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Abstract 

In many Internet of Things (IoT) scenarios, there is a need to predict events generated by objects.  However, because of the 
dynamicity of IoT environments, it is difficult to predict with certainty if/when such events will occur. Probabilistic reasoning 
allows us to infer dependent probabilities of events, from other events that are either easier to detect or to predict. In this paper 
we propose an architecture that employs a Bayesian event prediction model that uses historical event data generated by the IoT 
cloud to calculate the probability of future events. We demonstrate the architecture by implementing a prototype system to 
predict outbound flight delay events, based on inbound flight delays, based on historical data collected from aviation statistics 
databases. 
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1. Introduction 

Internet of Things (IoT), refers to the concept of interconnecting uniquely identifiable embedded computing devices 
using the existing Internet infrastructure. IoT is expected to offer advanced connectivity of devices, systems, and 
services.  The number of devices connected to the Internet of Things (IoT) will reach 26 billion devices by 2020, 
according to Gartner Group (www.gartner.com/newsroom/id/2636073).  
Internet of Things objects generate many events in their lifetime, as a result of changes in their state and in the state 
of their environment. Several middleware architectures for managing such events have been proposed, for example, 
in1, addressing both spatial and temporal characteristics of IoT events. 
Advance prediction of important events gives more time to other objects and systems in the environment to respond 
in a proactive manner. For example, in logistics the ability to predict delays during one transport stage gives 
sufficient time to the next transport stage to reschedule its activities. 
Event mining techniques are often applied to time series data in order to detect event patterns and to predict future 
events6.  Our approach applies to discrete events that occur in the IoT ‘cloud’ and trigger further events.  In many 
IoT environments event causality is not known, and thus probabilistic approaches must be used to predict the 
probability of subsequent events occurring, based on the observation of other events.  
In this paper we use the Bayesian approach to probabilistic reasoning7, in order to calculate the probability of 
triggered events occurring based on the probabilities of the occurrence of triggering events. The use of Bayesian 
networks to ascertain the quality of data transmitted by the sensors has been proposed by researchers, for example, 
in 5. 
The structure of the paper is as follows:  The next section surveys key concepts of the Bayesian system of 
probabilistic reasoning, with emphasis on event prediction. Section 3 proposes a Bayesian model for probabilistic 
event prediction and an architecture that applies the model to historical IoT event data, to calculate probabilities of 
future events. Section 4 presents a case study on flight delay event prediction that illustrates the method and 
application of the proposed prediction model. Finally, section 5 concludes with a discussion of the significance of 
the proposed approach in the overall context of IoT research. 
 

2. Bayesian Networks 

Bayesian networks are used to model a domain containing uncertainty3. A Bayesian network is a directed acyclic 
graph (DAG) where each node represents a discrete random variable of interest. The parent-child relationship 
between nodes in a Bayesian network indicates the direction of causality between the corresponding variables, i.e. 
the variable represented by the child node is causally dependent on the ones represented by its parents. Each node 
corresponds to the states of the random variable that it represents and the probabilities of the node being in a specific 
state given the states of its parents (conditional probability). In a Bayesian model of events, an edge between two 
event nodes shows a probabilistic dependency between the events, i.e. e1 → e2 indicates that the probabilities of 
event e2 occurring are conditional on the probabilities of event e1 occurring. 
In general, for events A and B, where A depends on B, provided that P(B) ≠ 0, 
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In many situations event B is fixed (P(B)=1), and we wish to consider the impact of it having been observed, on the 
probability of other possible events A. In such a situation the denominator of the above expression, the probability of 
the given evidence B, is fixed and we want to calculate the probability of A based on how the evidence of B 
regulates our prior (historical) knowledge about the probability of A. 
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In an IoT context, we assume an underlying (but unknown) set of causal relationships between objects that 
determines how events generated by objects trigger subsequent events. However, because the causal relationships 
are usually unknown, we use statistical knowledge about co-occurrences of events to create a conditional probability 
event model. We use a probabilistic dependency between events e1 and e2 to express the knowledge derived from 
statistical observations that event e2’s probability of occurring depends on the probability of event e1 occurring. 
Then, using the Bayesian probability formula, the conditional probability of e2 occurring, given the probability of 
occurrence of e1  is 
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Where ph(e2) is the historical probability of observing e2, independently from other events, and p(e1| e2) indicates the 
strength of the influence of e1 evidence on the probability of e2. 
If we assume with certainty that e1 has occurred, p(e1)=1 and formula (1) is simplified to 

)|(*)()|( 21212 eepepeeP h=      (2) 
In IoT environments, certain events can cause a ‘chain reaction’ of events, therefore we also want to be able to 
calculate the dependent probability of an event e’ on an event e through a chain of n intermediate events e1, en,… 
i.e. the dependency e→ en→en-1→ … → e1 → e’ , where  en is observed (p(en)=1) and there are known dependent  
probabilities p(ek| ek-1). 
                             
