?& is the ring of usual differen- 
tial operators. We set 8j = BP. 

2.5. In the future the reader can either work directly with U,- and 
gx-modules or restrict considerations to the special case x = p. There is 
actually no loss of generality in such a restriction because of the following. 

THEOREM 2.5 (Translation principle [BJ; Z]). For integral regular 
weights x and f the categories 4 and 8x, are equivalent. 

This result is in fact an easy consequence of Theorem 2.4 since the 
categories of gx,- and gx,.-modules are equivalent. The equivalence is defined 
as & -+ Y@@, JY, where 2 is an appropriate line bundle (invertible 
sheaf) on X. 

2.6. From now on we suppose that x = p so that gx = %. For 
w  E W set M, = MP,., and let L, be the simple quotient of M,,. Let 
j, : X, G X be the inclusion of the Schubert cell and let (j,,,)* , (j,,,)! be the 
corresponding “direct image” functors on &modules. 
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PROPOSITION 2.6 [BK; BeBe]. (i) gXOU M, = (j,)! OX,. 

(ii) 9xOu MIC = (.L)* Ox,. 
(iii) 9X@v L, is equal to the image of natural map 

(j,)! G,+ (A+)* %&. 

On the U-module level the natural map, mentioned in (iii), coincides 
with the morphism M, + Mz, m H (m,-), where (-, -) is Shapovalov’s 
form on M,,. Its image clearly equals L,.. 

Let 6, be the unique n-invariant “S-function” supported at X,,. . 

COROLLARY 2.6.1. (i) 6, is an eigenvector relative to the action of h and 
the corresponding weight equals - w. p - p. 

(ii) The U(B)-module, generated by 6,., is irreducible and hence 
isomorphic to L, . 

This corollary is, of course, nothing but another form of 
Proposition 2.6(iii). Let us however give its elementary proof, which may 
throw some light on the role of Schubert cells. Verification of (i) is left for 
the reader. In order to show that L = U(B). 6,. is irreducible it is enough to 
prove that 6,, is the only extreme vector (i.e., b-eigenvector) in L. Suppose 
u EL is another one of the weight 1 E h*. Consider u as a distribution on X 
of the order k (by definition u = P. a,,, for some differential operator on X). 
Let ok(u) be its principal symbol. After an appropriate trivialization of 
TgUX by means of 6, this symbol may be regarded as a function on Tz” X 
of the weight (A+ w. p + p). We identify the libre of T%wX at w  E X,. with 
“nnn (%:=w.n.w-I). Wh en restricted to this libre the symbol ok(u) 
becomes a polynomial function on “‘II n n still of the weight 2 + w. p + p. 
As a weight of a polynomial function it must be equal to -Ck, . cli for cer- 
tain non-negative integers ki and roots C(~ in M’n nn. Whence ;1 +p = 
- w.p -Ck;.a,. Since ai is a root of “n, the root /Ii= w-’ .clj is positive 
and we get I+p= -w.(p+Ck,./?i). 

On the other hand ;1+ p E - W. p since all extreme weights on L belong 
to the same W-orbit in h* corresponding to the central character. It 
remains to note that p + Ckj. /Ii E W. p only if ki = 0 for all i. That implies 
that ck(u) = 0. The only remaining possibility is for u to be the distribution 
of the zero-order. Thus u = const 6,. Q.E.D. 

3. HARSH-CHANDRA MODULES 

3.1. Consider the Lie group G x G with Lie algebra 8 x (5 and the 
subgroup Gd = {(g, g), g E G} c G x G with Lie algebra (ti, c 8 x (5. A 
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finitely generated U(0 x Q)-module V is called a Harish-Chandra module 
if dim U(0,). v < co for any UE I’. For the motivation of this definition 
consider the complex group G as a real Lie group GR and pick up 
a maximal compact subgroup Kc GR. Then the pair ((G&, KC) 
is isomorphic to the pair (G x G, G,) so that our definition of Harish- 
Chandra modules agrees with the usual one for (GR, K)-modules. 

Identify U(O x 0) with U(0)@ U(0). Then Z(O x 0) N Z(B)@Z(Q) 
so that U(O x 0)/U(0 x 0) * (2, QZ,) N U@ U. Following [CD] we 
introduce a category H of Harish-Chandra modules, annihilated by 
Z+QZ+; that is a subcategory of U@ U-modules. 

The map x H -x, XE 0, can be extended to the involution u H ti of 
U(0) such that (u, * u,)“= ti2. ti,. Since Z, = Z, the corresponding 
involution is well defined on U. Any ( U@ U)-module V can be equivalently 
regarded as a left-right U-bimodule via the action u, * u. u2 = (ul @ ii*). u. 
For U-bimodules Vi and V, it is clear that V, Ou V, is also a U-bimodule. 
If T/,, V2c H then V, Ou V, EH. Similarly, for VE H and a U-module 
ME 8 there is a U-module I’@, ME a. 

3.2. Let M, E d be the Verma module with the zero highest weight 
(in the notations of Section 0, M, = M,,O, where wg E W is the element of 
maximal length). 

THEOREM 3.2 [BG]; see also [JOT]. The categories 8 and H are 
equivalent; the equivalency is provided by mutually inverse functors 
Q:H--rfl and P:fi-+H 

Q: V-+ VQ, M,; 

P: M-+ U(0,)-finitepart of Hom,(M,, M). 

For example, the Harish-Chandra modules P, = P(M,.) form the so-called 
“principal series” representations. 

3.3. It is known that there is a 1-I correspondence between 
GA-orbits in Xx X and elements of W. Let C, be the orbit, corresponding 
to w  E W and let TE,(X x X) be its conormal bundle. As in Section 2.4 one 
can prove 

PROPOSITION 3.3 [BeBe]. The category H is equivalent to the category 
X of regular holonomic D,, x’ modules, whose characteristic variety is 
contained in lJ TE(X x X). 

Theorem 3.2 is an immediate consequence of Theorem 2.4 and 
Proposition 3.3: the respective categories of 9,modules and gXXr 
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modules are equivalent since the manifolds X and Xx X have the same 
orbit structure. If B c G is a Bore1 subgroup and x0 is a corresponding 
point in X then the 9-module counterpart of the functor Q : Hh 0” is just 
the restriction to the submanifold: Xx {x0} c Xx X. Note that 
C,n(Xx {xo})=XH.x {x0}. 

COROLLARY 3.3.1. Any irreducible Harish-Chandra module in H is 
isomorphic to P(L,) for some w E W. 

THEOREM 3.4. [Du; BG]. For a two-sided ideal Ic U the following con- 
ditions are equivalent: 

(i) I is prime; 

(ii) I is primitive; 

(iii) I is the annihilator of a certain L,,., U’E W. 

COROLLARY [Du; Jo3]. Any primitive ideal Ic U(B) such that 
In Z(B) = Z + is the annihilator of a certain L,,.. 

Proof of the theorem (after [BG]). Implications (iii)* (ii)=(i) are 
trivial. Let us show that (i) = (iii). Consider U/I as a U-bimodule. Clearly 
U/ZE H. Let N= Q( U/I) ( = M,/I. MP) be the element of d corresponding 
to U/I via Theorem 3.2. If 0 = N, c N, c . c Nk = N is a composition 
series for N then each simple quotient N,/N,- , is isomorphic to certain L,,.. 
Set I, = Ann(N,/N,- i). Therefore it is enough to prove that (a) Ann N= I, 
and (b) Ann N = I, for some i. If (a) is verified, then (b) is easy: on the one 
hand Ann NcI, for all i. On the other hand Ik.NcNk. ,, I,-,.I,. 
NC Nk-2 ,..., (I,.I,. ... .Ik).N=O. Hence I,.I,. ..* .I,cAnnN=I. 
Since I is a prime ideal the above inclusions imply that Ann N = I, for 
some i. 

It remains to prove that Ann N= I For any bimodule VE H let L Ann V 
be its left annihilator in U. The explicit form of functors P and Q, com- 
bined with the equality PO Q = id”, shows that Ann Q(V) = L Ann V for 
VE H. In particular I= L Ann( U/I) = Ann Q( U/I) = Ann N. Q.E.D. 

3.5. For a Harish-Chandra module V and a finite-dimensional 6 
module E define Q x B-action on V@, E as follows: 

x.(o@e)=x.u@e 

ifxE~xXO}cOx~,vEV,eEE; 

x.(v@e)=u.v@e+v@x.e 

ifxe{O}x6c8x6. 



~-M~DuLES 13 

As in the proof of Theorem 3.4 denote by L Ann V the left annihilator of 
V and consider the U(oj x 8)-bimodule U(B)/L Ann V. 

LEMMA [V]. For a Harish-Chandra module V there are finite-dimen- 
sional modules E, and E2 such that: 

(a) V is a subquotient of (U(Q)/L Ann V) @ E, and 

(b) U(e)lL A nn V is a subquotient of V@ EZ. 

Proof of (a) is trivial: since V is finitely generated as a left U(8)-module 
it is a quotient of (17(6)/L Ann V) 0 C”. In order to prove (b) choose a 
U(B,)-stable finite-dimensional subspace Ec V such that V= U(B). E. 
Let E’ be the B,-module dual to E. Identify EQ E’ with the subspace of 
V@ E’. Consider the distinguished @,-invariant element a E V@ E’, 
corresponding to 1 E Hom(E, E) = E@ E’. One can easily verify that the 
map U(B)/L Ann V --f V 0 E’, u H u. a is injective. So we may take E’ as 
Ez- Q.E.D. 

PROPOSITION 3.5 [V]. Zf V, and V2 are irreducible Harish-Chandra 
modules then conditions 

(i) LAnn V,cLAnn V,, 

(ii) V, is a subquotient of V, @ E for some Cfinite-dimensional) E, 
are equivalent. 

Clearly (ii) => (i). Conversely, if L Ann VI c L Ann V2 then according to 
the lemma, V,=sbq((U(B)/LAnnV,)@E,)=sbq((U(B)/LAnnV,)@E,) 
= sbq(( V, @ E,) @ E,) = sbq( V, @ E), where E = E2 BE, and “sbq” means 
“subquotient of’. Q.E.D. 

3.6. Let Z(w) be the length of w  E W. The following statement is 
well known: 

LEMMA 3.61. Let A be a b-algebra with basis a,, w E W, subject to the 
relations: 

(i) a,. a, = 1 ifse W is a simple reflection; 

(ii) a,;a,,=ah,,.,, if l(w,) + l(wz) = I(w, . w2). 
Then A is isomorphic to the group-algebra Z[ W]. 

Now we will introduce three algebras which are in fact isomorphic to 
awl. 

Let K[H] be the Grothendieck group generated by the elements of H. 
On K[H] define a multiplication: 

V,oV,=C(-l)‘.Tor~(V1, V,). 
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(Higher derived functors are necessary here since VI, V, -v* V, 0 U V2 is not 
an exact functor.) One can show that K[H] becomes an associative 
Z-algebra. 

Next consider the category 2 of 9x,Ymodules, described in the 
Proposition 3.3, and the corresponding Grothendieck group KC%]. 

