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ABSTRACT 

A recent result is that the quatemionic numerical range of a matrix with 
quatemion entries has a convex intersection with the upper half complex plane. This 
intersection is now shown to be generally not achievable as the upper half plane part 
of the complex numerical range of any complex matrix. A key step in the proof is that 
if a complex matrix has an elliptical arc as part of the boundary of its complex 
numerical range, then the full ellipse defined by the arc is also in its complex 
numerical range. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

The well-studied numerical range W(C) of a complex square matrix C is 
defined as the set of all complex numbers x* Cx as x ranges over all complex 
unit column vectors: X*X = I. (As usual, x* is the transpose of x with 
complex conjugation applied to each entry.) The famous Toeplitz-Hausdorff 
theorem asserts that the compact subset W(C) of the complex plane is 
convex. See [9] for a comprehensive survey article. 

Now let Q be a square matrix with quatemion entries. The quatemionic 
numerical range W(Q) is the set of all quatemions of the form X*QX as x 
runs over all quatemion unit column vectors: X*X = 1. (As usual, x* is the 
transpose x with quatemion conjugation applied to each entry.) This set, 
which was first studied by R. Kippenhahn in an influential paper [7], lies in 
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real four dimensional space and is generally not convex. Kippenhahn intro- 
duced a set having an easier visual presentation, the bild of Q, denoted by 
B(Q), and defined as the intersection of W(Q) with the complex plane. This 
is a natural set to study, since, as Kippenhahn showed, a rotation group 
applied to B(Q) fully specifies W(Q). Unfortunately B(Q) is less than fully 
satisfactory, since it is generally not convex. 

A more desirable set to study in the quatemionic case is the intersection 
of W(Q) with the upper complex plane (the half plane with nonnegative 
imaginary component). We call this set the upper bild of Q, or the upper 
numricaZ range of Q, and denote it by B +<Q>. The same rotation group 
applied to B+(Q) fully specifies W(Q), so it is an equally natural object to 
study, in fact more so, since it is convex. The convexity was proved by So, 
Thompson, and Zhang for normal quatemionic matrices [ 111 and by So and 
Thompson [12] for general quatemionic matrices. The proof in [ll] was 
somewhat lengthy but was subsequently shortened in [2]. The proof in [I21 is 
less lengthy but required rather delicate computations in a multivariable 
commutative polynomial ring modulo an ideal. 

An attempt was made in [12] to reduce the convexity argument for B+(Q) 
to another proposition, namely that B + (Q> is realizable as the upper complex 
plane part of the complex numerical range of some complex matrix C. 
Example: In Figure 1 the oval region when truncated from below at the 
horizontal line is the upper bild of a certain quatemionic matrix Q, and the 
full region (convex hull of the oval and vertex u) supported by shaded 
territory is the complex numerical range of a certain complex matrix C. The 

FIG. 1. 
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horizontal line is part of the real axis. The diagram appears to show that the 
upper bild of Q is the complex numerical range of C intersected with the 
upper complex plane, whence convex. 

If this property were generally true, the Toeplitz-Hausdorff theorem 
applied to C would imply the convexity of B+(Q). However, no proof has 
been found to support this line of reasoning. Thus the convexity proof for the 
upper bild in [I21 had to follow quite different lines. 

The objective of the present note may now be stated: to exhibit a 
quatemionic matrix Q for which B+(Q) can be proved not to be the upper 
complex plane part of the complex numerical range of any complex matrix 
C. Thus some of the sets obtained as upper bilds are new to numerical range 
studies. The proof that supports our example will rely on a standard theorem 
in analytic perturbation theory for Hermitian matrices. 

2. A PRELIMINARY LEMMA 

Henceforth W(C) will denote the complex numerical range of a complex 
matrix C. The following lemma will be our key tool. 

LEMMA. Let C be a complex matrix for which the boundary of W(C) 
contains an elliptical arc of positive length. Then the full boundary and 
interior of the ellipse defined by this arc lie in W(C). 