By applying formula (1) to calculate sequentially the  conditional probabilities of p(en|en-1), …, p(e2|e1)  we can 
calculate the conditional probability of event e’ on event e through a chain of n events  under the assumption that the 
probability of ek+1 is only dependent on the probability of ek  in the chain of events e1,…,en.  
 
3 IoT Event Prediction Architecture 

 
Figure 1: Generalised architecture for IoT event prediction. 

 
Figure 1 shows the generalised architecture of an event prediction infrastructure for IoT. Events are generated by 
objects in the IoT cloud (network/s) and, through a capture interface that supports typical IoT M2M protocols, are 
stored in an event warehouse. Event data are then cleaned and classified according to the prediction (Bayesian and 
other probabilistic) models supported.  Prior (historic) probabilities of event categories are calculated from events 
sets in the event warehouse. Probability dependencies are periodically recalculated as new events are added to the 
warehouse. The event prediction model is interfaced to a decision support system that can query the Bayesian model 
for events that have certain properties, for example, occurrence probability that exceeds a certain threshold. One 
important feature of the above architecture is that it offers a dynamically calculated dependent probability for events 
that is used for event prediction.  
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3. Bayesian Model for Flight Delay Prediction  

3.1 Problem Domain 
We applied the event prediction model described in Section 2, to the problem of predicting flight delays. Aviation is 
an interesting domain from an IoT viewpoint, for which data are easily obtainable. An airport environment has many 
objects with IoT properties such as sensors and systems for air traffic management. Many events are generated by an 
aircraft’s systems before, during and after its flight, and also events generated by other objects at the airport or in the 
flight environment can trigger further events. 
The objective of the experimentation was not to develop an accurate model for flight delay prediction, but to 
validate the steps of a practical methodology for constructing Bayesian networks for event prediction in IoT 
environments.  Flight statistics data were collected from the web site www.flightstats.com which maintains detailed 
flight statistics as shown in Figure 2. 

 
Fig. 2: statistical airline performance from www.flightstats.com 
 
 
4.2 Event Prediction Model  
We developed a Bayesian event prediction model that calculates the probability of a connecting flight departing late, 
given the probability of the incoming flight departing late and/or the incoming flight arriving late.  Being able to 
predict flight delays in advance is useful in many situations, as it allows replanning or rescheduling of other 
activities that follow up the arrival of a flight such as ground transportation.  
We are interested in predicting the delay effect that an outbound flight departure delay will have on an inbound 
flight arrival, in order to be predict significant delays. For practical purposes, we are interested in delays longer than 
a certain threshold, as short delays are usually dealt by the time buffers built into the airport procedures, so that 
essentially they cause no or little disruption. More specifically, we are interested in departure delay probabilities that 
exceed a threshold, and might require re-planning or rescheduling of activities further down the transportation line. 
Of course, a useful probabilistic model for airport flights, as well as for other IoT environments needs to consider 
many more delay factors in the dependency model. In the case of flights for example, weather conditions, traffic 
density (congestion) in the flight path and/or the departure and arrival airports, and other events such as personnel 
strikes, can contribute significantly to delays.  An event prediction model also needs to be able to accommodate all 
these factors and their dependencies and calculate their probabilities on a continuous basis, as the state of the IoT 
objects change. Due to the complexity of the factor dependencies contributing to delays, event prediction model in 
such situations cannot give quantitative delay predictions. Instead, we expect to predict the type of the delay 
(according to some categorisation, i.e. short, medium or long). This approach can also be considered to be a naive 
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Bayesian classifier. Intuitively, the probability of an outbound flight departing late given a late departure of the 
inbound flight is calculated by the historical probability of the outbound flight department late, the strength of the 
probabilistic dependency of a delay on the inbound flight on the outbound flight, and the historical probability of 
delays in the inbound flight. 
Our model being essentially a proof of concept one, however, considers airline and departure/arrival airports as the 
only known parameters. 
We represent flight delays using the following general variables: 
IFDL: inbound flight departure delay,  
IFAD: inbound flight arrival delay,  
OFDL: outbound flight departure delay. 
By linking inbound flights to outbound flights, we establish the probability dependencies as: 
IFDL→OFDL  IFAD→OFDL and IFDL→ IFAD →OFDL 
 