Finally let F(Xx X) be the group of constructible functions on Xx X, 
constant on each GA-orbit C,. Multiplication on KC%] and on F(Xx X) 
are convolution-like operations defined as follows. Let Pii: Xx Xx X+ 
Xx X be natural projections on three possible pairs of factors. For construc- 
tible functions cp, $EF(XXX) set cpoIl/=(P,,), [(PTzq).(P,*,$)]. Here 
P$ (resp. (PO)*) stands for a pull-back to Xx Xx X (resp. push-forward to 
XXX). 

Similarly for gxxY modules 4, JOE Z the element .,&o~EK[Z’] is 
defined as 

where direct images si were introduced by Kashiwara. 

~OPOSITION 3.6.2. (a) All three algebras K[H], K[Yf] and F(Xx X) 
are isomorphic to the group-algebra Z[ W]. 

(b) if w E W and j,,,: C,. 4 Xx X is the inclusion of a cell then the 
element 1 . w E Z[ W] corresponds by these isomorphisms to P(M,) in K[ H], 

(jd! Gc, in K[x] and the characteristic function Q c, in F(X x X) respec- 
tively. 

This proposition is well known (see, e.g., [LV; Spr2]). The isomorphism 
K(H) N K(Z) is provided by Proposition 3.3. An arrow K(Z) -+ F(Xx X) 
attachesX(y,&):= C(-1)‘~dimH’DR&$,,,y~XxXtoa~~,,-modu1e 
A. 

Here DR & is the De Rham complex, associated with JY [Br]. Finally, 
in order to prove that K(S) and F(X x X) are isomorphic to Z[ W] it is 
enough to verify that elements (j,)! Co,= and % c, satisfy conditions of 
Lemma 3.6.1. The first condition follows from a direct checkup for SL2. 
The second is an easy consequence of the fact that for Z(w,) + I(w,)= 
4w, . wz) the cell C,,,.,, is isomorphic to the fibre-product C,, xxCwz. 

3.7. The Grothendieck group K(8) is, of course, isomorphic to 
K(H) as a group. However, there is no way to equip it with multiplicative 
structure. What is possible is to consider K(8) as a K(H)-module via the 
action 

voM=x(-l)‘.Toru(V,M). 
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This clearly gives rise to the regular representation of W if K(H) is iden- 
tified with Z[ W]. 

Suppose ME K[ 61 corresponds to the element C x,,,( n/r) . w  E H [ W]. 
That just means that [M] =CX,,,(M). [M,] in KC&]. Consequently the 
formal character of M is equal to (cf. (1.5.1): 

( 
C xJM) . ewp 

)I 
,Fo (exi2 - e ~ I’*). 

Note that for M, M’ E K[8] convolution P(M)0 P(M) in K(H) 
corresponds to the usual convolution of functions xII,(M) and xM,(M)) on 
the Weyl group. 

4. GEOMETRY OF THE MOMENT MAP (AFTER [Gil; St]) 

4.1. Let A be a complex algebraic Lie group with Lie algebra a 
and the dual space a*. Suppose we are given a hamiltonian action of A on 
a symplectic (complex algebraic) manifold M. That means, in particular, 
the existence of Lie algebra homomorphism a + oM, a t+ H,. Therefore 
one can define the moment map p: M-t a* (see; e.g., [BB]) by the for- 
mula p(m): a I-+ H,(m), m E M, a E a. 

Recall that a subvariety of a symplectic manifold is called coisotropic 
(=involutive) if tangent spaces to its regular points contain their 
orthogonal complements relative to the symplectic form. There is also 
another definition: a subvariety in M is coisotropic if its defining ideal is a 
Lie subalgebra in Co,. 

THEOREM 4.1 [Gil]. Suppose a is a solvable Lie algebra. Then for any 
coadjoint orbit Q c a* the inverse image p-‘(Q) is either empty or a 
coisotropic subvariety of M. 

The proof of this theorem is given in Appendix B. 

Remark. It is impossible to drop the assumption that a is solvable. For 
example, consider the natural SL,(C)-action on M= C2. Then the sub- 
variety p - ’ (0) = (0) is not coisotropic. 

4.2. Let G be a connected complex Lie group with Lie algebra 6 
and I E 8*. Suppose b is a solvable subalgebra in (5 and bl its annihilator 
in 8*. 

PROPOSITION 4.2 [Gil]. Zf A/[b, b] =0 then G.An (A. + b’) is a 
coisotropic subvariety in the orbit G. A. 

607/61/l-Z 
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Proof One should apply Theorem 4.1 to M= G. /2, a = b and 
Q= {AI,} cb*. 

4.3. From this moment we keep to the notations of Sections 1-3. 
In particular we fix a Bore1 subalgebra b = h + n in 6 and identify n with 
b’ c Q* via the Killing form. 

PROPOSITION 4.3 [Gil]. For any nilpotent orbit 0 c 6* the intersection 
Con n is a Lagrangian subvariety in 0. 

The proof will be indicated in Section 4.4. 

COROLLARY. All irreducible components of 0 n n are of the same dimen- 
sion, equal to 4 ’ dim 0. 

4.4. Consider the flag manifold X, the moment map p: T*X+ 6* 
and the conormal bundles TgW X to Schubert cells X,,. The following fact is 
almost trivial. 

LEMMA 4.4. p-‘(n) = IJ,,, w T;W X. 

Proof of Proposition 4.3. 0 in is a coisotropic subvariety in & 
according to Proposition 4.2. It is also isotropic since 6 n n c n = 
p(U 7’gWX) (Lemma 4.4) and TcM X is an isotropic subvariety in T*X, while 
the moment map p is compatible with symplectic structures on T*X and Lo. 

4.5. Suppose that n E n and 0 = G * n. Let Y be an irreducible com- 
ponent of p - ‘(n) and let G. Y be an irreducible component of p - ‘(0). 

LEMMA [St;Gil]. dim Y+dimLo=dimG. Y=dim(0nn)+dimX. 

The first equality is clear. To obtain the second consider the projection 
G. Y 4 T*X + X to X. Its libres can be identified with components of 0 n n 
Q.E.D. 

From this lemma and the crucial Proposition 4.3. it is not hard to 
deduce the following 

THEOREM~.~ [Gil]. If 0 is a nilpotent orbit in @* then: 

(i) ,u - ‘(0) is a coisotropic subvariety in T*X and the fibres of the map 
u: p ~ ‘(0) + 0 coincide with the leaves of the natural nuil-foliation on the 
coisotropic subvariety; 

(ii) the closure of each irreducible component of p - ‘(0 n n) equals the 
closure of a certain conormal bundle Ts, X. 
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COROLLARY 4.5.1. All irreducible components of ,u - ‘( 0) have the same 
dimension, equal to dim X f $. dim 0. 

COROLLARY 4.5.2. [Spa; Gi 11. For any nilpotent element n E 8* all com- 
ponents of p - ‘(n) have the same dimension, equal to dim n - t. dim G * n. 

COROLLARY 4.5.3. For any irreducible component F of 0 n n there is 
w E W such that F= B ’ (w n w-l n n) (here B is the Bore1 subgroup). 

4.6. Later we will make use of similar results for T*(Xx X) instead 
of T*X and GA-orbits C,. c Xx X instead of B-orbits X,, c X. Recall that 
GA= ((g, g)l geG}cGxG and (ti, c 8 x 8 is its Lie algebra. Let N, be 
the nilpotent variety in 8,*C@J*X@J* and let ~~=px(-p): 
T*Xx T*X-+ 8* x 8* the moment map (note the sign on the second fac- 
tor!). The 8 x @-counterpart of Lemma 4.4 is 

4.7. The following result is a formal consequence of Theorem 4.5: 

THEOREM 4.7 [St; Gi 11. Let 0 be a nilpotent orbit in 62. 

(a) The closure of an irreducible component of p;‘(8) is equal to the 
closure of a certain conormal bundle Tzw(X x X); 

(b) all T$JX x X) are obtained in this way. 

Consider the projections pI: T*X x T*X + T*X (i= 1,2) on both factors. 

COROLLARY. For any w E W there is a nilpotent orbit 0 c 6* such that 
pi( r*ow(X x X)) equals the closure of an irreducible component of p -‘(Lo). 

Remark. While the orbit 0 is the same for p1 and p2 irreducible com- 
ponent of ,r-‘(I?), corresponding to these projections, may be different! 

5. CONSTRUCTION OF SPRINGER REPRESENTATIONS 

5.1. Suppose N is a complex manifold and A a homogeneous 
Lagrangian subvariety of T*N. Consider the Grothendieck group, 
generated by coherent O,, sheaves, supported at A. Let L(A) be its 
quotient modulo the subgroup generated by all sheaves F such that 
dim supp F < dim A. If {A,} are irreducible components of A then L(A) is 
clearly a free abelian group with the basis OAi.. 

Let Nj, i= 1,2, 3, be complex manifolds and P,: T?(N, x N2 x N,) 4 
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T*(N,x Ni) be the natural projections, Suppose further that 
/1 c T*(N, x N2), /1’ c T*(N2 x N3) are homogeneous Lagrangian sub- 
varieties and that the map P,,: PG’(LI) n P,‘(A’) --+ T*(Nr x N3) is proper. 
Then its image is a closed isotropic homogeneous subvariety of 
T*(N, x N,), denoted /10 A’ We will define a multiplication 
L(/i)@L(n’)-+L(/ion’) as follows (if dim (/ion’)<dim(X,xX,) then 
L(,4 on’) =0 by definition). For sheaves F and F’ on /i and /i’, respec- 
tively, consider the complex (in the derived category) FoF’= (RP,3)* 
(PT,FO clT*(N,xN~xNj) P,*,F’). The cohomology sheaves A?‘(Fo F’) are 
clearly supported by n 0 A’. One can show that the class [Fe F’] = 
C(-l)i.Zi(F~F’) in L(,40,4’) is determined by classes of F and F’ in 
L(n) and L(A’), respectively. Thus the map [F] x [F’] H [FoF’] is well 
defined, giving rise to the multiplication L(A) 63 L(/1’) + L(/i o A’). 

Remark. Let us give the geometric interpretation of L(A). Suppose 
/1 c T*N and FE L(,4 ). Consider all purely (dim n )-dimensional com- 
ponents of supp F (counted with their multiplicities) as an analytic cycle in 
T*N. In this way, we get an isomorphism of L(n) onto the group of 
analytic cycles of maximal dimension in A, where both are regarded as 
abelian groups. Next suppose that ii, c T*(N, x N2), A2 c T*(N2 x N,) 
and consider the multiplication L(/1,)@L(n,) + L(/1, c’,4?). In terms of 
analytic cycles it is, roughly speaking, defined by the formula 

A on’= (P,,), (Pf2A n P&A’), (51.1) 

where A and /1’ are components of A, and A, respectively and inverse and 
direct images of cycles are defined in the usual way. However, the 
geometric intersection P&A n P&A’ may have the “wrong” dimension. 
Therefore the right-hand side of (51.1) should be understood as follows. 
Choose a flat family of analytic cycles A, c T*(N, x N2), t E C\ (0) which 
specializes to /1 when t -+O and such that all the intersections 
P&A, n P&A’ are proper (i.e., of the “right” dimension which is equal to 
(dim N, +dim N,)). Then dejihe the right-hand side of (5.1.1) as a 
specialization of the family (P13)* (P&A,n PF3A’) at t=O. At first glance 
it may depend on a choice of the family /1,. Coincidence with the previous 
sheaf-theoretic definition shows that it actually does not. 

