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Abstract

Digital signal processors provide specialized SIMD (single instruction multiple data)

operations designed to dramatically increase performance in embedded systems.

While these operations are simple to understand, their unusual functions and their

parallelism make it diÆcult for automatic code generation algorithms to use them

e�ectively. In this paper, we present a new optimizing code generation method that

can deploy these operations successfully while also verifying that the generated code

is a correct translation of the input program.

1 Introduction

We address the problem of generating optimized as well as veri�ed code for dig-

ital signal processors in embedded systems. Digital signal processors (DSPs)

exhibit irregular architectures which allow in particular for simultaneous ex-

ecution of multiple operations, typically SIMD (single instruction multiple

data) instructions with the same operation performed on two or four inde-

pendent pairs of operands. Such operations are specialized for a certain ap-

plication area and perform complex computations. The goal of our work is

a uniform method for generating optimized and correct (wrt. the input pro-

gram) code for DSPs which is suitable not only for an individual case but for

various kinds of DSPs.

In particular, we want our code generation method to meet the following

criteria: It should exploit the parallelism of DSPs given in the form of SIMD

instructions as much as possible by scheduling suitable computations in par-

allel, restricted only by the given data dependencies. Moreover, the result of

this optimization should be veri�ed. Especially in embedded systems, this is

an important criterion since subsequent improvements are often impossible as
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the machine code of an application might be hardwired into the embedded

system. In the �eld of compiler construction, most translation methods can

be implemented in generators, thus simplifying life for compiler programmers.

Therefore, we require our code generation method to be implementable as a

generator. Finally, we want to use as much of the well-established methods of

compiler construction as possible since they are best practice and simplify our

life in two aspects: We can fall back on well-understood theoretical foundations

instead of eventually redeveloping them from scratch, and we can integrate

our method in existing compiler construction tools, i.e., compiler generators.

Veri�ed and optimizing code generation is an important goal in the soft-

ware development process for embedded systems. Embedded systems consist

of hardware and software which are employed in a technical environment.

Characteristically, they are specialized for a �xed task so that their hardware

and their software can be tailored to their application area. This specializa-

tion is necessary to keep them competitive. Typically, complex computations

need to be done very quickly. Such tasks are done by DSPs which are opti-

mized with regard to special algorithms and which possess specialized irregu-

lar hardware structures. The deployment of such processors is cheaper than

that of standard processors as one would need several standard processors to

compete with the performance of a single DSP. Such arguments may not be

neglected since the market for embedded systems is a mass market and very

cost sensitive. In this market we see the trend that more and more parts of

functionality are implemented in software instead of in hardware. This gives

us the advantage of more exibility. The same hardware can be adapted eas-

ily to slightly di�erent environments. Consequently this implies that software

should be written in higher programming languages (which is not the standard

right now) to make it less error-prone. This, in turn, means that compilers for

embedded system processors are necessary. We concentrate on DSPs which

are the most complex case of processors in embedded systems. Compilers for

DSPs need to be highly optimizing because the performance requirements of

embedded systems are tight. Moreover, they need to be correct since mainte-

nance in the sense of error correction and further developments is not possible

as many programs are hardwired into the embedded system.

At �rst sight, the requirements on a compiling method to be verifying,

optimizing, and to be implementable as a generator, especially by building

up on already existing generators, seem to be incompatible since it would be

much too expensive, if not impossible, to automatically verify the generator

implementation or the generated code. Instead, we choose the method of

program checking [2,7,3,38] which has already been applied successfully in

the Veri�x approach [17,13,19,20] which shows how to construct compilers for

standard processors that check their results.

The process of code generation in a compiler starts after the computation

of the intermediate representation of a program. In our approach, we choose

a static single assignment intermediate representation since it shows nothing
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but the functional data dependencies which are the only constraints to be

respected when scheduling computations in parallel. Typically, the code gen-

eration phase in a compiler is partitioned into several phases which are code

selection, register allocation, instruction scheduling, register assignment, and

resource assignment. Even though there is a connection between them, one

tries to solve them independently from each other in order to keep the com-

plexity within a reasonable scope. Since it is our premise to apply the well-

understood methods of compiler construction whenever possible, we choose

the same partitioning of tasks in the code generation phase.