In the remainder of the section we only consider the IFDL→OFDL dependency, as for practical purposes it is more 
useful to predict the delay of the outbound flight departure from the delay of the inbound flight departure, rather 
than the inbound flight arrival delay, as the time interval between the two events is longer and provides more time to 
respond.  
Formula (2) is now adopted for the flight delay prediction model as in formula (3) 
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We descritise the different delay values into three groups similar to the categorisation used in the flightstats website: 
L (low delays of up to 30 minutes), M (medium delays of 30-45 minutes) and L (delays over 45 minutes). 
Next we expand the initial set of factors (IFDL, IFAD, OFDL) into the following variables to capture the above 
delay categories: 

• SOFDD, MOFDD, LOFDD: Outbound flight departure delay (short, medium, long) 
• SOFAD, MOFAD, LOFAD: Outbound flight arrival delay (short, medium, long) 
• SIFDD, MIFDD, LIFDD: Long Inbound flight departure delay (short, medium, long) 

 
Finally, based on formulas (2) and (3) we can calculate the following dependent probabilities: 
P(LIFDD|SOFDD), P(LIFDD|MOFDD), P(LIFDD|LOFDD), P(LIFDD|SOFDD,SOFAD), 
P(LIFDD|SOFDD,MOFAD), 
P(LIFDD|SOFDD,LOFAD),P(LIFDD|MOFDD,SOFAD),P(LIFDD|MOFDD,MOFAD), 
P(LIFDD|MOFDD,LOFAD),P(LIFDD|LOFDD,SOFAD),P(LIFDD|LOFDD,MOFAD), 
P(LIFDD|LOFDD,LOFAD) 
 
4 Case study 
4.1 Data Collection  
 
We collected flight delay data from flightstats.com for a period of 30 days from September to October 2015.  To 
keep the data homogeneous, we restrict flight delay data to the same group of airports and airlines, as delays across 
airports can vary significantly. We collected historical flight delays for three airports (airport codes: FCO, CDG, 
BA) and three airlines that fly between these airports (airline codes: AF,AZ,BA). For each departing airport and 
airline, we collect probabilities of short delays (up to 30 minutes), medium delays (30-45 minutes) and long delays 
(over 45 minutes). 
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Table 1. Statistical delays of airlines per departure airport. 

 
Airline 
code 

Departing Airport Short delay(S) Medium delay (M) Long Delay 
(L) 

AF CDG 19.7% 7.5% 10.2% 
AF LHR 19.1% 8.1% 1.5% 
AZ FOC 23.8% 3.1% 1.2% 
BA LHR 20.5% 8.8% 5.4% 
 
Table 1 shows some of the delay statistics based on data available in flightstats website, used to calculate historical 
probabilities of the different delay categories for specific airlines and departing airports. 
 
4.2 Conditional probability calculations 
We calculate the strength of evidence probabilities, i.e.  the dependent probability of experiencing a delay in an 
outbound flight given a delay in an inbound flight, from the statistical data collected from the flight statistics 
website. The strengths of relationships are as follows: 
SOFFD →0.3 SIFDD,   SOFFD →0.2 LIFDD,, SOFFD →0.1 MIFDD, LOFFD →0.3 LIFDD,  LOFFD →0.6 MIFDD  
For example, to establish, the probability of an AF flight from LHR to CDG having a long delay, given a long delay 
of the inbound flight, i.e. the probability P(LIFDD|LOFDD), we use the basic conditional probability formula (iix) 
The historical probability of long delayed outbound flight from LHR to CDG,  as shown in Table 1, is 0.015 . 
The historical probability of long delayed outbound flight from CDG to LR,  as shown in Table 1, is 0.102 . 
The strength of the conditional probability, for this particular combination of flight and airport is calculated as 0.3. 
Therefore, the conditional probability P(LIFDD|LOFDD) is calculated as 0.102 * 0.3 / 0.015= 2.04 
This probability can be compared to conditional probabilities of other events, such as P(SIFDD|LOFDD) and 
P(MIFDD|LOFDD), to determine which category of delay has the higher probability for the outbound flight, for this 
particular case. 
 