Proof. The hypotheses are to imply that the elliptical arc is not a straight 
line segment. We review the algorithm implicitly stated in [7] (see also [5, 101) 
for the computation of the boundary of the numerical range of a complex 
matrix C. Write C in terms of Hermitian components as C = H + iK where 
H and K are Hermitian. Let A,,, be the maximal eigenvalue of H. Then the 
line passing through A,,, parallel to the imaginary axis is a line tangent to 
W(C). Let a unit eigenvector of H belonging to A,,, be emax. Then the 
point at which this tangency occurs is ezaxCemax = A,,, + iezax I&,,,. Now 
let 4 be an angle, and rotate W(C) through angle - 4 by considering 
e-‘$C = l? + iZ?, where fi = H cos 4 + K sin 4 and K’ are Hermitian. 
Denote the maximal eigenvalue of I? by A,,,,,, with unit eigenvector G,,,. 
Then a tangency point for W(e-‘#‘Cl is ~~,,(e-‘6C)f?,,,. Rotating through 
angle 4, we obtain the point G*,,,CZ,,, on the boundary of W(C). A plot of 
these points as 4 ranges over 0 5 4 5 2~ then yields the boundary curve of 
W(C). The tangency (support) lines are rotated through the same angles, so 
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we obtain tangency lines, each comprising the points (x, y> for which 

x cos 4 + y sin 4 - i,,, = 0. 

The Matlab program published in [9] exhibits W(C) by plotting these support 
lines for a large selection of values of 4 spread throughout [O, 2~1. An even 
simpler technique (requiring very little Matlab code) is to exhibit the points 
~~aXC&lKJX for a large selection_of 4 values spread throughout [O, err], where 
e max is a unit eigenvector of H belonging to its maximal eigenvalue. In this 
manner a plot of the boundary of W(C) is directly found. 

Fix angle 4, and let a new coordinate frame be obtained by rotating the 
real and imaginary axes through 4 (fting the origin) to obtain new real and 
imaginary axes. The construction of the last paragraph may be described in 
this new coordinate frame and works in this way: on the new real axis plot the 
point P with coordinate h,,,; then on the line perpendicular to the new real 
axis through P plot the point with perpendicular coordinate g*,,, Z&,,,, 
where II,,, is the maximum eigenvalu_e of Z? = H cos 4 + K sin 4 with 
associated unit eigenvector g,,, , and K = -H sin 4 + K cos 4. This per- 
pendicular line through P supports W(C), meeting W(C) in a single point or 
an interval. For convenience we call this procedure the tangency constmc- 
Con. 

Thus a point on the boundary of W(C) is ~*,,,G,,, , where g,,, is a-unit 
eigenvector of g(4) = H cos C#I + K sin 4 for its maximal eigenvalue A,,,. 
Here we-have an eigenvalue and associated unit eigenvector of a Hermitian 
matrix H depending analytically on a real parameter 4. We shall apply to 
A max and to &n,X the basic fact from perturbation theory [4, 61 that a 
Hermitian matrix function analytic in a real parameter 4 has eigenvalues and 
associated orthonormal eigenvectors depending analytically on 4. Thus z,,, 
may be regarded as analytically dependent on 4 for a suitably small but 
nonempty range of values of 4. 

Our hypothesis is that part of the boundary of W(C) is a segment of a 
nondegenerate ellipse. Let 8 denote the ellipse containing this boundary 
segment. Placing the coordinate origin at the center of B by translation, and 
by rotation aligning the x axis with one of the semiaxes of 8, we may assume 
that 8 has equation 

x2 y2 
2+by-l=O. 

(This choice of coordinate frame means that C is replaced with eiY(zZ + C) 
for a suitable complex z and real 7.) Thus there is an open nonempty 
interval Z c [0,2~] of values of 4 such that the coordinates of the analytic 
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point &, Ce’,,, satisfy the equation of 8. By perturbation theory, for values 
of 4 inside or outside I, there are an analytic eigenvalue i of G and a 
corresponding analytic unit eigenvector of e’ of I? which for 4 in Z become 
;mLxx and t?,,,. Substituting the coordinates of e’*Ce’ into the left side of the 
ormula for the ellipse, this left side becomes an analytic function of $J which 

vanishes when 4 E I. By analyticity it must therefore vanish for all 4. Thus 
the analytic continuation of ,‘~,,G,,,,, necessarily yields points on 8. 