5.2. Let us consider a special case of the above construction. Sup- 
pose X is a complex manifold and let n c T*(Xx X) be a homogeneous 
Lagrangian subvariety such that /10 /i c A. On L(A) one can define 
according to Section 5.1 a structure of Z-algebra with multiplication 
L(/1)oL(n)-tL(/1o/i)~L(n), This algebra is associative but not 
necessarily commutative. 
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5.3. We apply Section 5.2 to the flag manifold X and 
A=U,T*,V(XxX)cT*(XxX). We have (see4.6) Aon=~;l(N~)o 
p;l(N,) c p;i(N,, 0 Nd) c pdl(Nd) =/i. We can now state the crucial 

PROPOSITION 5.3. There is an algebra isomorphism lim: Z[ W] 3 L(A) 

Proof Recall that X is the set of Bore1 subalgebras of (fi (see Sec- 
tion 2.1). Let E be a vector bundle on X with the libre b, at x E X. Identify 
PX with the subbundle of E with libres CX N II, c b,. The moment map 
p: T*X+ 8* extends to E via the imbedding of Bore1 subalgebras into 
Q z 8*. This map E + 8* is surjective and will be also denoted by CL. 

Note that if b,=b,+n, then b,Eb,/[b,, b,]. If b,,=g+b;g-’ then 
the corresponding conjugation-map h, = b,,/[b,,, b,.] + b,/[b,, b,] = h, 
does not depend on a choice of gE G. Therefore there are canonical 
isomorphisms h,, N h, so that all Cartan subalgebras can be identified with 
the fixed one h. Thus there is a well-defined morphism v: E + h mapping b, 
into b,/[b,, b,] N h. We have the following commutative diagram (see, 
e.g., [Spr 1; SprZ]): 

Here %**/G” denotes the spectrum of the ring of G-invariant polynomials 
on 8*. 

Recall that for h E h the inverse image v- ’ (h) is a smooth submanifold of 
E with the natural symplectic structure of “twisted cotangent bundle” on X 
(see [GiS]). Also note that over a set of semi-simple regular elements of 
Q+ the map p is a covering with the free W-action on its fibres. 

Return to the proof of the Proposition. Set: pd = p x (-p), vd = v x (-v) 
and consider the diagram 

T*(XxX)=-+ExE ’ ,XxX 

VA 
J 

y \ 

to1 hxh oi*XO*+Bd* 

Choose a regular element h E h and for all s E C and w  E W set 
A,(s)=v,‘(s-h xs*w-h)np;1(02). 
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LEMMA. Ifs # 0 then: 

(a) pA maps A,(s) isomorphically onto a regular GA-orbit in 052; 

(b) PA,) = C,.. 

We also have 

LEMMA. If s#O then: 

(a) A,(s) is a smooth connected Lagrangian submanifold in the sym- 
plectic manifold vP’(s.h)xv-‘(-s.w.h); 

(b) in notations of Section 5.1, ,4,,,l(s)o A,,(S) c A,, Js) and (fir the 
multiplication L@,,,,(s)) @ L(A,,(s)) + L(A n,,wZ(~))) we have OA?iw,Cs) 0 0Aw2Csj = 

~&,,,(4. 

Part(a) is trivial; (b) is also easy since all the intersections involved are 
transversal. Set 

A(s) = u AM.(S). 
W’ 

COROLLARY. Ifs #O then L(A(s)) = Z[ W]. 

Now we can finish the proof of Proposition 5.3. First of all note that 
A(0) = U T:*(X x X) = A according to Lemma 4.6. Next for each M’ E W let 
us vary s and consider a flat family of symplectic manifolds 
vP’(s.hxsbw.h). On it we have for s#O a family of sheaves O,,w(s,. Let 
4 = lim,+0 L?l,(d be its specialization at vi ‘(0) = T*(Xx X). Clearly 
supp ow, c A(0) = A so that &E L(A). Since the specialization commutes 
with the multiplication 0 the equality &, 0 OwZ = O,,,,,.z still holds in L(A). 
Hence, in order to finish the proof it remains to show that the elements Co, 
form a basis of L(A). 

Since A = U TFw(Xx X) the group L(A) has the natural basis 
Tc* = OP r:“(xxxv We can therefore write 

%= c b,,: T: 
1’E w  

for certain integers b,,, E Z. It is easy to prove that b,.,,. = 0 unless C, c C,, 
and b,,,,, = 1. Hence, the matrix b,.,. is strictly upper triangular relative to 
the Bruhat ordering. So it is invertible and 4. is a basis. Q.E.D. 

Remark. Integers b,.,, are equal to those introduced by Kazhdan and 
Lusztig in [KL2] (see also [KT] and Section 6 of the present paper). 
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5.4. Consider the diagram (*) below. 

(*I 

Here P, (resp. P,) are projections of T*X x T*X to the left-hand (resp. 
right-hand) factors and Nd is the nilpotent variety in S,* c O* x 6*. It is 
clear that ~~(supp(Fi OF,) = P,,(~UPP F,) n P~(~UPP F,), p,(supp J’,oF,) = 
P, (supp F,) (and similarly for P,), where F,, F, E L(n). Therefore one can 
determine two-sided (resp. left or right) ideals in L(n) by fixing images of 
supports (of the sheaves in question) relative to pd, P,, or P,, respectively. 
Accordingly, for a nilpotent orbit 8 c Nd we define two-sided ideals La 
and Lao in L(A) (here as=??\@) as 

LQ = {FE L(A)( p,(supp F) c 8} 

and for Lao similarly. Consider the algebra L, := La/Lao. Since 
L(A) 1: Z(W) this is also a W-bimodule with distinguished basis 
{ cw 1 p( T,*u(X x X)) = a}. In view of complete reducibility of @[WI we 
have 

C[Wl= O,,,@QL,. (5.4.1) 

5.5. Let us now reinterpret these results in terms of T*X instead of 
T*(Xx X). Choose a Bore1 subalgebra b= h + n and set nr, = 
p-‘(n) = u T$*X. One may regard Ai, as a Lagrangian correspondence in 
T*(Xx point). It is then clear that n o/i,,c ,4,. So the convolution 
L(A)@ L(A,) + L(A,) defines a L(A) z Z[ WI-module structure on L(A,,). 

On the other hand the components of At, are just the irreducible com- 
ponents of ~~‘(0 n n) for various nilpotent orbits 0 c 6*. For each 0 let 
us pick up a component F of 0 n n with the boundary aF= 1”\F. The same 
argument as in Section 5.4. shows that sheaves in L(A,,) whose support 
projects into F (resp. i?F) form L(n)-stable subspace I’, and VaF in L(A,). 
Set V, = V,/V,,. 

In order to investigate each V, more closely identify O,* with (tj*, choose 
an element n E F and consider its centralizer G(n) c G. There is natural 
G(n)-action on the fibre p-‘(n) c X. 

Let C(n) be the group of connected components of G(n). The group C(n) 
acts on the set of components of pL- ‘(n) by permutations (induced by 
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G(n)-action on p-‘(n)). Note that components of p-‘(F) are in l-1 
correspondence with those of p-‘(n) c p-‘(F) (if n E Fc 0). Hence one can 
define the action of C(n) by permutation of components of p--‘(F). 

One can show that the C(n)-action on V,, so defined, commutes with 
the action of W Hence we can write (see also [KL2; Sprl],...): 
@On I/,, N @ (E, 0 V, ,,), where E, are irreducible representations of C(n) 
and I/,,,- representations of W. 

Following [KL2] and [St] we note that 

pc(d’(O)=G x G(nI W’(n) x P-‘(n)). (55.1 ) 

(here G(n) acts on both factors of p-‘(n) xp-‘(n) simultaneously). 
Equation (5.51) yields L, N (V, 0 VCO)C(n’. Thus we obtain the decom- 
position 

CO-L,. = O.yEC(n, (V,..,O vJ(‘r). (5.5.2) 

Finally (5.4.1) implies the following (cf. [KL2; BM; Spr2]): 

PROPOSITION 5.5. C[ W] ‘v O,..,( V,.., @ VP,r), where V, ,I are exactly all 
irreducible W-modules (without repetition). 

Irreducibility of V,,, follows from the equality x (dim If,.,)‘= # W, 
which can be verified as in [St]. 

5.6. In the previous paragraphs we defined a W-module structure 
on the spaces VC with the distinguished base, indexed by irreducible com- 
ponents of X, = p-‘(n), n E 8. These components form as they are a base of 
the top dimensional homology space Hd(Xn), d= dim X,. Let us now 
indicate how a W-action on each homology space H,(X,), i d d can be 
defined. That was originally done by Springer [Spr 1 ] (see also [BM] ). 

For a nilpotent element n EN let U be its small open neighborhood in 
the nilpotent cone N and let 8 = p-‘(U) be the corresponding “tubular” 
neighborhood of A’, := p-](n) in T*X=p-‘(N). We assume 8 to be con- 
tractible to X,. Let p: 8 + A’,, be such a contraction. Then we have the 
isomorphisms: 

H*(X,) -&+ H*(U) g H,(U) (= Borel-Moore homology) (5.6.1) 

where the second isomorphism is due to Poincari: duality for a smooth 
variety fl (note that 8 is smooth as an open part of a smooth variety 
T*X). 

Consider the Lagrangian correspondence A = T*X x T*X (see n. 5.3) and 
set: AU = A n (8 x 0) = a x ,.+ 8. Thus A o is a Lagrangian correspondence 
in 8x D and A,,oA U= A,,. So the group L(A,) acquires a ring structure 
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and the restriction map: L(A) + L(A.) is a ring homomorphism. Hence 
there is a homomorphism Z[ IV] + L(A,) due to Proposition 5.3. Our job 
will be therefore completed if we define an L(A .)-action on H,(X,). To do 
that set r = dim A (= dim X) and identify L(A,) with Borel-Moore 
homology group H,(A.). We shall define a convolution-like bilinear 
pairing: 

Hr(A U) x Hi(Xfl) + Hi(Xn) (5.6.2) 

as follows. Consider the contraction p x id: ox 6-+ X,, x zi. Its restriction 
to A, is a proper map p”, giving rise to the Borel-Moore homology 
morphism: 

(by (5.6.1)) 

E Hi(Xn) 8 H’(X,) G Hom(H,(X,), HJX,,)). 

The definiton of (5.6.2) is now clear. 

6. CHARACTERISTIC CYCLES AND THE WEYL GROUP 

6.1. Suppose N is a complex manifold, .A? a holonomic module on 
N and A c T*N a Lagrangian subvariety such that SSA’ c A. For a good 
filtration on A the associated graded &-.,-sheaf is supported at A. One 
can show (see, e.g., [La; Gi4, Sect. 91) that its class in the group L(A) (see 
Section 5.1) does not depend on a choice of good filtration. We denote this 
class by gr A. 

Let {A,> be the collection of irreducible components of A. Following 
Kashiwara define the multiplicity m,(A) as the multiplicity of the sheaf 
gr A at a generic point of .4,. In the group J?,(A) we can write an equality 

gr A = C m,(A). O,@. 

