JOURNAL OF ALGEBRA 38, 523-524 (1976)

Finite Groups and Even Lattices

J. G. THOMPSON

Department of Pure Mathematics, University of Cambridge, 16 Mill Lane, Cambridge, England

Communicated by G. Higman

Received March 1, 1969

I would like to record a consequence of what appears to be a rare occurrence.

THEOREM. Suppose G is a finite group and M is a finitely generated torsion free ZG-module such that for each prime p, M|pM is irreducible. Then, either M = Z or there is a G-admissible positive definite integral inner product on M that is unimodular and even.

Proof. The hypotheses guarantee that $\{nM \mid n = 0, 1,...\}$ is the set of all submodules of M.

Since G is finite, there are G-admissible positive definite integral inner products on M. Take one and call it $(,)_0$. Let $M^* = \{m \in QM \mid (m, M)_0 \subseteq Z\}$ be the dual lattice and let k be the smallest positive integer such that $kM^* \subseteq M$. Since M^* admits G, we get $kM^* = lM$, for some positive integer l, whence, $M^* = (l/k)M$. Since $M^* \supseteq M$, we get $l \mid k$, and minimality of k gives l = 1. Define (,) by $(m_1, m_2) = (1/k)(m_1, m_2)_0$. Then, (,) is positive definite, integral, G-admissible, and if $m \in QM$ satisfies $(m, M) \subseteq Z$, then $m \in M$; that is, M is self dual, or equivalently, M is unimodular.

Let $M_0 = \{m \in M \mid (m, m) \in 2Z\}$ be the even sublattice of M. Then, $M_0 \supseteq 2M$, so $M_0 = 2M$ or M. If $M_0 = 2M$, then M/2M inherits an inner product with values in Z/2Z with the property that 0 is the only isotropic vector, whence, M/2M is of order 2 and M = Z. If $M_0 = M$, M is even (by definition) and we are done.

Suppose now that M is a unimodular even lattice and that $(\operatorname{Aut} M, M)$ satisfies the hypotheses of the theorem. Let M be the orthogonal sum of indecomposable sublattices M_1, \ldots, M_r . The M_i are obviously pairwise isomorphic lattices and $(\operatorname{Aut} M_1, M_1)$ also satisfies the hypotheses of the theorem, while $\operatorname{Aut} M = (\operatorname{Aut} M_1) \sim \Sigma_r$. Conversely, if $(\operatorname{Aut} M_1, M_1)$ satisfies the hypotheses of the theorem, then so does $(\operatorname{Aut}(M_1^r), M_1^r)$ for all $r = 1, 2, \ldots$.

523

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

J. G. THOMPSON

It is straightforward to verify that if M is an even indecomposable unimodular lattice and we set $G = \operatorname{Aut} M$, and if (G, M) satisfies the hypotheses of the theorem, then the largest solvable normal subgroup of G has order 2. At present, the only available M are the Leech lattice and the lattice E_8 , whose groups are, respectively, Conway's and the Weyl group of E_8 .