In this paper, we concentrate on code selection and instruction scheduling

since they are the crucial phases in the code generation process of a com-

piler if one wants to exploit the SIMD parallelism. Since the static single

assignment intermediate representation of a program is a graph whose nodes

are operations and whose edges represent the data ow of the program, one

can do the code selection via a graph rewrite system that maps subgraphs of

the intermediate representation to instructions of the target processor. The

special problem when generating DSP code are the SIMD instructions that

can perform the same operation on di�erent independent pairs of operands.

This means that a purely graph rewriting based approach is not appropriate

since then, suitable pairs of operands could only be found in a local con-

text. We overcome this problem by transforming the processor architecture

into an equivalent one which can be handled with an extended graph rewrit-

ing mechanism: Whenever an operational unit on a processor computes an

SIMD operation, i.e., n operations in parallel, this unit is replaced by n oper-

ational units which perform the same operation but each only on one pair of

operands. To specify that these n units show the same behavior as the original

unit, we require that whenever one of them starts a computation, the others

must start their computations simultaneously or wait until it is �nished. This

requirement can be expressed with a set of constraints. Whenever the graph

rewriting mechanism �nds a subgraph in the intermediate representation that

can be computed with an SIMD operation, then the corresponding machine

code is associated with that subgraph and, moreover, the corresponding set of

constraints is generated. In the instruction scheduling phase, we need to take

these constraints into account in order to get a valid schedule of instructions.

Moreover, we use the constraints in the veri�cation phase as proof obligations

which must be ful�lled by the generated code.

This paper is structured as follows: In section 2 we give the foundations

of our work which are program checking in the �eld of compiler construction,

static single assignment representations, and graph rewrite systems. Section

3 shows how the mechanism of graph rewriting can be extended so that the

application of rules induces additionally the generation of constraints. Fur-

thermore, this section shows how this mechanism can be utilized in the code

selection and instruction scheduling phase for DSPs. The result of this code

generation can be veri�ed as presented in section 4 using the generated con-
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straints as proof obligations. In section 5, we show how this code generation

method can be integrated into our existing compiler generator environment.

Thereafter, in section 6, we discuss related work. Finally, we conclude in

section 7 with a characterization of future work.

2 Foundations

Foundations of our work are twofold since we are concerned with veri�cation

as well as optimization. Our veri�cation approach is based on Blum's idea

of program checking, shown in subsection 2.1. Foundations of the optimizing

part of our work are a particularly suited static single assignment (SSA) form,

implemented in the language FIRM, which we introduce in subsection 2.2 as

well as graph rewrite systems in the code generation phase which we discuss

in subsection 2.3.

2.1 Trust is good, control is better

The idea of program checking [2,7,3,38] can be adapted for compilers as shown

in the Veri�x project [39,17,13,19,20]. Here we summarize the relevant results

of Veri�x.

When de�ning the correctness of a compiler, one needs to consider two

aspects: the correctness of the speci�cation of a compiler and the correctness

of its implementation. Both need to be correct. Given a source program �,

a compiler speci�cation C de�nes a target program �
0 = C(�). The trans-

lation de�ned by C is correct if �0 shows the same behavior as �. To de�ne

the notion of \same behavior", we look at the observable states of a pro-

gram. These observable states are initial and �nal states as well as all states

which are reached by input and output operations. If required, more states

as e.g. procedure entries and exits may be de�ned as observable. A compiler

speci�cation C is correct i� each sequence of observable states in �
0 has a

corresponding sequence of observable states in � and i� for each sequence of

observable states q0; : : : ; qk in � terminating with an error message after k

steps, there is a corresponding sequence of observable states of length k in �.