For that reason the formal linear combination of irreducible components of 
the characteristic variety SSM counted with their multiplicities is called the 
characteristic cycle of A? (see, e.g., [Gi4; KT],...). 

6.2. Returning to the group-theoretic situation, we assume that X 
is the Flag manifold, N = Xx X, A = IJ T$(Xx X) and p,* := Qec (XXX) is 
the basis of L(A). For A?EX we can write: gr A? =C m,(A). TEw. 
Further it is clear that the map A -M* gr A gives rise to an additive 
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homomorphism gr: K(X) + L(A). We have shown respectively in Sections 
3 and 5 that both K(X) and L(A) have natural structures of Z-algebras 
and that these algebras are isomorphic to Z[ IV]. Keeping this in mind we 
can state 

THEOREM 6.2. The diagram 

K(z) gr .L(A) 

is commutative (the arrow x assigns the element 1 ~(w, A). w  (see 
Proposition 3.6.2) to A? E K(X)). 

COROLLARY. The map gr is an isomorphism of algebras. 

Remark. In the next section we will explain directly why “gr” is com- 
patible with multiplicative structures. 

Suppose that the image x( V) E Z[ W] of a Harish-Chandra module 
VE H equals C x,( Vj . w. That means the equality in the Grothendieck 
group: [V] = C x,,,(V) . P(M,,). So the function x~( I’) may be interpreted 
as the formal character of I’. Theorem 6.3 is equivalent to the following 
fundamental relation between characters and characteristic varieties. In 
notations of the proof of Proposition 5.3 (cf. [KT, Theorem 63): 

(6.2.1) 

In particular we have 

gr P(M,.) = liiO A Js). (6.2.2) 

There is a similar formula for characteristic cycles of 9rmodules, 
corresponding to elements of d. If b = h + n is a fixed Bore1 subalgebra, 
A E h* is a dominant regular weight and Jkt, = gX@ U M,, then in notations 
used in Section 5.3: 

grA&.=!FO [~~‘(s.w.%+n)nv~‘(s.l)]. (6.2.3) 

6.3. In order to prove Theorem 6.2 recall one general result from 
[Gi4]. 

Suppose Z is a one-codimensional subvariety in a complex manifold N. 
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Set U = N\Z, j: U 4 N. Let & be a regular holonomic module on U and 
j, J% its “meromorphic” direct image to N. We will express gr (j, A) in 
terms of gr A. 

Consider Z as a divisor in N. Let p: Y + N be the principal @*-bundle 
on N, associated with that divisor. There is a hamiltonian @*-action on 
T* Y induced by the natural @*-action on Y. It gives rise to a moment map 
p: T* Y + C. Fibres of p are stable under action of @* and for each s E @ 
the quotient-space p- *(s)/@* is a complex manifold with natural symplec- 
tic structure. It is known as “twisted cotangent bundle” TSN (see [Gi5]). 
In particular FN = T*N. 

Suppose n c T*U is a homogeneous Lagrangian cycle. Let 
p*,4 cp*( T*N) c T* Y be its pull-back to Y. This is a Lagrangian cycle in 
T*(p-l(U)). Further, there is a functionfon Y such thatf-‘(0) =p-‘(Z) 
andf(t.y)=t*f(y) for YE Y, TV@*. It can be shown that for s#O the 
intersection (p*A + @* 9 df) n p-l(s) is transverse and closed in p-‘(s), 
giving rise to a Lagrangian cycle .4” in TSN = am’/@*. Finally denote by 
lim s+0 A’ the specialization of the family of analytic cycles /i”, s E C\ (0) at 
s = 0. By definition, lim, _ ,, A’ is a homogeneous Lagrangian cycle in T*N 
(of course, it is not equal to A since n c T*U is not closed in T*N). 

Now we can state the following twisted version of [Gi4, Theorem 3.21: 

THEOREM 6.3. gr( j, A) = lim, _ 0 (gr A)“. 

Proof. The result being local we assume that there is a regular function 
gon Nsuch that Z=g-‘(0). Then Y=Nx@*, T*Y=T*NxC*x@ and 
~(5, t, T) = t. r (here t and z are coordinate functions on @* and C, respec- 
tively, and 5 E T*N). We also have f(n, t) = t *g(n), n E N. Consequently 
(p*(grA)+C*.df)np-‘(s)=((<+s.g-‘.dg, r, s.t-‘)eT*NxC*x 
@ltEgr.M, s, TV@*}. Whence lim,,,il”=lim,,, (grA+s.dlogg). It 
remains to apply [Gi4, Theorem 3.2.1. 

6.4. Proof of Theorem 6.2. It is clear that the statement is 
equivalent to (6.2.1). Since elements P(M,) form a basis in K(H) its 
enough to verify (6.2.2.). The proof of (6.2.2.) and (6.2.3) being absolutely 
identical (in fact these formulas are equivalent), we will prove only (6.2.3) 
in order to avoid complicated notations. Let j, : X,,, 4 X be the imbedding 
of a Schubert cell. Then A,,, = (j,)! I?y, (see Section 2.6). Also note that 
gr(iA oxw = gr(.L), %. 

Denote by B, T, U the groups corresponding to b, h and n, so that 
B= T. U. Let Iz be the highest weight of a finite-dimensional irreducible 
B-module E and e E E the highest-weight vector in E. Consider the sub- 
group TO = ker(exp A) c T, the manifold Y = G/( T,, . U) and the principal 
@*-bundle p: Y + G/B = X. We regard E as a space of holomorphic sec- 
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tions of the line bundle on X. These sections can be also identified with 
functions on Y. Let f be the function, corresponding to the extreme vector 
w-eeE. It was shown in [BGG2] thatp(f--‘(O))nX~=X,\X,=aX,. 

Now we are in a position to apply Theorem 6.2. According to that 
theorem: 

gr(j,), ox, = liFO C(P*T%vX+ C*. df 1 f-3 K1(s)l. 

It can be verified that the twisted cotangent bundle TX, introduced in Sec- 
tion 6.3., identifies with the symplectic manifold v~‘(.s. A). Further, let e* 
be the lowest-weight vector of the dual B-module E’. Then f  (g . To. U) = 
(e*, we'. g. e) and computation shows that for x E 8, u f U and 
y = u. w E G/( To * U) = Y we have dfy(x) = (u . w. A)(x). It is now easy to 
identify p* T$W X + C *.dfwith ~-'(C*.~)n~~'(@*.w.~). Q.E.D. 

7. BIVARIANT CHERN CLASSES 

The subject of this section is not directly related to the problem of 
classification of primitive ideals. The uninterested reader can omit it 
without any trouble. 

7.1. First of all we generalize the concept of bivariant theory, 
introduced in [FM]. By a correspondence between algebraic varieties X, 
and X, we mean any subvariety Z c X, x X,. Suppose X,, i = 1,2, 3, are 
three algebraic varieties. Let P,: X, x X, x X3 + Xi x X, be natural projec- 
tions. For Zc X, x X2 and Z’ k X, x X, consider the map P,,: Pz’(Z) n 
P,‘(Z’) +X, xX3. If it is proper denote its image by ZoZ’ and say that 
Z 0 Z’ “is defined.” 

We say that a bivariant theory T is given if for any correspondence 
zcx,xx, there is a group T(Z) with a convolution- 
operation : T(Z) 0 T(Z’) + T(Zo Z’), provided Zo Z’ is defined. This 
operation is assumed to be bi-additive and associative. 

For example, bivariant homology theory H, introduced in [FM] 
associates to Z c X, x X, the group H(Z) = H*(N x X2, (N x X,)\Z), 
where N is a smooth manifold containing X, and H* denotes the usual 
cohomology group. In particular for Z= X, x X, denote this group by 
H(X,, X,). Clearly H(X,, X2) N H,(X,) 0 H*(X,). 

7.2. Suppose that X, and X, are complex manifolds. For XE X, 
consider the inclusion i,: X, x {x} 4 X, x Xz and the projection 
p: X, x X, +X,. For a function f  Iet $r and 1+5~ be the vanishing cycles 



Q-bi0~uLEs 27 

functors, introduced by Deligne [De]. Further let Rtix be the functor of 
Verdier-specialization [Ver] at the normal bundle TX, x tX,(X, x X,). 

Let J? be a holonomic system on X, x X, with regular singularities. 
Consider the constructible complex A’ = DRJ%‘, the lagrangian variety 
n = SSJY c P(X, x X,) and the coherent OT.(X, x ,)-sheaf F= gr JY (see 
Section 6.1). We will also make use of the projection P: T*X, x 
T*X,--+(T*X,)xX,. 

PROPOSITION 7.2. The following conditions are equivalent: 

CT11 &tA’)=O f or any x E X, and any function f on X such that 
f(x) = 0 and df(x) # 0; 

(T2) for any XE X, the morphism (in the derived category): 
i: ~‘4 + R$,JY is an isomorphism; 

(T3) &’ is a coherent P’(gX, 0 OX,)-module; 

(T4) F is a coherent P’cY~~~.~, , x ,,-module; 

(T5) the map P: A + (T*X,) x X, is finite. 

Let us indicate the proof. Consider the subbundle P*(T*X,) of the 
cotangent bundle T*(X, x X,). According to [Br, theorbme 4.2.81 the con- 
dition Tl is equivalent to the following one: 

T6. SS& n P*( T*X,) is contained at the zero section of T*(X, x X,). 

If (T6) holds then the map n 4 T*(X, x X,)\p*(T*X,) +’ (T*X,) xX2 
is proper and hence finite. Therefore (T6) + (T5). It is easy to see that 
(T5) 3 (T4) o (T3) * (T6). In order to prove that (T2) o (T6) one shows 
that the Fourier transform of R$,M is supported by the zero-section of 
the conormal bundle to X, x {x}. This can be done by means of [Gi4, 
Theorem 7.11. 

7.3. Keeping the notations of Section 7.2. suppose Z c X, x X, is 
an arbitrary subvariety. We will now introduce a number of bivariant 
groups. 

-Hoi,(Z) is the Grothendieck group generated by regular holonomic 
modules .& on X1 x X, satisfying (T2) or (T3) and supported at Z. 

-&(Z) is the Grothendieck group generated by constructible com- 
plexes A. on Z such that the following local Euler condition (see [FM]) 
holds: 

(Eu) for any x E X, and any function f on X, such that f (x) = 0 and 
df (x) # 0 the sum C ( - l)i. &(+4,./A’) (of cohomology sheaves) vanishes 
in the Grothendieck group of constructible sheaves. 

As was pointed out to me by C. Sabbah, condition (Tl) is much stronger 
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than (Eu) since it deals with the complex dp*f(A’) while (Eu) imposes 
restriction only on a combination of its cohomologies sheaves. It is 
therefore natural to introduce in addition to Hoi,(Z) the larger group 
Hoi,,(Z) generated by holonomic regular complexes A!’ such that 
DR A’ E D&Z). 

Next consider (see [FM]) the group F(Z) of constructible functions cp 
on Z (extended by 0 to X, xX,) subjected to similar Euler condition: 
i,*qn = $51p for any x E 1,. Here i,*qn denotes the restriction to X, x (x} and 
Ic/Xcp is the vanishing cycles counterpart for constructible functions. Note 
that if A‘ E DE”(Z) then the constructible function. 

belongs to F(Z). 
Finally let &(Z) be the group of homogeneous Lagrangian cycles 

n c T*w, XX,),, such that the map p: A + (T*X,) x X, is finite. For 
A = T*,(X, x X,) this means in particular that Y c Z and that p(Y) = X,. 
The finiteness of p implies however somewhat more, imposing certain 
extraconditions on the behaviour of the map p: Y + X, at its singular locus. 

