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ABSTRACT Experimental time series for trajectories of motile cells may contain so much information that a systematic
analysis will yield cell-type-specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as
examples. The two resulting models reflect the cells’ different roles in the organism, it seems, and show that a cell has a memory
of past velocities. They also suggest how to distinguish quantitatively between various surfaces’ compatibility with the two cell
types.

INTRODUCTION

Cell migration is essential in many physiological and

pathological processes, e.g., embryogenesis, wound healing,

inflammation, and metastasis. It is also essential to emerging

medical technologies that rely on colonization of biomate-

rials by migrating cells (1–6). Many cellular signaling

pathways that regulate migration have been described in

recent years (7). The mechano-chemistry of migration is also

studied and modeled in subtle detail (8–11). Less is known

about the migratory pattern that results from a cell’s

processing of all external stimuli. Although motility models

for bacteria have evolved to sophistication (12–15), phe-

nomenological mathematical models for cells from higher

organisms have, with few exceptions (16), remained simple.

The Ornstein-Uhlenbeck (OU) process (17), an old model

inspired by Brownian motion, remains the standard refer-

ence, and Fürth’s formula (18)

Æd~ðtÞ2æ ¼ 2nDðt � Pð1� e�t=PÞÞ; (1)

for the mean square of a motile organism’s displacement

d~ðtÞ ¼ r~ðtÞ � r~ð0Þ has remained a standard with which

experimental data are analyzed; see, e.g., Gail and Boone

and others (19–23). Here Æ. . .æ denotes expectation value, t is
time, and n¼ 1, 2, or 3 is the dimension of the space in which

trajectories r~ðtÞ are studied. D is the diffusion coefficient of

the OU process, and is referred to as the motility coefficient

of the microorganism, and is sometimes written m. P is the

persistence time of the motion, and the notation b ¼ P�1 is

often seen.

There is nothing as practical as a correct theory, so one

should be conservative about well-proven formulas. How-

ever, we show below that human fibroblasts and keratinocytes

move in a manner that rejects Fürth’s formula and most other

characteristic properties of the OU process. The data point

clearly to new, cell-type-specific models, which we solve and

explain. The models are cell-type specific since the same

model describes one cell type on different surfaces. Differ-

ences in the motility pattern of a given cell type on different

surfaces are reflected in different values formodel parameters.

Consequently, these parameter values are quantitative cell-

and-surface compatibility measures.

Our phenomenological approach to motility modeling is

general, and may characterize other motility patterns as well.

Models that result from this phenomenological approach,

including ours, are natural targets for explanations in terms

of biological processes.

MATERIALS AND METHODS

Cell culture substrata

Collagen I was acid-extracted from fetal bovine dermis and purified by

a special sequence of differential salt precipitations (24). Coverslip glass

was ultrasonicated in ethanol and water and dried in a clean bench.

Molecular collagen-coated glasses resulted from adsorption from collagen I

stem solution to the glass surface throughout 1 h at ambient conditions with

100% humidity, followed by thorough washing and drying. Fibrillar

collagen-coated glass was fabricated by fibril reassembly of purified

collagen I in a thin neutral buffer layer on the glass and its sedimentation

at a density of 30 ng/mm2, followed by thorough washing and drying (24).

Tissue culture grade polystyrene, TCPS (Nunclon Delta, Nunc, Denmark),

was used for cell line propagation and experiments.

Cell culture

HaCaT cells, a monolayer-forming transformed human keratinocyte line

(German Cancer Research Center, DKFZ, Heidelberg, Germany), were

cultured in DMEM/Nut Mix F-12 (Gibco, Carlsbad, CA) supplemented with

10% fetal calf serum (Gibco) and 4 mM glutamine. NHDF cells, normal

human dermal fibroblasts (Clonetics, San Diego, CA), were cultured in

fibroblast basal medium (Clonetics) supplemented with 2% fetal calf serum

(Clonetics) and fibroblast growth factor (Clonetics). Both cell lines were

incubated at 37�C and 7% CO2. Before experiments with either cell type,

the cells were dissociated by trypsin/EDTA (Gibco). The medium was

changed to CO2-independent medium (Gibco) with the same supplemen-

tation. Some 5000 cells/(cm2 substratum) were seeded and incubated at

37�C. The motility data presented and analyzed below were obtained

from HaCaT cells on substrata of molecular collagen and substrata of
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fibrillar collagen, and from NHDF cells on the same two collagen substrata,

as well as on glass and on TCPS, all at 37�C. HaCaT cells did not show

measurable motility on glass and TCPS during the first 24 h of the ex-

periment.