Due to resource limitations, a compiler may not be able to translate pro-

grams of arbitrary length. Mathematically speaking: For nearly all programs

a compiler does not work correctly due to resource limitations. This means

that we cannot expect a compiler to be correct for all input programs. Instead

we use the notion of a verifying compiler: A compiler is a verifying compiler if

the translated target program preserves the observable behavior of the source

program up to resource limitations. A verifying compiler does not need to

produce a target program for every source program. To get a practicable

method, the set of correctly translated programs must be suÆciently large.

To establish the correctness of a code generation tool, we need to do two

major tasks: We need to prove �rst that the code generation algorithm is
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correct in the sense that it preserves the semantics of the transformed prorgams

and furthermore that its implementation is correct. For the �rst task, namely

the establishment of the correctness of the transformation algorithm, we would

need to de�ne the semantics of the intermediate program representation as

well as the semantics of the machine code formally. Based on these technical

means, we could formally prove that the semantics is preserved. While we will

deal with this problem in future work, we concentrate in this paper on the

second task.

2.2 Static Single Assignment Representations

Static single assignment (SSA) form [10,11,9] has become the preferred in-

ternal program representation for handling all kinds of program analyses and

optimizing program transformations prior to code generation. Its main merits

comprise the explicit representation of def-use-chains and, based on them, the

ease by which further dataow information can be derived.

By de�nition SSA-form requires that a program is represented as a directed

graph of elementary operations (jump, memory read/write, unary or binary

operation) such that each "variable" is assigned exactly once in the program

text. Only references to such variables may appear as operands in a unary or

binary operation. Thus, an operand explicitly indicates the data dependency

to its point of origin. The directed graph of an SSA-representation is an

overlay of the control ow and the data ow graph of the program.

SSA-form is a very elegant and easily comprehensible program representa-

tion as long as we only concentrate on handling local variables of the current

procedure. Handling accesses to non-local variables, arrays, record �elds, ob-

ject attributes, etc., in general: handling of memory accesses, leads to addi-

tional complexities.

Martin Trapp [37] introduced explicit dependency graphs, a re�ned kind of

SSA-form, for dealing with these additional problems. These explicit depen-

dency graphs have been implemented as an abstract data type in our library

FIRM, [36]. Its properties may be summarized as follows.

Viewed from the outside a program representation in FIRM may be succes-

sively generated by adding nodes of �ve di�erent kinds: Data nodes represent

unary and binary operations (arithemtic, logical, . . . ); incoming edges rep-

resent their operands; outgoing edges represent the use of the result. Block

nodes represent basic blocks; all other nodes are associated with the basic

block to which they belong. Control nodes represent jumps and procedure

returns. Further, a control node may depend on a value which forces con-

trol to conditionally follow a selected path. E.g. in the implementation of a

conditional statement the value of the condition forces control into the then-

or the else-alternative. Each block node has one or more such control nodes

as its predecessor. At entry to a basic block � nodes, x = �(x1; : : : ; xn),

represent the unique value assigned to variable x as a selection amongst the
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Figure 1. Firm Example

values x1; : : : ; xn where xi represents the value of x de�ned on the control path

through the i-th predecessor of the block node; n is the number of predecessors

of the block node. Memory nodes represent memory accesses, i. e. accesses to

non-local variables as discussed above. In a �rst approximation memory nodes

may be considered as accesses to �elds of a global state variable memory. But

re�nements of this picture allow for a more detailed analysis. This analysis

may then exhibit which memory accesses address overlapping memory areas

and thus are truly dependent on each other. Without such additional analysis

all memory accesses must be held in strict temporal order; reordering may

lead to wrong values being fetched from memory.

A FIRM representation may easily be generated during a tree walk through

the attributed syntax tree as generated from a compiler front-end. Further

operations of the FIRM library allow for navigation and queries on the repre-

sentation and for transformations of the representation. Final code generation

may be viewed as a pattern matching process on the SSA represenation of a

program.