Following n. 5.1 we may regard &(Z) as a Grothendieck group of 
coherent 0 T*(X, X X2J -sheaves supported by Lagrangian subvarieties (modulo 
the sheaves supported by subvarieties of lower dimension). To a sheaf F 
one attaches the cycle supp F. It is clear that Lr(Z) is generated by exactly 
those sheaves F that (T4) holds. 

It is desirable to have a group &,(Z), similar to &(Z) but with the 
condition imposed on cycles in Lr(Z) being relaxed. I do not know a good 
definition of such a group (cf. [Sab 21). If dim X, = 1 the group L&Z) 
should be generated by all A = T*,(X, x X,) such that Yc Z and 
p(Y) = A’,. If dim X, > 1 one may try to define it as follows (cf. [Sab 23). 
Consider the projection: (T*X, ) x X, + X,. For A c T*(X, x X,) let 
A, c T*X, be the fibre of p(A) over XE X2. If A = T*,(X, xX2) then A, is 
the relative conormal bundle: A, = T*,Jx,, where Y., := p-‘(x) 
(cJ-,x {x},. 

Fix a point x E A’,. Given a Lagrangian cycle A c T*(X, x X,) and a 
germ of an algebraic curve y: @ 4X,, y(O) = x consider a family (/iyctJ, 
f #O} of the above defined Lagrangian cycles in T*X,. Let A,,, be its 
specialization at t = 0. 

Define &,(Z) as a group of Lagrangian cycles A c T*(X, x A’,),, 
satisfying the following condition: if x E X, and y, 7’: C + X, are two 
generic curves such that y(O) =x = y’(O) then: Ay.-r = .4,,,,. 

7.4. Recall that the Grothendieck transformation from a bivariant 
theory T, to a bivariant theory T2 is a collection of group homomorphisms 
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fz: T,(Z) + TAZ) ( one for each Z) compatible with convolution in the 
sense that all the following rectangles are commutative 

fzxfr: T,(Z)@TT,(Z’)- T&3 03 T,(Z’) 

1 i 
s zaz*: Tl(ZOZ’) - T*(Z 0 Z’) 

With that understood we can state a 

Conjecture. There is a commutative diagram of Grothendieck transfor- 
mations: 

HoMZ) gr ’ &u(Z) 

I 

* Chern 

I \ 
DR ?? Im , aH(Z) 

DE”(Z) x ) F;z) /’ 

’ McP 

Here DR assigns the De Rham complex DR JY to a g-module 4. The 
map “gr” was defined in n. 6.1 and the map “x” in n. 7.3. It was shown by 
Kashiwara [K] (see also [BDK]] and [Gi 43) how the characteristic 
cycle of a holonomic system A can be explicitly expressed in terms of the 
constructible function ~(a, DR A). The class of gr .& is therefore com- 
pletely determined by x 0 DR J? giving rise to the punctured arrow “m” 
(provided we know that gr &Y E &,(Z)). The map “Chern” will be defined 
later. 

At present we are able to prove the following weaker form of the conjec- 
ture sufficient nevertheless for many interesting applications (see, e.g., 7.4.1, 
7.4.2, and n. 7.5) 

THEOREM 7.4. The following arrows are Grothendieck transformations: 

F(Z) 4 ’ &u(Z) +=f=- Hol,( Z) gr b L=(Z)= H(Z). 

By taking here the group Hoi, instead of the larger group LnU we have 
destroyed the surjectivity of the arrow “DR. That makes it impossible to 
define the arrow “m” of the conjecture. Suppose, however, that X, = point. 
Then both the local Euler condition and conditions (Tlb(T5) reduce 
to nothing. Therefore the map DR becomes surjective and we can derive 
from our theorem that the composite McP = Chem 0 m is a Grothendieck 
transformation. Further F(Z) in this case is actually the group of all 
constructible functions on Z. So we obtain 

COROLLARY 7.4.1 [M]. There is a natural transformation from construc- 
tible functions to homology, commuting with proper direct images. 
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MacPherson’s theorem was in fact the starting point for our analysis. Its 
proof in the spirit of Theorem 7.4 (but in purely geometric terms) was 
given by Sabbah [Sab]. 

Still assuming that X, = point we also obtain a simple explanation of the 
following fact: 

COROLLARY 7.4.2 [BDK]. Suppose F: X-, Y is a projective morphism 
of complex algebraic manifolds and A’ is a holonomic algebraic 9ymodule. 
Then 

Chern gr 
0) 

J%? = F, Chern(gr A). 
F 

(here gr SF ~‘4 means C ( - 1)’ . gr Jk J%‘). 

7.5. Let us now assume that X, = X, = X is a Flag manifold and let 
/i = lJ T~w(Xx X)c T*(Xx X). Note that the map p: /i -+ (T*X) x X is 
injective. Hence the condition (TS) holds. Proposition 7.2 therefore shows 
that K(Z) c Hol,(X, X). Theorem 7.4 then gives the promised direct proof 
of the following 

COROLLARY 7.5. The map gr: K(2) + L(A) is an algebra homo- 
morphism. 

Remark. The isomorphism F(Xx X) = Z[ W] being already known, we 
get therefore another proof of Proposition 5.3. 

Furthermore consider the bivariant homology group H(X, X) N 
H,(X)QH*(X). According to Theorem 7.4 the map Chern: t(/i) -+ 
Z-Z(X, X) is an algebra homomorphism. Identify H(X, X) with H,(Xx X) 
by means of Poincare duality and recall that L(n) 2: Z[ W]. Thus we 
get a two-sided W-action on the image of Chern in H,(Xx A’) and 
this action gives rise to the regular representation of W. For T;Ew(Xx A’) 
the total class Chern TfE(Xx X) can be decomposed into its compo- 
nents Chern, TEw(Xx X) E H,(Xx X). One can easily verify that these 
components are zero unless dim Xd i 6 dim C,(and that 
Cherndimcw T!,(X x X) = [c,] E HdimC,(XX 1)). Hence the map into the 
lowest nontrivial component CherndimX: L(n) + H,i,x(XX X) is still an 
algebra homomorphism. That gives rise to the regular Wx W-represen- 
tation in a subspace of H,imx(Xx X) with the distinguished basis 
Chern,imX( T$*(Xx X)). It is not hard to show that the basis so defined 
coincides with that of Kazhdan and Lusztig [KL2]. 

7.6. Let us give some indications for the proof of Theorem 7.4. For 
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the arrow x the statement is trivial. For DR it is well known and is due to 
Deligne, Kashiwara and Kawai, and Mebkhout. In order to prove the 
theorem for “gr” recall that multiplication in Hol, and LT are defined in 
terms of direct and inverse images so that these cases can be treated 
separately. For proper direct images the statement follows from [La] or 
[Gi4, Sect. 91. In the case of inverse images consider the commutative 
diagram 

Hol, 2 d 

\J 
J3r z 

LT 

where 8 is an appropriate Grothendieck group of holonomic systems of 
micro-differential operators, h-means micro-localization and g? is a functor, 
defined in the same way as gr. Formal homological algebra shows that g is 
always a Grothendieck transformation. Suppose that & E HolT(X, , X,), 
JV E Hol,(X,, X,). Consider the diagonal A c X2 x X,, the inclusion 
i: Y=X,xAxX,qX,xX,xX,xX,=Xand the~~module.&?xJtr. We 
must prove that h(i*(&! x Jlr)) = i*h(Jz’xJlr), i.e., that the micro- 
localization of & x JV commutes with its restriction to Y. This will be done 
if we show that A x M is non-characteristic to Y, i.e., that SS(.& x JV) n 

GXcTZX. Suppose (5,, MESS&, (L 5JESSJlr. I f  (tl, b, 5L 
t3) E T*yX then <I = 0 = t3 and t2 + 5; = 0. But since &E Hol,(X,, X,) its 
characteristic variety SSM satisfies (T6). In our notations that means that 
(,=O. Hence &=O. 

Finally, the statement of the theorem for “Chern” follows from 
homological computations carried out in [Sab, Appendix]. 

7.7. We shall define here the map Chern: L=(Z) -+ H(Z). We begin 
with a general construction interesting for its own. 

For a complex manifold X consider the natural @*-action on T*X by 
multiplication. Let Kc.( T*X) (resp. Kc,(X)) be the Grothendieck group of 
C*-equivariant coherent OTaX -sheaves (resp. &-sheaves). Here @* acts 
trivially on X so that: K,.(X) = Z[q, q-l] @K(X), where K(X) is the usual 
K-group of coherent sheaves on X and Z[q, q-l] = K,+(pt) stands for the 
representation ring of the group C *. Note that K,,(T*X) is also a 
Z[q, q-l]-module. 

Let n,: T*X+ X be the projection and let i,: X 4 T*X be the zero- 
section inclusion. These maps induce the Thorn isomorphisms: 

n*,: K,,(X) 3 Kct(PX) and i*,: K,*(T*X) 2 Kc.(X) (7.7.1) 

inverse to each other. 

607/61/l-3 
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Consider the graded algebra n. O,.,. The category of C*-equivariant 
0 -sheaves is equivalent to the category of graded rr. &.,-modules. So 
Kz’.;T*X) may be regarded as a Grothendieck group of graded rt. Co,.,- 
modules. Multiplication by q corresponds then to the shift of gradation. 

Given two smooth varieties X,, X2 and a coherent sheaf FE 
K,.( T*(X, x X,)) define a homomorphism: K,*( T*X2) + K,.( T*X,). It 
arises from the “convolution’‘-operation: &*(T*w, xX,))@ 
&.(T*X,) --f Kc,(T*X,) and takes a sheaf E on TTXz to the alternating 
sum of cohomology sheaves of the complex Rf.+(F @07tX,xX2,f*E), where 
f: T*(XI xX,) + T*X, is the projection. Of course one needs a certain 
properness condition in order to get a coherent complex at the end. We 
assume it to be satisfied. Next we use the Thorn isomorphisms (7.7.1) to 
define a homomorphism I? X,.(X,) + X,.(X,) as a composition: 

‘+’ &*(X2) - K,.( T*X,) 2 K,.(T*X,) ‘i, K,.(X,) 

We would like to express fi in terms involving no cotangent bundles. To do 
that consider a commutative diagram: 

Using the equality: i$, . (pr), = (pl), . i* ‘p* we get (for EE&*(X,)): 

f’(E) = i:,(d,),(FO G2E) = (PI)* i*P,(FO G2W 

= (P,), i*(P*FOE)= (P~)*(~*P,FOP:E). 

Thus we see that the operator P is induced by the “convolution”: 
&.(X1 xX,)@K,,(X,)+KcI(X,) with the class i*.p,FEK,.(X, xX,). 
We set T(F) := i*p.+F. 