Monitoring of cell migration

A microscope stage was converted to a temperature-controlled incubation

chamber with a computer-controlled step motor for parallel monitoring of

several sites and samples under equal conditions. Cells were monitored in an

inverted phase contrast microscope (Zeiss Axiovert 100 M, Zena, Germany)

with autofocusing controlled by dedicated software. A digital camera

(Olympus C-3040Zoom, Tokyo, Japan) recorded time-lapse movies with

intervals Dt of 15 min for 24 h. Fig. 1 shows subsets of two frames from two

movies, with cells marked.

Generation of trajectories

Only vital cells with full spreading on the substratum and long presence in

the view field were selected from recorded image sequences. To ensure long

presence, cells were excluded from the statistics if they started their

trajectories within a 30-pixel-wide band around the edge of the 10243 768

pixels large view field. One pixel width corresponded to 0.85 mm in images

of HaCaT cells, and 1.7 mm in images of NHDF cells.

One pixel in each cell nucleus was marked manually as the cell’s

coordinate. Because cells are located at random relatively to the grid of

pixels with which they are viewed, the true position of a cell’s center can be

located anywhere inside the pixel used to mark it. Because we use the

coordinates of the center of that square pixel instead of the unknown true

coordinates of the cell’s center, the coordinates that we use contain round-off

errors. These errors come in all sizes between 61/2 pixel width, with the

same probability for all sizes. Hence the root-mean-square deviation

(RMSD) of the round-off error distribution is 1=
ffiffiffiffiffi
12

p
pixel width on the

x-coordinate, and the same value on the y-coordinate.
Cell populations were dilute, so direct interactions between motile cells

were rare. When they occurred, both cells’ trajectories were excluded from

the statistics. Cell trajectories crossing each other were less rare. No effect

of this could be discerned. Data for cell coordinates were corrected for

drift, and single cell trajectories were calculated from position and time data.

A number of cells had to be removed from the statistics because they did

not move. Visual inspection of trajectories would reveal nonmoving cells.

From a number of such inspections, it was found that they could be ex-

cluded automatically, by excluding cells with a root-mean-square displace-

ment that never exceeded 15 mm in the case of HaCaT cells and 20 mm in

the case of NHDF cells. Fig. 2 shows examples of trajectories that were

included in the statistics.

Data analysis

For each cell trajectory r~ðtÞ; the positions r~j ¼ r~ðtjÞ; tj ¼ jDt, j ¼ 1, 2, 3, . . .

were recorded, and the velocities v~j ¼ ðr~j � r~j�1Þ=Dt were calculated. From
these velocities, the accelerations a~j ¼ ðv~j11 � v~jÞ=Dt were formed. Since

surfaces were manufactured to be homogenous and isotropic to cells, and the

cells’ environment was kept constant in time, we tested and found velocity

distributions consistent with spatial homogeneity and isotropy, as well as

with temporal invariance; see Fig. 3. Consequently, when computing any

ensemble average, we also averaged this quantity over time, space, and direc-

tion to improve statistics. Data were then plotted, analyzed, and modeled as

described in the following sections and Appendix B.

Deriving motility models from experimental data

See Appendix A.