As an example �gure 1 shows the FIRM representation for the program

fragment:

a := a+2; if(..) f a := a+2; g b := a+2

In the �rst basic block, the constant 2 is added to a. Then the cond node

passes control ow to the \then" or to the \next" block, depending on the

result of the comparison. In the \then" block, the constant 2 is added to the

result of the previous add node. In the \next" block, the Phi node chooses

which reachable de�nition of variable a to use, the one before the if statement

or the one of the \then" block.
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2.3 Graph Rewrite Systems in the Code Generation Phase

Rewrite systems are a known technique in compiler construction for code

generation. In most cases the intermediate representation of a program is a

set of trees which are rewritten in the code generation phase by techniques

like Bottom Up Pattern Matchers (BUPM) [16,14,15] or Bottom Up Rewrite

Systems (BURS) [28]. Both mechanisms use rules to rewrite a tree: E.g.

(+(r; c) ! r; code) is a rule to rewrite an addition of two operands by its

result. The target code code for this rule is emitted simultaneously. We use

graphs instead of trees because therewith we do not loose any information of

the semantic analysis about the program which we would have to recompute

again for optimizations when using trees.

In our intermediate SSA representation FIRM, the program is represented

by a graph with explicit data and control ow dependencies. Therefore it is

the method of choice to use a graph rewrite system when rewriting FIRM

graphs during code generation. Our code generator generator (called CGGG)

[8] reads a speci�cation and generates a code generator which uses the BURS

mechanism of graph rewriting. The code generator has two major steps: �rst

to calculate all possible rule covers of a graph and then to �nd the most

inexpensive one.

The �rst step is based on the rules mentioned above. A rule has an acyclic

pattern which will be rewritten by a second acyclic pattern if the �rst pattern

matches a subgraph (see example below). In the second step an A
�-search

algorithm searches for the cover with the lowest cost. It returns a path in the

search graph of rewrite rules. The code is emitted by traversing this path and

executing the corresonding code at every node of the path which prints the

target code to a �le.

The search must take care of at least two problems: the �rst problem arises

if a node (Phi) wants to use an input at the beginning of a basic block which

is produced at the end of another basic block. This happens in all kinds of

for loops. Secondly a node in a basic block wants to use an input which has

not been produced yet because it is produced in another basic block which

has not been handled yet. In both cases the search generates conditions to

notify that there are nodes which have to produce a special result or else the

code will be incorrect.

An example for a rule from a code generator speci�cation is:

RULE a:Add (b:Register b) -> s:Shl (d:Register c:Const);

RESULT d := b;

EVAL f ATTR(c, value) = 1; g
EMIT fg

This rule describes an addition of two operands. On the left hand side of the

rule, the �rst operand is a register with short name b. The second operand is

the �rst operand again, identi�ed by the short name. The left-hand side of the

rule is a directed acyclic graph. If the code generator �nds this pattern in the
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graph, it rewrites it with the right side of the rule. This could be a DAG again.

After rewriting the EVAL code is executed. This code places the constant 1 in

the attribute �eld value of the Const node. The RESULT instruction informs

the register allocator that the register d equals register b.

3 Code Generation for DSPs

Characteristically, DSPs employ SIMD instructions which execute uniform

complex computations on independent data in parallel. If one writes assem-

bler code for such processors, one can make sure that uniform computations

are combined properly in order to exploit the SIMD parallelism. In contrast,

when using higher programming languages, one solves problems algorithmi-

cally, whereby it is much harder to associate independent computations in

order to parallelize them. It is the job of a highly optimizing compiler - and

the goal of the work described in this paper - to detect and correlate inde-

pendent computations which can be executed in parallel. As technical means

we introduce graph rewrite systems with veri�cation constraints. During code

selection, veri�cation constraints are generated. These constraints are used

to guide the instruction scheduling phase. Furthermore, the veri�cation con-

straints are checked in the veri�cation phase, con�rm section 4.

3.1 Motivation

To motivate our method, let us undertake a thought experiment: Assume an

SIMD operational unit that takes n pairs of operands and returns n results.