By assumption, for 4 E I, the line equation 

x cos 4 + y sin 4 - i,,, = 0 

is tangent to the ellipse 8, the tangency point being ~~,,G,,,. Analytically 
continuing this point to become .G*Ce’, and analytically moving the tangency 
line so that its equation is x cos $J + y sin 4 - X = 0, we wish to show that 
the analytically moved line is still tangent to the analytically prolonged 
elliptical arc, the tangency point being e’*Ce’. The idea of this argument is 
that if two lines in the plane pass through a common point (x,, yJ, and if 
they have nonzero linearly dependent normal vectors, then the lines are the 
same. 

The line with equation x cos 4 + y sin 4 - i = 0 _contains the point 
x,, + iyO = e* Ce’. This is because r cos 4 + y sin 4 - A vanishes, by hy- 
pothesis, when x = x 0, y = y,,, 4 E I, with &,,,, in place of i and e,,, in 
place of e’. By analyticity it therefore continues to vanish when $J is outside I, 
with 2*,,,G,,, becoming e’* Ce’. 

The tangent line to the ellipse passing through a point (x,, yO> on the 
ellipse has equation 

The point x0 + yai = e’* Ce’ is on the ellipse, as already observed. Therefore 
(X ,,, yO) satisfies the e quation of the ellipse tangent line passing through 
itself. 

A normal vector to the line with equation x cos 4 + y sin 4 - i = 0 is 
[cos 4, sin 41. A normal vector to the ellipse tangent line is [ x0/a2, y0/b2]. 
By hypothesis two lines are the same when 4 E I, and therefore for 4 E Z 
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vanishes. By analytic continuation it will still vanish for 4 outside 1. The 
normal vector [cos 4, sin 41 for the first line is clearly not 0. Neither is the 
normal vector [zro/a2, yo/b2] for the second line, since (x,, yO> lies on g’, 
and 8 does not pass through the origin. Therefore the line with equation 
x cos 4 + y sin $J - i = 0 will, for each 4, be tangent to the ellipse 8 at 
the point x0 + iy, = g* Ce’. The upshot of this reasoning is that the tangency 
construction [which for 4 E Z yields points on the part of the boundary of 
W(C) belonging to 81 prolongs in an analytic way to arbitrary 4 E [O, 27r] to 
give the point e’*Ce’ on 8Y incident with the tangent line to 8 having 
equation x cos 4 + y sin 4 - h = 0. This line is orthogonal to the axis with 
inclination angle 4 relative to the original real axis. 

A simple geometric diagram shows that the tangency point created by the 
tangency construction must move smoothly with monotone rotation as 4 
smoothly and monotonically covers [0,27r]. Thus the tangency point must 
rotate fully once around 69 as r#~ monotonically covers [O, 21r]. Applying this 
to the analytic point e’* Ce’, we now know that it must rotate fully around g as 
4 covers [0,27r]. In particular, every point of 8 is obtained by analytic 
continuation (using analytic eigenvalues and eigenvectors) of the portion of 8 
forming part of the boundary of W(C). 

Choosing a new coordinate frame by rotating the given coordinate frame 
does not affect these conclusions: 4 is replaced by 4 + 8 for a constant 
angle 8. 

Choosing a new coordinate frame by translating the origin also does not 
affect these conclusions. Let the new origin be at z = a + bi, a and b real. 
We replace C with C - zZ = (H - aZ) + i(K - bZ), so tlpt the H and Z? 
in the old and new coordinate frames are H,,, = Fold - (a cos 4 + 
b sin +>I, Z?,,, = zold - (-usin 4 + b cos 4)Z. Thus A = L. old 
- (a cos C#J + b sin 4). So A,,,,, translates (by an amount dY&z’lient on 41, 

%n,X is unchanged, and gz,, Ce’,,, translates. Geometrically, the tangency 
point on the ellipse belonging to angle r$ is unchanged, with the tangency 
construction reaching it by following a line from the new origin parallel to the 
line followed from the old origin, until a tangency line perpendicular to both 
lines is reached, then moving along the tangency line to the same tangency 
point. 

The above descriptions of a coordinate frame change are unusually 
detailed because a coordinate frame change is used in the next paragraph. 
The point is that the tangency construction works in any coordinate frame, 
selecting the maximal eigenvalue A,,, and corresponding eigenvector g,,X of 
G to obtain boundary points of W(C) and some eigenvalue i with corre- 
sponding eigenvector E to obtain points on 8. 