FÜRTH’S FORMULA AND THE
ORNSTEIN-UHLENBECK PROCESS

Developed for protozoa in 1920, Fürth’s formula has been

used on motile cells since 1970 (19). Its agreement with data

can be impressive (25) and is mostly satisfactory. This

agreement is sometimes due to sizable experimental errors,

FIGURE 1 Snapshots of cells with markers. The markers shown are much

larger than the one pixel in the center of a cell’s nucleus that is used to denote

the position of a cell and on which the marker is centered. Nonmoving cells

and cells interfering with each other’s trajectories were excluded from the

statistics. Length bars measure 200 mm. (Top) HaCaT cells on substrate of

molecular collagen. On glass and TCPS they are round in shape. Here they

spread out and sometimes show an asymmetric migratory shape. (Bottom)
NHDF cells on TCPS. On collagen surfaces they are elongated, whereas on

TCPS, and especially on glass, they show a ‘‘classical migratory shape’’

with lamellipodia, riffling membrane, etc.
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or to slow data sampling rate compared to P. Data sets with
one or both of these properties cannot distinguish Eq. 1 from

other functions of time that quickly approach a first-degree

polynomial. The model-specific content of Eq. 1 is more

obvious in the velocity autocorrelation function that Eq. 1

corresponds to,

fðtÞ [ Æv~ðtÞ � v~ð0Þæ ¼ nD

P
e
�jtj=P

; (2)

where v~[ dr~=dt: Equation 1 follows from Eq. 2, and vice

versa, by integrating, respectively differentiating, twice.

These equations do not define a specific motility model,

however. A whole class of models have the property f(t) }
exp(�jtj/P).
The Ornstein-Uhlenbeck process (17,26) is maybe the

simplest such model for persistent random motion of motile

cells, and a popular one. It is defined by the equation

P
dv~

dt
¼ �v~1

ffiffiffiffiffiffi
2D

p
~hh; (3)

where ~hh is a normalized ‘‘white noise’’; see Appendix A.

The OU model’s steady-state distribution of velocities, pðv~Þ;
is a simple Gaussian. This property conflicts with some

experimental results (27–29). Some authors have observed

that other distributions—an exponential (27) and Tsallis’

distribution (28,29)—fit their velocity data better. Other

authors have formulated new models with plausible details,

but only in the form of computer algorithms. Our data are

rich enough to allow a more radical approach. We let the data

speak for themselves, as follows.

READING DATA

Experimental results for f(t), for pðv~Þ; for dv~=dt as function
of v~; and for the noise term }~hh; all reveal the shortcomings

of the OU model, we shall see. But the same experimental

results yield its substitute: Eq. 3 states that a cell’s accel-

eration dv~=dt at any time t is a random vector with expec-

tation value�v~ðtÞ=P; and with equal RMSD in all directions.

This statement can be compared with experimental data in

a straightforward and model-independent manner: Fig. 4 A
shows experimentally measured accelerations of HaCaT

cells plotted against their instantaneous speed. If these data

can be described by Eq. 3, Fig. 4 A1 accelerations parallel

to the velocity should average locally, as function of the

speed v, to �v/P, with P a parameter to be fitted. The red

data in Fig. 4 B show that they do.

Also, Fig. 4 A2 accelerations orthogonal to the velocity

should average to 0 locally, for all values of v. The green data
in Fig. 4 B show that they do.

Furthermore, the accelerations in Fig. 4 A should scatter

about these averages with the same v-independent RMSD,ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=Dt

p
=P according to the OU model. Here Dt ¼ 15 min

is the time lapse between successive position measurements

r~j from which velocities and accelerations were calculated;

see Appendix A. The blue and magenta data in Fig. 4 B show

the RMSD of each component of the accelerations. Within

their error bars, the two RMSDs are identical. But they

depend on the speed v, essentially as a first-degree polyno-

mial, in disagreement with the OU model.

Finally, the accelerations in Fig. 4 A should be Gaussian

distributed about their averages and uncorrelated, according

to the OU model. Fig. 4 C shows clearly that they are not

Gaussian distributed. Both are more similar to two expo-

nential distributions placed back-to-back. This is not just due

to time-lapse recording, i.e., a discretization effect due to

Dt ¼ 15 min. One can prove that the OU process gives a

purely Gaussian distribution when studied with any finite

value for Dt.
Fig. 4 C was produced as follows: each component of

a~j � Æa~jæ at given v~j; parallel, respectively orthogonal to

v~j; was measured in units of its speed-dependent RMSD

shown in Fig. 4 B. The distribution of each of these reduced,

FIGURE 2 Collections of typical cell trajectories of the kind the ensuing

analysis is based on. Each trajectory has been displaced so that the ensemble

of starting points form a square lattice with a lattice spacing chosen large

enough to prevent intersection of trajectories. The length of the two black

bars shown is 200 mm. (A) HaCaT cells. (B) NHDF cells.
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dimensionless components was first measured as function

of speed. Within fluctuations due to finite statistics, both

distributions were found independent of speed, except at the

lowest speeds. So we compounded data obtained at all

speeds larger than half the mean speed. Fig. 4 C shows the

resulting distributions.