4.3 Results obtained 
 
Table 2. results from testing the event prediction model with actual data 

Outbound&inbound 
flight codes & dates  

Outbound flight 
departure delay in 
minutes/Delay 
type 

Outbound flight 
arrival delay in 
minutes/Delay type 

Probabilities of 
flight dept. delays 
(S-M-L) 

Inbound flight 
actual dept. delay in 
minutes/Delay type 
√:correct prediction 

AF1068-1069, 13.10.15  41 (M) 51 (L) 0.86 0.1 0.057 35 (M) 
AF1280-1281-3.10.15  28 (S) 18  (S) 0.3 0.105  0.04 0 (N) √ 
AF1580-1581  5.10.15  17 (S) 18 (S) 0.3 0.105  0.04 5 (S) √ 
AF1780-1781  5.10.15  28 (S) 27 (S) 0.3 0.105  0.04 0 (N) √ 
AZ322-323 5.10.15 24  (S) 18 (S) 0.35 0.16  0.04 49 (L) 
BA560-561  5.10.15  24 (S) 19 (S) 0.3 0.105  0.04 3 (S) √ 
AF308-309  5.10.15  13 (S) 18 (S) 0.3 0.105  0.06 0 (N) √ 
AF322 5.10.15  24 (S) 18 (S) 0.3 0.105  0.06 49 (L) 
AF326-327 5.10.15 96 (L) 99 (L) 0.2  0.2 0.3 31 (M) 
BA432 5.5.10 53 (L) 21 (M) 0.2  0.2 0.24 61 (L) √ 
BA432  5.5.10 59 (L) 28 (M) 0.2  0.2 0.24 34 (M) 
AZ7302-7301 5.5.10 24 (S) 44 (M) 0.35 0.16  0.04 13 (S) √ 
AF324-325 5.5.10 30 (M) 37 (M) 0.86 0.1 0.057 37 (M) 

 
Table 2 shows the results of validating the event prediction model by comparing its output with actual flight delay 
results collected from the flightstats website. From table 2, we observe that the model assigns the highest probability 
to the correct delay event category in 53.8 % of the cases, which is better than random.  The model’s predictive 
power is weak, in particular in predicting the impact of medium or long delays in inbound departures, and thus 
further calibration of the model is required regarding the strengths of probability dependencies. A more elaborate 
model including additional factors such as time of day or season, impacting flight delays could also improve the 
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prediction accuracy.    

5. Discussion and Conclusions 

IoT environments are characterised by the large volumes of generated events and also by dynamicity, in terms of 
changing objects and interactions. Recently, systems such as publish-subscribe middleware have been designed to 
detect and disseminate events in IoT. In many IoT scenarios, it is important to predict events before they occur, in 
order to take corrective or preventive actions, as for example in the case of autonomous vehicles. In other situations 
events cannot be directly observed, and hence their occurrence must be predicted, based on the observation of other 
events. Other applications for IoT event prediction includes event-driven logistics chains comprising smart IoT 
objects2, that need to synchronise inbound and outbound logistics activities. 

A robust event prediction model requires a sufficiently large data set about historical IoT events.  This dataset can 
be collected using global IoT infrastructures such as EPCIS8. Additionally, suitable Big Data technologies will be 
required for the probabilistic analysis of very large volumes of event data. As a future step in our research we plan to 
adapt existing Big Data analysis techniques to process the historical data required for our event prediction models, 
and to further investigate the research problems associated with the Bayesian approach to Big Data4. 

 

Acknowledgements 

Research described in this paper has been partially supported by EU Project CORE “Consistently Optimised 
Resilient Secure Global Supply-Chains " Grant agreement no: 603993 

 

References 

1 Jin, Beihong  and Chen, Haibiao. Spatio-Temporal Events in the Internet of Things. IEEE/IFIP International Conference on Embedded and 
Ubiquitous Computing, December 2010 pp. 353-358 
2 Hribernik, Karl A. ,Carl Hans, Klaus-Dieter Thoben. The Application of the EPC global Framework Architecture to Autonomous  Controlled 
Logistics.  Third International Conference, LDIC 2012 Bremen, Germany, February/March 2012 Proceedings Editors: Kreowski, Hans-Jörg, 
Scholz-Reiter, Bernd, Thoben, Klaus-Dieter (Eds.) 
3 Jensen, F. An Introduction to Bayesian Networks. UCL Press, London, 1996 
4 Jordan, Michael I.  THE ERA OF BIG DATA. THE ISBA BULLETIN Vol. 18 No. 2 June 2011 
5 Mishra, PM. Internet of Things and Bayesian Networks. Available from http://www.analyticbridge.com/profiles/blogs/internet-of-things-and-
bayesian-networks. July 9, 2014 
6 Molaei, S.M. Keyvanpour, M.R. An analytical review for event prediction system on time series. 2nd International Conference on  Pattern 
Recognition and Image Analysis (IPRIA), 2015  
7  Rish, Rina. An empirical study of the naive Bayes classifier. RC 22230 (W0111-014) November 2, 2001 Computer Science. IBM Research 
Report 
8 Traub, Ken et al. The GS1 EPCglobal Architecture Framework 2.  GS1 Version 1.6 dated 14 April 2014 
 
 