Let X3 be a third variety and let F’ be a sheaf on T*(X, x A’,). It gives 
rise to a morphism E’: Z&,(X,) + K,.(X,) and it is obvious from our con- 

n 
struction that: FOE’ = Fo F’. Since p, E’ are represented by the classes 
T(F), T(F’) this equality suggests that one should have: T(Fo F’) = T(F) o 
T(F’). To make a precise statement let us fix notations. For a subvariety 
Zc X, xX, let L,,(Z) be the Grothendieck group of C*-equivariant 
coherent OT*(,,,, x x2) -sheaves F such that: (i) supp F is an isotropic sub- 
variety; (ii) xx, x ,,(supp F) c Z; (iii) the map p: supp F + (T*X, ) x X, is 
finite. The homomorphism T = i*p, : L,,(Z) -+ K,.(Z) is then well defined 
and we have 
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LEMMA 7.7.2. T is a Grothendieck transformation. 

The proof is a formal exercise based on the identity: ~$0 if= id holding 
in &.(T*X) (cf. (7.7.1)). 

Remark. The “convolution”: K(Z) @ K( Z’) + K(Z 0 Z’) is defined by a 
formula similar to that for %modules (see n. 3.6). It essentially depends, as 
it stands, on ambient manifolds Xi, X2, X,. Suppose .however that the 
group L=(Z) is non-trivial. We have seen in n. 7.3 that this is possible only 
if p(Z) is a Zariski-open part of X2. It is not hard to verify that the con- 
volution: K(Z) @ K(Z’) + K(Z 0 Z’) is intrinsically defined and agrees with 
that of [FM], provided p(Z) is open in X2 and p(Z’) in X,. This will be 
tacitly assumed in the future. 

7.8. Following [FM] one can define the Chern character 
ch: K(Z) + H(Z) as follows. For E E K(Z) choose a finite locally free 
0 X, xX,-resolution and take the alternating sum of the corresponding chern 
characters, considered as an element of Hs(X, xX,). Finally identify 
H’$(X, xX,) with H(Z). This can be extended to a map Ch: Kc.(Z) + 
H(Z) [ [t] ] defined by the rule: 

E=x Ekqk t+ 1 ch Ek*exp(k.t). 

Let Chj E be the component of Ch E contained in xi Hg(X, x X2) * tie i. 

LEMMA 7.8.1. Suppose that dim(X, xX,) =n and consider a sheaf 
FE L,.(Z). Then 

(i) ChjT(F)=Oforj<n; 

(ii) the c/ass Ch” T(F) E H(Z) is completely determined by the com- 
ponent of the cycle supp F of pure dimension n. 

The n-dimensional component of supp F is a homogeneous Lagrangian 
cycle in T*(XI x X2), i.e., an element of L=(Z). According to the statement 
(ii) there is a well defined homomorphism Chern: L=(Z) + H(Z) assigning 
Ch” T(F) to the n-dimensional component of supp F. For n E L=(Z) the 
element Chem(n) will be called the Chern class of A. The terminology is 
motivated by the following fact: let X2 = point, let Z be a singular sub- 
variety of X : = X, and let T*,X be the closure of T&&Y. Then 
Chern( T;X) E Hz(X) N H,(Z) is (up to a sign) the Chern-Mather class of 
Y (cf. [Sab]). 

Proof of Lemma 7.8.1. We will temporarily write X instead of X, . Con- 
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sider the projective bundle P*X= lP(@ + PX) on X with P’, d= dim X as 
a fibre. It is well known that: 

H*(P*X) E H*(x)[t]/(r”+‘). (7.8.2) 

Let: T*X + P*X be the open embedding. A @*-equivariant &.,-sheaf F 
can be uniquely extended to a coherent OP.,-sheaf i? In this way we get a 
homomorphism E: Kc.( T*X) + K(P*X). Consider the diagram: 

K(P*x) ch H*( P*x) 

E 
/ \ 

5( 

Kc *( T*x) ~*wmw+ ‘1 

\ i$ 
/ 

B 

K,.(X) Ch ~*(mC~ll (7.8.3) 

Here a is the isomorphism (7.8.2) and the arrow /? is induced by the 
quotient map: Q[[t]] + Q[ [t]]/(t““). We claim that the diagram (7.8.3) 
is commutative. To prove it consider a sheaf GE K(X) and set: F= 
a$(:(qk * G) E Kc.(X). If 5 P*X+ X is the projection, then clearly: E(F) = 
fi*G @ O,.,(k). 

Therefore, 

ch(s(F))= (ii* ch G)*ch O,.,(k)=(ii*ch G).exp(k+t). 

Hence (7.8.3) is commutative for F= nf(qk. G). But the sheaves of that 
type generate &.(T*X), since z$: Kc.(X) + K,,(T*X) is an isomorphism. 
So our claim is proved. 

Now we are ready to prove the Lemma. Let FE,&.(Z). The map p: 
supp F + ( T*XI) x X, being finite, it is clear that p* F is a C*-equivariant 
coherent sheaf on (T*X,) x X, and that dim supp(p, F) <n. Nothing will 
change in (7.8.3) if a parameter-space X, is added so that T*X is replaced 
there by ( T*XI) x X, and P*X by (P*X,) x X,. Applying the mappings of 
the lower way of this new diagram to p*F we obtain exactly 
Cicn Ch’T(F). Let us now go along the upper way. Consider the sheaf 
.s(jj* F) on (P*X,) xX,. We apply to it the following general result which 
can be easily derived from Grothendieck’s version of Riemann-Roth: let E 
be a coherent 0,-sheaf on a certain manifold Y. If dim(supp E) = d then: 

(i’) chjE=O forjcdim Y-d 

(ii’) (chd E) n [Y] = the class of supp E in HAY). The statement 
follows. 1 

7.9. We are now in a position to complete the proof of 
Theorem 7.4 by showing that “Chern” is a Grothendieck transformation. 
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Let r be the Todd class of Xi. Following [FM] define the Riemann-Roth 
map RR: Kc.(Z) + H(Z)[ [t]] as: F~,.ChF~HB(X1xx2)[[t]]= 
H(Z)[ [t]]. This is a Grothendieck transformation by the Riemann-Roth 
theorem. Taking 7.7.2 into account we see that L,.(Z) 4 K,*(Z) 3 
H(Z)[ [t]] is a composite of Grothendieck transformations. We also have: 
t=l+rz+z,+***, ri E iY$$(X, x X,) and: Ch T(F) = Ch” T(fl + 
Ch .+*qq+ . . . (by Lemma 7.81). Hence: RR * T(F) = Chern (supp F) + 
terms of higher dimension. Thus the mapping Chern has to be a Grothen- 
dieck transformation also. Q.E.D. 

8. CHARACTERISTIC VARIETIES AND PRIMITIVE IDEALS 

The results of 8.1-8.4 were also obtained by Borho and Brylinski [BB2]. 
Our proofs appear to be the same. 

8.1. Let A4 be a filtered U(0)-module. We will frequently use the 
following observation: 

LEMMA 8.1.1. A filtration on M is good ijjf gr M is a finitely generated 
C[0*]-module. 

For a finitely generated U-module M let A = 9,Q, M be the 
corresponding $&module and SSM c 0*, resp. SSA c T*X their charac- 
teristic varieties. 

PROWSITION 8.1 (cf. [BB, Sect. 4; KT]). SSM= p(SSA). 

ProoJ: Let us show that SSA? c CL-‘(SSM). Suppose first that M= U/J 
for some left ideal Jc U. Then A = 9#Jx * J. Therefore the zero variety of 
gr(gx* J) is contained in the inverse image of the zero variety of gr J and 
we are done. In general A4 is the finite sum of submodules M,= U/Ji so 
that SSM = Ui SSMi and SSJY c U SS(O,@ M). Thus SSA? c 
p(SSM). 

The proof of the opposite inclusion SSMc p(SSA) copies that of [BBl, 
Theorem 4.61. Choose a good filtration { Ai} on A’ and let Mi = A4 n ..$Zj 
be the induced filtration on M. Clearly gr Mq r(X, gr A) N 
r(Q*, p.(gr A)). Since p is a proper morphism the sheaf p.(gr A) is 
coherent. Therefore r( 0 *, p.(gr A)) and, hence, gr M are finitely 
generated @ [ 0 *]-modules. So, according to Lemma 8.1.1, supp gr M c 
SUPP p.(gr A) = CL (SUPP gr A) = ASS&). Q.E.D. 

8.2. Here we compare characteristic varieties of U-modules and 
those of their annihilators. 
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Consider the projections p: Xx X+ X and p: T*X x T*X+ T*X on first 
factors. The following is clear: 

LEMMA 8.2.1. P( T;liw(Xx X)) = G. TswX. 

Recall that this set is an irreducible component of m for some 
nilpotent orbit Lo c 8*. 

Next suppose that ME b is an U-module, Ann A4 c U is its annihilator 
and JZ (resp. 9&&. Ann M) are the corresponding kQmodules. 

PROPOSITION 8.2. SS(9X/9,Y. Ann M) = G X&k’. 

Note that SS(U/Ann M) is just Var(Ann M) (notations of Sect. 1). So by 
8.1 and 8.2: Var( Ann M) = p( SS(9X/9X. Ann M)). So we get 

COROLLARY 8.2.1. If ME 8, then 

Var( Ann M) = G. SSk. 

In view of Corollary 4.3 we also have (see Section 1.7): 

COROLLARY 8.2.2. If A4 E 6, then 

dim Var( Ann M) = 2. dim( SSM). 

Proof of the proposition. Consider the Harish-Chandra module 
P(M), corresponding to M. We have already mentioned that 
L Ann P(M)=Ann M. It follows from Lemma 3.5 that there is a linite- 
dimensional @-module E such that U/Ann M is a subquotient of 
P(M)@, E. Extending the left-hand module structure to 9x we see that 
gX/9JX. Ann(M) is a subquotient of gXOv P(M) @Qc E. Consequently 
SS(9X/~X~AnnM)cSS(~X@UP(M)@,E)cSS(9X@,P(M)), where 
the second inclusion is trivial since dim E < CO. 

Next consider the gXX Ymodule P(A) := 5Bx, x@u, u P(M) 
corresponding to P(M) (note that the notation P(A) is consistent with the 
previous notation d = 9x @ U M). 

Let p. P(A) be its sheaf-theoretic direct image to X. It easily follows 
from Theorem 2.3 that gX@, P(M) =p. P(A). Thus we have shown that 

SS(9X/9X. Ann M) c SSp. P( 4 ). (8.2.3) 

Let us now interrupt the proof in order to state 

LEMMA 8.2.4. Suppose N E 2 is a gxx rmodule and Q(N) the 
corresponding 9rmodule (cj Theorem 3.2). Then 

p(SSJ’-) = G . SSQ(N). 
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This follows from Lemma 8.2.1 and the relation between characteristic 
cycles: if gr k” = C m, . TEW(Xx X) then gr Q(J) = C m, . T*,X. Such a 
relation is, for example, a consequence of the fact that Q(M) is the restric- 
tion of x to a noncharacteristic submanifold Xx (x0} c Xx X. 

Let us resume the proof of Proposition 8.2 and set ,4 = U T&(Xx Ji). In 
order to estimate the right-hand side of (8.2.3) note that the map 
p: n + T*X is proper and that SW(&) c ,4. Exactly the same argument as 
in the proof of Proposition 8.1 shows that SSp. P(A) =I)(SSP(d)). 
Further, according to Lemma 8.2.4, p(SSP(d)) = G. SS.&. Thus, in view 
of (8.2.3), 

SS( 9 x/9x. Ann M) c G. S&Y. 