Fig. 4 D shows our experimental results for the normal-

ized autocorrelation function for the two components of

a~j � Æa~jæ: It is a Kronecker d-function, i.e., there are no cor-

relations, except for a small positive correlation in Fig. 4 D1.
By neglecting the latter in a first attempt to find a model, we

can achieve simplicity in that model-to-be.

Fig. 4 C looks discouraging since its non-Gaussian

distributions seem to require a model with correlated, non-

Gaussian noise. This turns out to be wrong: the speed-

dependent noise amplitude combines with the 15-min

discretization of data in a manner that allows a model with

uncorrelated Gaussian noise to perfectly reproduce the non-

Gaussian experimental noise in Fig. 4 C! Even the small

positive correlation in Fig. 4 D1 turns out to be explained by
the model we arrive at below.

Fig. 4 E shows that the velocity autocorrelation function

for HaCaT cells is not a simple exponential function, as it is

in the OU process. On the contrary, the data are fitted per-

fectly by a sum of two exponentials.

Fig. 4 F shows our experimental result for pðv~Þ as a

histogram of observed velocities, binned on the v axis in

panel F1, and binned on the v2 axis in panel F2, both with

logarithmic second axis. Isotropy of the surface on which

the cells crawled, makes pðv~Þ depend only on the speed v,
and not on the direction of the velocity. Consequently, if

pðv~Þ is a Gaussian distribution on the v~-plane, as in the OU

model, its graph is a straight line in panel F2. This is clearly
not the case, according to the histogram of observed veloc-

ities.

If, on the other hand, speeds are exponentially distributed

on the v axis, as suggested in Czirók et al. (27), the graph of

that distribution is a straight line in panel F1. This is also not
the case according to the histogram of observed velocities,

though it could pass as an approximation away from zero

velocity. If it were an exponential distribution also down to

zero velocity, pðv~Þ would not be analytical in v~¼ 0
/
; but

diverge like 1/v. Such singular behavior cannot be excluded à
priori. But pðv~Þ must result from a dynamical theory of

motility. And that results in a distribution that describes data

much better, we shall find.

FIGURE 3 Experimental demonstration

of spatial homogeneity, isotropy, and

temporal invariance of cells’ environment,

expressed through the cells’ pattern of

motion. HaCaT (left) and NHDF (right)

cells. (A panels) Distributions of observed

speeds of HaCaT/NHDF cells on six/four

different parts of the surface. The six/four

distributions do not differ, apart from

fluctuation due to finite statistics. (B panels)

Six columns show the number of cells that

moved in each of six different directions

relative to their starting point. Directions

are 60� intervals adding up to 360�. Total
population of HaCaT/NHDF cells was 100/

52. Three horizontal lines show theoretical

expectation value and standard deviation

for numbers shown as columns. The

distribution on directions is consistent

with isotropy. (C panels) Population-aver-

aged speed as function of time. The

population average is constant in time, up

to stochastic fluctuations due to finite pop-

ulation size. Thick horizontal line is pop-

ulation- and time-averaged speed. Two thin

horizontal lines are theoretical RMSD of

population-averaged speed according to

model presented below. The population

inside the field of view is constant during

the experiment, apart from a small decrease

at the very end of the period of observation.