Notionally, we can also think of n separate operational units, each taking

one pair of operands and returning one result. These n operational units

work either at the same time or do not work at all, i.e., their execution never

overlaps. With this treatment, we have nearly the same situation as in the code

generation for standard processors: Given the intermediate representation of

a program, we look for local computation sequences that can be computed

by the functionality of a DSP instruction. In technical terms this means

that given the SSA graph representation of a program, we search for local

rule covers for the n partial DSP instructions. To get a valid instruction

sequence for the real DSP, we need to put these partial DSP instructions

together globally by combining up to n partial independent instructions into

a single DSP instruction. We use constraints to express this global connection.

Constraints are typically the method of choice whenever one wants to express

global correlations because the logical variables used in the constraints are

either not instantiated or have the same value globally, thus carrying and

transporting local information.
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3.2 Graph Rewrite Systems with Veri�cation Constraints

We use the BURS graph rewrite method described in subsection 2.3 and extend

it by a constraint-generating mechanism. In the original form, the graph

rewrite rules are triples (lhs; rhs; code) where lhs and rhs are the left- and

right-hand side of the rule and code is the code emitted when rewriting the

graph with that rule. We use quadrupels (lhs; rhs; code; vars) instead. lhs,

rhs, and code have the same aforementioned meaning. vars is a set of rule-

speci�c variables and predicates which is generated and indexed with a unique

number when rewriting the graph with that rule instance. This means that

whenever the same rule is applied several times, a new version of vars is

generated for each application.

Given a DSP instruction set, we decompose each SIMD instruction that

computes n separate results into n independent partial DSP instructions com-

puting only a single result. For each such DSP operation op, we introduce the

global variable t
op
max representing the amount of time which is needed at most

to execute the DSP operation. When applying a rule describing a partial DSP

instruction, i.e. with code being a partial DSP instruction op, we generate the

variable t
op
i and the unary predicate �

op
i (t) where i is the unique number for

this rule application. The intended meaning is the following: t
op
i is the time at

which execution of the partial DSP instruction on the decomposed DSP from

our thought experiment starts. �
op
i (t) is 1 if t = t

op
i and 0 otherwise.

During code selection, we apply rules to nodes in the graph and thereby

emit code as well as variables and predicates. The idea is to �nd an assignment

to the generated variables that de�nes a parallel scheduling of partial DSP

instructions. Such a parallel schedule must ful�ll two conditions:

Simultaneousness Condition This condition states that the n partial DSP

instructions either execute in parallel or sequentially, but not overlappingly:

8i8j8op : topi = t
op
j _ j topi � t

op
j j� t

op
max

Booked up Condition This condition states that for each time t, no more

than n partial DSP operations may be assigned to the same original DSP

unit:

8t8op :
P

i �
op
i (t) � nop

During the instruction scheduling, partial DSP instructions must be merged

such that these two conditions are true.

Remark: In future work, we also want to address the register assignment

problem. The SIMD instructions in DSPs usually take two input registers

carrying the n pairs of input values and return a single output register carrying

the n results. Therefore it will be necessary to generate a further kind of

variables to represent the registers and in particular the register portions which

carry the input and output values of the SIMD instruction. It is the task of

the register assignment to �nd a valid assignment to these register variables.
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3.3 Code Selection and Instruction Scheduling for DSPs

Given a graph rewrite system with veri�cation constraints, we can generate

the code selection and instruction scheduling phases. The principle is the

same as in the case of code generation for standard processors extended by

the special treatment of the DSP instructions. Here, we give the algorithm for

the code selection and instruction scheduling phases. Input to this algorithm

is a FIRM graph as intermediate program representation as well as a graph

rewrite system with veri�cation constraints.

(i) Search locally for all possible rule covers.

Result of this step: Each node in the graph has assigned all rules

whose left-hand side matches the directed acyclic graph starting at this

node.

(ii) Search for a global rule cover guided by a cost function implementing

the following two heuristics:

Prefer DSP Instructions: We assume that DSPs are utilized in prob-

lem areas which can be solved more eÆciently with the complex DSP

operations than with the operations of a standard processor. This

means that we need to prefer the use of DSP instructions. When

searching for a global rule cover, we prefer rules whose emitting code

are DSP partial operations.