The opposite inclusion is easy: the two-sided ideal Ann M is stable under 
the adjoint G-action. Therefore SS(9,/9,. Ann M) is a G-stable sub- 
variety. For trivial reasons it contains SSM. Consequently, 
G. SS& c SS(9&&, . Ann M). Q.E.D. 

8.3. Let b be a fixed Bore1 subalgebra and x,, E X the corresponding 
point. Denote by L, the simple quotient of the Verma module M, 
and by 64, the corresponding $&module. According to Proposition 2.6, 
supp PW = x,. 

LEMMA 8.3.1. If JV” E 2 is a simple gxx rmodule with supp Jlr = c, 
then .N Ixx(xOj=2W andN IjxOjxx=9W-~. 

Proof: It is clear that C,n(Xx (xo})=X, and C,n 
((x0} x X) = 8,-l. On the other hand .both &’ lxx (x,,1 and J1/ \ ix01 xx are 
simple grmodules since these restrictions are equivalences of categories 
(see Section 3.3). Hence there is no possibility other than &‘” lxx Ix01 = gW 
andM ~~xO~xx=~W-~. Q.E.D. 

For an Harish-Chandra U@ U-module N denote by L Ann N and 
R Ann N its annihilators in U@ 1 (resp. 10 U). Recall that I, = Ann L,. 

PROPOSITION 8.3 [Jo3; V]. L Ann P(L,) = Z, and R Ann P(L,) = I,-I. 

The first equality is a consequence of the general fact L Ann P(M) = 
Ann M. It was established during ,the proof of Theorem 3.4. Of course the 
same remains true for L Ann replaced by R Ann if in the relation between 
6 and H (see Theorem 3.2) the role of two U-actions on Harish-Chandra 
modules is interchanged. In ?&module language that means the change of 
factors of Xx X. So the statement follows from Lemma 8.3.1. 
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8.4. We keep to the notations of Sections 8.2 and 8.3 Identify 
T*X with G xB n and consider the subvariety SSL, c n. Also set: 
S(Z,) = ss(9#2~* I&+,). 

PROPOSTION 8.4. S(Z,) = G xB SS(L,-,). 

Proof Let .N = P(Y,,,) be the simple D,, Ymodule, corresponding to 
Y,,,. Proposition 8.2 and Lemma 8.2.4 show that S(Z,.)=~(SSJlr). On the 
other hand, according to Lemma 8.3.1, Yw,-, =Jlr 1 lro) xx. Since this 
restriction is non-characteristic, SS(Yw,-l) equals the projection of SSJ” n 

(Tz$x T*X) to T*X (the second factor). If q is this projection and p is 
the moment map then according to Proposition 8.1, SS(L,-I) = 
p o q(SSN n (T$fx T*X)). It follows from the commutative diagram 

that ,U 0 q may be replaced by pd. So the statement reduces to the following 
purely geometric equality 

B(T~~(XxX))=Gx.~L,[Tr~(XxX)n(T.~bXx T*X)]. (8.4.1) 

Here is its direct check-up for the GA-orbit C,,. = Gd. z, where 
z=(w~x,,x,)EXxx. Set “‘n=w.n*wdl. Clearly T$,,(Xx X) = 
Gx wBnB (% n II). Hence the left-hand side of (8.4.1) equals 

Gx.B.(nn”‘-‘II). 

One can also verify that 

pAIT~W(XxX)n(T.~OX~T*X)]=B.(nn”‘~’n). Q.E.D. 

8.5. LEMMA 8.5. Suppose Zc J are two-sided ideals in U. Zf Z is 
prime then S(J) c as(Z) (that is, an intersection of S(J) with each irreducible 
component of S(Z) is strictly contained in that component). 

Proof: If Z is prime J/Z is the essential ideal in U/Z. Therefore there is a 
non-zero divisor a E J/Z. 

Let 6” be the sheaf on micro-differential operators on T*X and let S be 
an irreducible component of J?’ 0 U (U/Z). It suffices to show that the 
module 67’ au (U/J) has the zero multiplicity at a generic point of 5’. Con- 
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sider an exact sequence: 0 + U/I 2 U/I -+ coker(a) + 0 arising from the 
right multiplication by a. By tensoring it by S;, we get: 

(by additivity of muIts and the exactness of &“@ (.)). Further, U/J is a 
quotient of coker(a). Hence, su~~(~~',O(U/J))=supp(~~r,Ocoker(a))= 
as(r). Q.E.D. 

COROLLARY 85.1. Under the same assumptions, Var(J) c a Var(Z). 

Remark. This strengthens the earlier result of Botho: dim Var(J) < 
dim Var(l). 

In order to prove the corollary note that each irreducible component of 
either S(I) or S(J) is of the form G. r$,X. Any such variety is a com- 
ponent of the inverse image cl-‘(s) for some nilpotent orbit 0 c (fj*. It is 
therefore clear that the inclusion S(J) c &S(Z) implies ,u(S(J)) c @(S(Z)). 
The result now follows from Proposition 8.1 and Lemma 8.5. 

Remark. One can prove Corollary 8.51 using the arguments of the 
proof of Lemma 8.5 directly by means of the formal micro-localization of 
U(B)/Z (see [Gi4, Sect. 13). 

g.6. We identify K(a) and X(H) with HEW]. Following [302; 
KLl ] on W define a preorder < , L and an equivalence relation N L by 

w1 5 w2 iff I,,cZ,,; w1 7 w2 iff I,, = I,.,. 

For w  E W the subspaces in @[WI = K(8) 

v;= @ C-L, 
Y<W 

Kf;= ‘0 CL, 
Y$ ",YT w L 

are known to be stable under the left W-action and the quotient 
Vi = Pf;/Kf; is called the left cell representation. It has a natural basis con- 
sisting of L,, y N L w. 

Let us identify K(8) with the group ,!,(A,) of Lagrangian cycles in 
Ab=t&V T*,,X via the map L, w  gr L,. Set dim Var(Z,,,) = d and recall 
notations of Section 5.4. According to Corollary 8.5.1 we get a non-trivial 
map: 

Vt;=PL,/Kt;+ @ C@L,. 
dim0 = 2d 

(8.61) 

Theorem 6.2 shows that it is compatible with W-action. 
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Suppose that (li = sl,(C). It was then proved in [KLl] that the represen- 
tation of W in IJ’~ is irreducible. Hence the map (8.6.1) is injective. In view 
of Proposition 5.4 its image is contained in the unique term C @ L, in 
(8.6.1). It follows from results of Sections 8.1 and 8.2 that Var(Z,,.) = @. 
Thus we have obtained the following. 

PROPOSITION [BB]. Zf 8 = sl,(C) then Var(Z,.) is irreducible. 

In the case of an arbitrary semi-simple Lie algebra (35 representations V,f 
are generally not irreducible. However, one can derive from explicit com- 
putations by Barbasch Vogan and Lusztig [Lu] that the following fact is 
still true (see also [KT, Proposition 121): 

PROPOSITION. For each left cell representation Vf;: there is a special 
irreducible W-module V, 1 contained in Vi with multiplicity one such that for 
any other irreducible component V, ,,p of Vf; one has P’ c 8. 

This proposition together with (8.6.1) and Propositions 8.1 and 8.2 gives 
another proof of Theorem 1.1: 

THEOREM 8.6. For any primitive ideal I, the associated variety Var(Z,,) is 
irreducible. 

APPENDIX: SYMBOLIC QUANTIZATION 

This section is inspired by ideas of Guillemin, Sternberg and Weinstein 
[GSl]. The next few phrases are borrowed from [GSZ]. 

A.1. The Heisenberg uncertainty principle says that it is impossible 
to determine simultaneously the position and momentum of a quantum- 
mechanical particle. More generally the smallest subsets of classical phase 
space in which the presence of a quantum-mechanical particle can be 
detected are its Lagrangian submanifolds. (For instance one can determine 
exactly the position of a particle at the expense of remaining in total 
ignorance about its momentum.) For this reason it makes sense to regard 
Lagrangian subvarieties of phase space M as being its “quantum points.” 
Thus “quantum phase space” is the set of Lagrangian subvarieties of the 
classical phase space M. 

It is therefore more natural to realize elements of the quantum- 
mechanical Hilbert space as functions (or vector bundle sections) on the 
variety of Lagrangian subsets in A4 rather than functions on M itself as is 
usually done. Since the variety of all Lagrangian subsets is infinite-dimen- 
sional, in practice one should pick up a certain finite-dimensional family 
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PXY XE X} of Lagrangian varieties /i, c M. Here X is assumed to be a 
finite-dimensional manifold. For example, if M = T*X and {A, = T-:X, 
x E X} is the family of libres of cotangent bundle we arrive at the simplest 
situation where position and momentum are separated. Our scheme works, 
however, in considerably more complicated cases in which various A, 
intersect each other in an arbitrary way. We will be able, in particular, to 
construct representations of Lie algebras associated with any non-polarized 
coadjoint orbits. 

A.2. Returning to mathematics consider the category with sym- 
plectic manifolds as objects and Lagrangian correspondences as 
morphisms. For symplectic manifolds N,, N, and a Lagrangian subvariety 
,4 c N, x N, consider the projections pI : N, x N2 + Ni. Then C; : = p,(,4) 
are coisotropic subvarieties. On Z, and C, there are natural null-foliations. 

LEMMA A.2. If Q is a generic leaf of the null-foliation on Z, then 
pz( pr ‘(Q) n A) is a finite union of leaves of the null-foliation on C,. 

Proof: Let XE A be a generic point. By Sard’s lemma both maps 
LA -+ Tp,cr,~‘l and LA -+ Tp2cx, 2, are surjective. So it remains to show 
that the inverse image of TpitX) Q in T,A maps onto the tangent space of 
the null-foliation on C,. That is easy. Q.E.D. 

A.3. Recall that the map p: C -+ M is called the reduction of the 
coisotropic variety C if generic libres of ,U are the leaves of the null-foliation 
on C and M is a symplectic variety with its symplectic structure induced 
from Z. We allow M to be singular: the symplectic structure then means a 
Poisson bracket on 0, such that the Lie algebra (Co,, {-, -} ) has no cen- 
ter. 

Conjecture. Suppose Z is a coisotropic subvariety of a projective 
(algebraic) complex symplectic manifold N. Then one can find a proper 
reduction ,u : C + M. 

In the situation of Section A.2 assume that there are reductions 
pi: Ci + Mi. Lemma A.2 just means that: 

COROLLARY A.3. There is a finite correspondence between M, and M,. 

Note that if this correspondence is bijective, i.e., M, = M, = M, we have 
A = C, x,+, CZ. In the general case the correspondence gives rise to some 
equivalence relation between points of M, and M2. Set M= {(m,, mz) E 
M,xM,Im,-m,}. N t 1 a ura maps: M + Mj are clearly finite. One can 
introduce cj= M x,,,,, Zj and regard them as “immersed” coisotropic 
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varieties. Then I? := EI x,,, 2, is the “immersed” Lagrangian variety 
2 --H J 4 Nr x NZ, where the map ji + /i is also finite. 