Now we show that the full ellipse 8 must be within or on the boundary of 
W(C). Suppose that 8 extends outside W(C). For a point p on B but 
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outside W(C) define the distance d(p) to W(C) in this way. Draw a circle 
centered at p of large radius r, then continuously shrink r. There will be a 
minimum value of r at which the circle boundary meets W(C). Let d(p) 
denote this minimum r, and let w be a point on the boundary of W(C) at 
which this minimal circle meets W(C).The line segment from w to p then 
must be perpendicular to a tangent line to W(C) at w. And p lies on one 
side of this tangent line, W(C) on the other, since W(C) is convex. Since the 
distances d( p> of p from W(C) are bounded above as p moves, there will 
be a point p on B outside W(C) for which d( p) has a largest possible value. 
Let this point be p,, and the corresponding point on the boundary of W(C) 
be ~/‘a. As already observed, the line segment wop, is perpendicular to a 
support line to W(C) at wO. However, the tangent line to 8 at p, must also 
be perpendicular to segment w0 p,. The reason for this is that otherwise a 
point on 8 near p, (move from p, on B in one of the two possible 
directions) would have larger distance from the support line through w0 than 

PO has, and therefore larger distance from W(C) than p, has. Thus the line 
segment w. p, is perpendicular to a support line to W(C) and also perpen- 
dicular to a support line to 8, these support lines passing though w. and p, 
respectively. Now choose our coordinate system so that the origin is placed at 
w. and the positive x axis lies along the ray w. p,. The tangency construction 
using a maximal eigenvalue and corresponding eigenvector of the H relative 
to the present coordinate frame produces points on the boundary of W(C), 
and we have proved that the tangency constructi_on using an analytic eigen- 
value and corresponding analytic eigenvector of H produces any point on 8. 
Because the line perpendicular to wop, through w. is tangent to the 
boundary of W(C), w. = 0 is the maximal eigenvalue of the Hermitian 
matrix H, that is, of H with 4 = 0. However, because the line throygh p, 
perpendicular to w. p, is tangent to 8 at p,, p, is an eigenvalue of H. Thus 

PO is a positive eigenvalue of H with H having 0 as its maximal eigenvalue. 
This is a contradiction, so 8 cannot extend outside of W(C). ??

3. THE MAIN RESULT 

We let 

G= [;; l;k2i]. 
where k,, k,, y are positive real numbers, and i, j, k are the usual quater- 
nionic units (i2 = -1, j2 = -1, k2 = -1, ij = -ji = k, ik = -ki =j, 
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jk = - kj = i). The upper bild of this 2 X 2 quatemionic matrix was calcu- 
lated by W. So, and appears in [I2]. See Figure 2. In this figure B+(G) is 
outlined in bold, and is the union of four regions labeled p, r, U, V. 

We claim that B+(G), the bold outlined region in Figure 2, cannot be 
realized as the upper plane part of W(C) for any complex matrix C. 

THEOREM. There is no complex mutrix C for which the upper complex 
plane part of its complex numerical range W(C) is the upper bild B+(G) of 
G. 

Proof. It was proved in [12] that the oval curve in Figure 2 
endpoints ik, and 1 - ik, is an ellipse. So also is the oval curve 

with 
with 

endpoints -ik, and 1 + ik,. Suppose there is a complex matrix C for which 
the upper complex plane part of W(C) has as boundary the bold curve shown 
in Figure 2. Then part of the boundary of W(C) is a portion of the ellipse 
with endpoints ik, and 1 - ik,. Therefore the full ellipse must be in W(C), 
by the lemma proved in the last section. Consequently 1 - ik, is in W(C). 
Because W(C) is convex and 1 + ik, is by hypothesis on its boundary, the 
line segment joining 1 + ik, must be in W(C). However, the point T is also 
part of the W(C) b oundary, by hypothesis, and the convex hull of these three 
points is the triangle with vertices T, 1 + ik,. But, by assumption, the 
elliptical arc joining 1 + ik, and T is part of the boundary of W(C), 
contradicting the fact that it is now known to be interior to W(C). ??