Prefer More Complex DSP Instructions: Moreover, the idea of DSPs

is to encapsulate complex computations into a single operation. This

means that we need to prefer those graph rewrite rules whose left-hand

side covers larger parts of the graph than those of other rules.

Result of this step: An annotated FIRM graph such that a rule is

assigned to some nodes in the graph. Note that if a node is in the inner

part of a matched region then it does not need to have a rule assigned to

it since it will be rewritten by the rule associated to one of its predeces-

sors.

Remark: Besides the special design of the cost function, there is no

di�erence between this step and the corresponding step in the code gen-

eration for standard processors.

(iii) Compute a sequential schedule of the selected instructions.

Starting at the node in the FIRM graph that represents the result of the

program all nodes are collected inductively whose results are needed to

compute the result of the program. In doing so we can put the nodes

into a sequential schedule.

Result of this step: A valid sequential schedule.

Remark: Again, there is no di�erence between this step and the corre-

sponding step in the code generation for standard processors.

(iv) Compute a parallelized schedule by putting several data indepen-

dent partial DSP instruction into a single DSP instruction.

Note that two operations are data independent i� there is no directed
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path between their corresponding nodes in the FIRM graph. In this step

we go through the linear schedule and put partial DSP operations to-

gether whenever they are data independent and whenever all operations

scheduled inbetween them are also data independent. Thereby we must

take care that the simultaneousness condition and the booked up condi-

tion are ful�lled. To ensure the second condition, we must take care not

to schedule more than n partial operations in parallel. The �rst condition

is ensured by the bevavior of the DSP since in a linear schedule, an in-

struction is only executed if the predecessing instructions are completed.

(At least, this is the behavior which the processor shows to the outside,

no matter if instructions are scheduled out of order or in a superscalar

form.) It may be the case that we are not able to always schedule exactly

n but only a number smaller than n partial DSP operations in parallel

due to data dependencies in the FIRM graph.

Example: DSP Operations in the TriMedia Processor

The TriMedia processor [33] developed by Philips is a DSP especially designed

for multimedia applications. It incorporates some instructions for the process-

ing of videos according to the MPEG standard. During the decoding of videos,

a special instruction of the TriMedia, ume8uu, can be used to speed up the

computation. It computes the unsigned sum of absolute values of unsigned

8-bit di�erences.

This instruction ume8uu is a typical SIMD operation computing the four

results of four independent pairs of operands. To generate code for the Tri-

Media, we need to model this instruction by four independent partial instruc-

tions computing exactly the same result for a single pair of inputs. During

instruction scheduling we need to search for data independent partial ume8uu

instructions which can be scheduled in parallel.

4 Veri�cation Using Program Checking

In this section, we show how to establish the correctness of a code generator

implementing the method proposed in section 3. Thereby we assume that the

underlying graph rewrite system is correct. (The proof of such an assumption

is subject to future work.) A transformed program is correct if the following

conditions are satis�ed:

I The global rule cover is a correct rule cover of the FIRM intermediate pro-

gram representation.

II The graph rewrite rules used to generate the machine code must have been

applied correctly.

III Parallelization of the sequential schedule does not change the sequential

order of data-dependent instructions and ful�lls the booked up as well as

the simultaneousness condition.

IV Memory and registers are written correctly.
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For the veri�cation of the code generation implementation, we use a checker

approach. Practically, it would be impossible to verify the code generator

generated by a code generator generator or the code generator generator itself.

We avoid this by applying program checking for verifying the results of the

code generation phase. By restating the correctness conditions I to III, we

de�ne the following �ve veri�cation tasks for the checker:

(i) Check if the input FIRM graph and the annotated FIRM graph are iden-

tical if one forgets about the graph rewrite rule annotations.

(ii) Check if the applied graph rewrite rules indeed match the corresponding

subgraphs of the FIRM graph.

(iii) Check if the schedule is valid, i.e., check if all subgraphs are evaluated

according to the BURS method.