A.4. Let us move in the opposite direction. Given a symplectic 
manifold it4 call its symplectic resolution any diagram 

C’N 

P 

f 
M 

where Z is an immersed coisotropic subvariety in a symplectic manifold N 
and the map p: Z + M is a reduction. The following statement is trivial: 

LEMMA A.4.1. Ifpi: Zi --f M, Ci + Nj are two symplectic resolutions of A4 
then Z, X~ 2, is an immersed Lagrangian subvariety of N, x N,. 

Combining all previous remarks we get (modulo existence of reductions; 
see Section A.3): 

PROPOSITION A.4.2. Immersed Lagrangian correspondences are (up to 
finite lifiiing) fibre-products C, x M .Y, of symplectic resolutions. 

A.5. For a correspondence n c N, x N, let ,4’ = { (n,, n, ) E 
N2 x N, I (n,, nz) E n } be the adjoint correspondence. We call a Lagrangian 
correspondence /i c N x N such that A’ = ,4 and /10 n = /1 a self-adjoint 
idempotent (A on means the composite of the correspondence; see Sec- 
tion 7.1). 

COROLLARY AS. If u: 2 -+ M, CC N, is a symplectic resolution then 
A = Z x,,,, Z c N x N is a self-adjoint idempotent and any self-adjoint idem- 
potent is obtained in this way. 

A.6. As in Section A.1 suppose that (/lr, x E X} is a family of 
Lagrangian subvarieties of a symplectic manifold M. Set C = {(m, x) E 
M x XI x E X, m E A,}. Clearly Z determines the family { /lzI} and vice versa. 
We assume X to be a complex manifold. 

THEOREM A.6 Suppose that: (a) the projection u: .E -+ M is generically 
submersive and (b) the projection: Z -+ X is a locally trivial fibration with 
simply-connectedfibres. Then there is a twisted cotangent bundle T#X (see 
[GiS]) and a morphism i: Z-r T*X over X such that the following holds: 

(1) i is an immersion with a coisotropic image; 
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(2) the diagram: E A T” X is a symplectic resolution of M; 

P 
I 

M 

(3) A,=p-C1(T$X) for allxEX. 

This theorem shows that any Lagrangian family can be turned after an 
appropriate symplectic resolution into a standard one: [T,” X, x E X}. 

Most important for us is the special case of homogeneous symplectic 
manifolds (i.e., manifolds with vector field 5 such that Lgw = co, where o is 
the symplectic 2-form). Note that nilpotent orbits in Q* (B-semi-simple 
Lie algebra) are homogeneous symplectic manifolds. This example should 
be constantly kept in mind. 

COROLLARY A.6.1. If {/i.K} is a family of homogeneous Lagrangian sub- 
varieties in a homogeneous symplectic manifold M then in Theorem A.6 .Z is 
a homogeneous immersed subvariety of the usual cotangent bundle T*X. 

Let us indicate the proof of Theorem A.6. Assume for simplicity that the 
symplectic 2-form o on M is exact: w  = da and that a In,V = 0 for all x (this 
is always so in the homogeneous case). Let a be the pull-back of t( to ,Z. 
Consider the projection n: B --) X. The assumption a I,,, = 0 implies that B 
vanishes on fibres of R. Hence B may be regarded as a section of the sub- 
bundle n*(T*X) c T*C. That gives the map i: C + T*X. It is not hard to 
show that i(Z) is a coisotropic subvariety in T*X and that the map 
i: Z + i(C) is “etale.” It remains to verify that fibres of the projection 
C -+ M maps into leaves of the null-foliation on i(L). 

A.7. Suppose we are given a symplectic manifold M and a 
Lagrangian family {A,, x E X} on it. Let us explain at a physical level how 
the programm outlined in Section A.1 can be carried out. For simplicity we 
assume M to be homogeneous (as in Corollary A.6.1) and the map 
i: Z + T*X to be injective (the first assumption is not essential). Then 
according to Section A.5, A = Z x ,,,, C is a homogeneous Lagrangian idem- 
potent in T*(Xx X). In the C” case it is possible to consider the 
holonomic system W of all microfunctions supported at A. Elements of W’ 
are also called Fourier integral operators associated with A. Since n 0 A = n 
and /l’=II, V” is actually an algebra with involution (cf. [GSl]). This 
algebra should be regarded as a quantization of the classical system (A4, 
W). 

In order to understand V” better, consider irreducible components of A. 
Any such component is a homogeneous Lagrangian variety in T*(X x X). 
Hence it is equal to TE,(X x X) for some Ci c XX X. Thus 
n = lJ P,(Xx X). Further for each i consider projections X tpi Ci +vi X 
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on both factors. As a bimodule over the ring of pseudo-differential 
operators on X integral operators in V” are generated by “generalized 
Radon transformations” Ri: cp H (qi)* p:‘cp, cp E C:(X). It is therefore 
interesting to describe libres of maps pi and qi. Note that for x E X the set 
P-‘(u=P-’ op(En T,*X) is a Lagrangian subvariety in T*X. One can 
prove: 

LEMMA A.7. p-‘(A,) = vi TP*,-I(.~~X and similarly for qi. In particular 
i ers /g41 dff f rom the collection {q;‘(x)} only by permutation of 

Remark. One undoubtedly noticed similarities between the geometry of 
Section 4 and the present one. Clearly X corresponds to a Flag manifold, 
subvarieties Ci c Xx X to GA-orbits C,., the subvarieties p,‘(x) (for fixed 
x E X) to Schubert cells, etc.... That will be elaborated in Remark (ii) below. 

In contrast with the C” case in the complex (possibly singular) situation 
there is no module C” naturally associated with A. All that remains is the 
algebra L( ,4) (see Section 5.1). It can be verified that n satisfies condition 
(T5) of Proposition 7.2, provided C + X is a fibration. Then, according to 
Theorem 6.2, L(A) is isomorphic to the algebra generated by gXX r 
modules (such that SS& c /1), that is, by genuine quantum objects, 

Conclusion 

Any coisotropic subvariety Cc T*X gives rise to the involutive 
Z-algebra L(C x ,,,, C). 

Remarks. (i) If X is a flag manifold and /i = TF&,(Xx X) then 
L(/i) N Z[ IV] according to Proposition 5.3. Note that the involution on 
L(n) is induced by the usual one: w  H w-’ on the Weyl group. 

(ii) As another example consider the nilpotent orbit 0 c Q*. This is 
a symplectic manifold with the distinguished family of Lagrangian 
subvarieties (see Proposition 4.3) /1, = 0 n n,X, x E G/B. The coisotropic 
subvariety Z associated with that family via Corollary A.6.1 coincides 
with the inverse image p- ‘(0) c T*X. The corresponding algebra L, = 
L(C xc1 C) was studied in Section 5.4. 

This can be extended to an arbitrary complex Lie algebra 03 and an 
arbitrary coadjoint orbit 0 c 8*. For A E 0 one can find an appropriate 
subalgebra pcB such that n,=Conx.(I+pl).x-‘, XEG/P, is the 
Lagrangian family in 0 (P is a group, corresponding to p). Then it is 
possible to set X= G/P, C = p ~ ‘( O), /i = ,Z x 0 C. Further, there are P- 
orbits in G/P similar to Schubert cells (see Lemma A.7) and @-modules 
connected with these P-orbits as in Corollary 2.6.1. It can be shown that all 
primitive ideals in U(e) may be obtained as annihilators of such modules. 
For details the reader is referred to [Gil; Gi2]. 
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APPENDIX B: A COISOTROPICNESS THEOREM 

We shall give here a proof of Theorem 4.1. It proceeds by induction on 
dim A. We may clearly assume A to be connected. Let A I be a connected 
codimension 1 normal subgroup of A and let a, be the corresponding ideal 
in the Lie algebra a of A. Consider the projection p: a* + a: induced by 
inclusion: a, c a. It fits into a commutative triangle involving the 
moment maps with respect to A and A 1 : 

(Bl) 

Let Qca* be an A-orbit. Set N:= ~~‘.p(sZ)=~-‘(p-‘.p(sZ)). Since 
p(Q) is a union of A,-orbits and the statement of the theorem holds for A, 
by induction hypothesis, pc’ *p(Q) is a union of coisotropic subvarieties. 
So N is itself a coisotropic A-stable subvariety containing p-‘(Q). 

For an orbit 52 there are two alternatives: 

(i) dimp(O)=dim Q-1; 

(ii) dim p(Q) = dim Q. 

In the case (i) we clearly have: dim p-l .p(s2) = 1 + dim p(Q) = dim Sz so 
that Sz is an open subset of p-’ .p(B). Hence p-‘(Q) is coisotropic as an 
open part of the coisotropic subvariety N=p-‘(p-l .p(Q)). 

In the second case we have: dim p-l .p(Q) = 1 + dim p(Q) = 1 + dim Q. 
So Q is a locally closed 1-codimensional subvariety of p ~ ’ . p(G). We can 
choose a polynomial function on a* vanishing on Q but not identically 
zero on p-’ .p(Q). Let P be its pull-back to M via the moment map p. 

We shall show that for any c E C the intersection NC := N n P-‘(c) is 
either empty or a coisotropic subvariety of M. The statement being local 
we may assume that N is irreducible and also that P,, # const. Let c be a 
generic value of P, let x be a generic point of N,. and let I/ be the kernel of 
restriction to T,N of the symplectic 2-form on M. It follows from our 
assumptions that dP does not vanish on T,N so that T,N, = T,Nn 
ker dP. To prove that N, is a coisotropic subvariety it suffices to show that 
Yc ker dP (due to the coisotropicness of N). Consider the hamiltonian 
vector field cp on the symplectic manifold M associated to the l-form dF. 
This vector field is tangent to N since N is an A-stable subvariety and the 
function P came from a function on a *. So for u E Y we have: dP(u) = 
( tp, u) = 0, by the definition of I/. That proves the coisotropicness of N, 
for generic c E C. 

To handle the general case we will make use of the following general 
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result which seems to be known to algebraic geometers. In any case its 
proof can be derived easily by means of Hironaka’s resolution of 
singularities theorem. 

LEMMA. Let P be a regular function on a complex algebraic variety N 
and let {xi} be a sequence of generic points of N such that xi + x0 E N. Set 
Ni : = P-‘(P(xi)) and N,, : = P-‘(P(x,)). Suppose that x,, is a regular 
(= smooth) point of NO. Then for the sequence of tangent spaces (viewed as 
points of an appropriate Grassmann bundle) we have: T,N, -+ T,xONO. 

We are now ready to complete the proof of case (ii) of the theorem by 
showing that N,, = Nn P- ‘(0) is a coisotropic subvariety of M. Let x,, be a 
regular point of No and let {xi> be a sequence of generic points of N such 
that xi + x0. For generic values ci : = P(x,) it has been already proved that 
Ni : = P-‘(ci) n N is a coisotropic subvariety of M. Hence we can choose a 
sequence of Lagrangian subspaces Ai c T,,N,. By taking a subsequence of 
this sequence and using the lemma we conclude that there exists a subspace 
A c T,,N, such that ni + A. Hence A is also a Lagrangian subspace. 
Therefore T,,N, is a coisotropic subspace. Q.E.D. 
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