imag 
axis 

ikl 

-ikl 

Upper bild=p+r+u+v 

Fx.2. 
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4. ANOTHER APPROACH TO THE LEMMA 

The well-known elliptical range theorem asserts that the numerical range 
of a 2 X 2 matrix is the boundary and interior of an ellipse (possibly 
degenerate). Thus a natural proof of our lemma would require showing that, 
if an arc from an ellipse 8 is part of the boundary of W(C) (where C is a 
complex matrix), then there is a unitary conjugate U* CU of C such that for 
the leading 2 X 2 block in U* CU the elliptical range theorem produces 8 
and its interior as numerical range. Our arguments yield no information on 
this point. 

5. NOTES BY THE REFEREE 

(1) The proof of th e 1 emma in Section 2 may be simplified as follows: 
Suppose C = H + iK with H = (C + C*)/2. Then det(uI-I + UK + WI) = 
0 is the line equation of an algebraic curve P(C) such that W(C) is the 
convex hull of P(C) (e.g., see [71, and also 113, 1.41). Suppose the boundary of 
W(C) contains an arc of the ellipse 8 that has positive length. Then there is 
a quadratic polynomial f(u, v, w) such that the corresponding line equation 
of 8 equals f(u, II, w> = 0. Furthermore, det(uH + UK + WI) is divisible by 
f(~, v, w), and the convex hull of 8 is a subset of the convex hull of P(C), 
which is W(C). The conclusion of the lemma follows. 

(2) The alternative approach suggested in Section 4 may not work. For 
example, if 

( 0 1 0 

c=G 0 0 
1, 

0 0 0 I 
then W(C) is the unit disk centered at the origin. However, the matrix C 
cannot be unitarily similar to a matrix whose leading 2 X 2 block c’ satisfies 
W(d) = W(C). Otherwise, c’ will be unitarily similar to 

0 2 ( 1 0 0’ 

and we have 

IlCll = 45 < 2 = llfa < IICII, 

which is a contradiction. (Here ljXj\ denotes the spectral norm of X.1 



28 ROBERT C. THOMPSON 

The author’s work leading to this paper (and to L1.21) was supported in 
part by the National Science Foundation. 

REFERENCES 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Y. H. Au Yeung, On the convexity of the numerical range in quatemionic Hilbert 
space, Linear and Multilinear Algebra 16:93-100 (1984). 
Y. H. Au Yeung, A short proof of a theorem on the numerical range of a normal 
quatemionic matrix, 39:279-284 (1995). 
Y. H. Au Yeung, On the eigenvalues and numerical range of a quatemionic 
matrix, pp. 19-30 in Five Decades as a Mathematician and Educator: On the 
80th birthday of Professor Yung-Chow Wong, (editors: K.-Y. Chan and M.-C. 
Liu) World Scientific, New Jersey, 1996. 
H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, 
Birtiauser, Boston, 1985. 
C. R. Johnson, Numerical determination of the field of values of a general 
complex matrix, SIAM J. Numer. Anal. 15:595-602 (1978). 
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 
1966. 
R. Kippenhahn, cber die Wertvorrat einer Matrix, Math. Nachr. 6:193-228 
(1951). 
C. K. Li, C. H. Sung, and K. Tsing, c-Convex matrices: characterizations, 
inclusion relations, and normality, Linear and Multilinear Algebra 25:275-287 
(1989). 
C. K. Li, C-numerical ranges and C-numerical radii, Linear and Multilinear 
Algebra 37:51-82 (1994). 
M. Marcus and I. Filippenko, Normality and the higher numerical range, Linear 
and Multilinear Algebra 30:419-430 (1978). 
Wasin So, Robert C. Thompson, and Fuzhen Zhang, The numerical range of 
normal matrices with quatemion entries, Linear and Multilinear Algebra 
37:175-195 (1994). 
Wasin So and Robert C. Thompson, Convexity of the upper complex plane part 
of the numerical range of a quaternionic matrix, Linear and Multilinear Algebra, 
to appear. 
M. Fiedler, Geometry of the numerical range of matrices, Linear Algebra Appl. 
37:81-96 (1981). 

Received 13 September 1995; final manuscript accepted 8 Janua y 1996 