(iv) Recompute the code generator result by applying the graph rewrite rules

again. Thereby check if the recomputed result and the original result are

identical.

(v) Check if the data-dependencies are sustained during the parallelization

of the sequential schedule: Therefore check if the order of the parallelized

schedule is a topological order of the FIRM graph. Moreover, check that

no more than n partial DSP operations are scheduled in parallel so that

the booked up condition is valid.

The �rst task implements condition I, the second, third and fourth imple-

ment condition II, and the �fth implements condition III. In future work we

will investigate how to check condition IV. (The simultaneousness condition

is ensured automatically because of the sequential operational semantics of

the target processors: Operations in the sequential instruction schedule are

executed in that order or in a reordering showing exactly the same e�ect.)

On �rst sight, one might think that the checking tasks are as expensive as

the original computation but this is not true: When checking the correctness

of code generation, we are not interested at all if the result is optimal. We only

care about correctness. This means that the code implementing the search for

an optimized or even optimal instruction sequence does not need to be veri�ed.

Only certain intermediate steps as well as the result need to be veri�ed, thus

simplifying the veri�cation task considerably.

The veri�cation tasks are independent of concrete source or target lan-

guages but do only depend on an SSA intermediate representation. Therefore

we do not need to implement the checkers for di�erent pairs of source and

target languages but instead, we can generate them. In doing so we only need

to verify the checker generator implementation once instead of verifying each

checker implementation separately.
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5 Integration

The current version of our code generator generator reads a speci�cation for

a code generator and generates a graph rewrite system based on BURS. The

code generator calculates all possible covers and searches for the most inex-

pensive one. When applying a rewrite rule in the most inexpensive cover, the

corresponding code is not emitted directly but instead, Emit code written in

C is executed. This code prints the target (e.g. assembler) code to a �le.

We will extend this mechanism to generate the variables, predicates, and

constraints by extending the EMIT code to print the additional constraint infor-

mation. This extension can be done easily. The result of the code generation

computed by the generated code generator is a sequential schedule with partial

DSP operations together with the constraints.

In the next phase, we check the existing FIRM graph for data independent

partial DSP operations and combine them with other suitable partial DSP

operations to become a full DSP operation, as described in subection 3.3.

Remember that two operations in the FIRM graph are independent i� there

is no directed path between them. For a single pair of operations, this check

can be done in quadratic time O(n2) where n is the number of nodes in the

FIRM graph. It will be the task of future research to �nd algorithms and data

structures checking this property as eÆciently as possible.

To implement a checker, we need to implement the steps 1. to 5. as

described in section 4. This can be done straightforwardly. Moreover, we

can also implement a checker generator as discussed also already in section 4.

These implementations are subject to future work.

As we have shown, the modi�cations necessary to implement the methods

described in this paper are simple so that we can add them easily to our

existing tools. In future work we will investigate if the methods from [26] may

be used to generate DSP parallelizers automatically.

6 Related Work

Related work concerns two aspects of compiler research: the construction of

provably correct as well as optimizing compilers for embedded systems.

Veri�x [17,13,19,20] is a common research project of the german univer-

sities in Karlsruhe, Kiel, and Ulm developing methods for the construction

of correct compilers translating sequential real-world programming languages

into the machine code of standard processors. This project has achieved

progress by establishing the claim that it is possible to build provably cor-

rect compilers within the traditional framework of compiler construction, es-

pecially by deploying generators. In particular, a notion of correctness has

been given which is based on the observable behavior of a program. Program

checking [2,7,3,38] is used to keep the veri�cation cost within a reasonable

limit. The veri�x project did not address the problem of irregular target ar-
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chitectures. In [27], it is shown how some backend optimizations of the GCC

can be checked. Proof-carrying code [29,30,31,12] is another weaker approach

to the construction of correct compilers which guarantees that the generated

code ful�lls certain necessary correctness conditions. During the translation,

a correctness proof for these conditions is constructed and delivered together

with the generated code. A user may reconstruct the correctness proof by

using a checking program which implements basically a syntax-oriented type

checking algorithm. Pnueli [35,34] also addresses the problem of constructing

correct compilers, but only for very limited applications. Only those programs

consisting of a single loop with loop-free body are considered and translated

without the usual optimizations of compiler construction. Thereby, such pro-

grams are translated correctly such that certain safety and liveness properties

of reactive systems are sustained. In more recent work [40], he proposes a

theory for validating optimizing compilers which is similar to the method de-

veloped in the Veri�x project, cf. for example [39,19].

Optimizing code generation methods can be based successfully on term

rewriting mechanisms: In [16,14,15], the generation of the code selection phase

in a compiler is shown. [28] reformulate the BURS (Bottom Up Rewrite

Systems) approach originally developed by [32]. BURS is the basis of [8], a

generator for graph-rewriting code generators, as already explained in more

detail in subsection 2.3.

In the context of embedded systems, there are several approaches tackling

the optimizing code generation for DSPs: The Joses project (Java and CoSy

Technology for Embedded Systems) [1] develops a compiler environment for

the use of Java in embedded systems. AJACS (Applying Java to Automotive

Control Systems) [18] is a project within the Information Societies Technology

(IST) Programme and investigates the use of Java in automobile applications.

A survey of code generation for embedded processors can be found in [25]. [23]

examines the utilization of genetic algorithms and [4,5] the use of constraint-

based approaches for the generation of optimized code for embedded systems

(which is restricted to optimizations within basic blocks). Moreover, it is stud-

ied how compilers can be generated such that they can be adapted to di�erent

target architectures. If it is possible to simulate these target architectures [24],

then the results can help in the design of new hardware structures. A survey of

these approaches can be found in [6]. Last but not least there are approaches

[22,21] using integer linear programming in the optimizing (but not verifying)

code generation for irregular target architectures. None of these works has the

goal to generate provably correct code.

7 Conclusions

Compilers for DSPs in embedded systems need to generate optimized as well

as provably correct code. In this paper, we have shown how to reach these

two goals: When translating a program into the machine language of a DSP,
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we schedule as many computations as possible in parallel, restricted only by

the data dependencies given in the source program and by the number of

available operational units. As technical means, we extended graph rewrite

systems to graph rewrite systems with veri�cation constraints which identify

local program parts computable by SIMD operations and which connect these

local program parts by constraints that must be ful�lled in the generated code.

To ensure the correctness of this translation, we use program checking which

veri�es that the result of the translation is correct by proving the veri�cation

constraints. In particular, it is checked that the functional dependencies of the

source program are sustained and that the operational units of the processor

are used correctly. Using program checking gives us the advantage that we do

not need to verify neither the implementation of the code generator nor the

code generator generator producing it. We only need to verify that the result

of the code generation is correct. Such an approach is helpful whenever the

correctness check of a solution is much easier than the computation of the so-

lution itself. Program checking allows us to stay within the existing compiler

construction framework, especially by allowing us to use unveri�ed generators

when computing veri�ed results. The presented code generation method suc-

ceeds not only for a speci�c DSP but instead o�ers a methodology of correct

code generation that is applicable for a wide range of target architectures.

This paper presents work in progress which we want to complete and im-

prove in several aspects: In future work we will investigate how to design the

cost functions that control the utilization of DSP instructions during code gen-

eration. Furthermore, as already discussed, when generating code for SIMD

instructions, we need to detect data dependencies by exploiting the structure

of the FIRM graph. We will investigate which data structures and algorithms

are suitable for computing this task eÆciently. Moreover we want to study

the remaining phases of code generation, i.e. register allocation, register as-

signment, and resource assignment, with particular emphasis on our special

case of DSP operations where independent input values need to be stored in

the same register. Last but not least we want to implement the presented

methods in our existing compiler tool environment. The presented methods

do not only work for SIMD instructions but seem to be applicable also to

VLIW processors. We will exploit these possibilities in future work. Finally,

we want to test our code generation method in real-world applications.
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