This small decrease is seen in the theoret-

ical RMSD, which increases correspond-

ingly, as (population size)�1/2.
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FIGURE 4 Motility of HaCaT cells. (A) Experimentally measured components of acceleration parallel (A1) and perpendicular (A2) to the cell’s velocity,

plotted against the cell’s speed. The striped pattern in the scatter is due to finite resolution of positions, hence of speeds, caused by finite width of pixels. (B) Red

and green data points are the mean values of the acceleration’s two components shown in panels A1 and A2, respectively, as functions of speed. Blue/magenta

data points show RMSD of same quantities, parallel/orthogonal component. Thick curves show theoretical expectation values of same quantities, according to

the HaCaTmodel, Eq. 6, fitted to data in panels B, E, and F1 simultaneously. Pairs of thin lines next to thick curves show6 1 SD from thick curve, according to

HaCaT model’s prediction of experimental data points’ scatter. (C panels) Distribution of acceleration about its mean value, in units of distribution’s RMSD,

averaged over speeds v larger than 0.5Ævæ. Panels C1/C2 show distribution of component parallel/orthogonal to the velocity. Histograms show experimental

results. Thick curves (averages) surrounded by two thin curves (average 6 1 SD) show predictions of the HaCaT model, not a fit to data shown here. (D)
Correlation functions for acceleration’s scatter about its mean. Panels D1/D2 are the autocorrelation function of parallel/orthogonal component, normalized to

unity at time difference zero. Panels D3/D4 are the cross-correlation function between parallel and orthogonal component of acceleration’s scatter about its

mean, for positive/negative time difference, in units of (RMSD of parallel component)3 (RMSD of orthogonal component). Curves are theoretical expectation

values for the same quantities, according to the HaCaT model. (E) Data points are experimental velocity autocorrelation function f(t). Error bars on data points

underestimate true scatter as they were computed from experimental data that are correlated due to persistence of cell motion. The thick line is a guide to the eye

connecting theoretical result for f(t), computed from 15-min time-lapse position measurements, exactly as in experiment. Two thin lines are 6 1 SD on

theoretical result for given value of f(0). Red error bar on theoretical result for f(0) is the theoretical RMSD of this quantity. Stochastic errors tend to make the

whole data set shift up or down together. (F1) Histogram is distribution of observed speeds v, binned on v axis, and plotted with lin-log axis. Thick curve is

HaCaT model’s distribution of speeds, obtained as in experiment from 15-min time-lapse recordings of positions. Two thin curves are the theoretical RMSD of

experimental result with regards to theoretical curve, obtained as RMSD of many speed distributions, each obtained from an independent simulated trajectory

of duration equal to sum of durations of experimental trajectories. (F2) Histogram shows distribution of observed speeds v, binned on v2 axis, and plotted with
lin-log axis, so a Gaussian velocity distribution pðv~Þ would fall on a straight line. Curves are the same as in panel F1. Histogram values scatter more than the

theoretical RMSD suggests they should, because they were computed from experimental data that are correlated due to persistence of cell motion, and unevenly

redistributed between histogram bins by the effect of finite pixel width. The latter effect was not included in theoretical curves shown here and in panels C1 and

C2, but was included in fitted curves. Both kinds of curves are shown in Fig. 10.
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PROPERTIES OF AN UNKNOWN THEORY

Fig. 4 E shows that the velocity autocorrelation function for

HaCaT cells is fitted perfectly by a sum of two exponentials.

We consequently assume that

fðtÞ ¼ f1e
�jtj=P1 1f2e

�jtj=P2 ; (4)

and ask which generalization of the OU model might yield

this function and the other properties of the data shown in

Fig. 4. Such a generalization must, like the OU model,

describe the rate of change of the cell’s velocity. This

acceleration cannot depend on a cell’s position r~ðtÞ; nor

explicitly on spatial direction or time, because the cells crawl

on surfaces that are homogenous and isotropic, and their

environment is kept constant. So the acceleration must

depend only on the cell’s velocity, like in the OU model. We

expect some memory in a cell, however, so the acceleration

may depend not only on the current velocity, as in the OU

model, but on past velocities as well. This dependence must

be linear, like in the OU model, to ensure that Ædv~=dtæv~ } v~as

in the red data in Fig. 4 B.
The noise term seems to have an isotropic amplitude s, as

in the OU model, because blue and magenta data in Fig. 4 B
coincide. But unlike the OU model’s amplitude, this am-

plitude must be speed dependent, s ¼ s(v), according to the

same data. The noise itself was uncorrelated to a good ap-

proximation, when measured with our 15-min time resolu-

tion; see Fig. 4 D. We consequently model the noise as

uncorrelated on all timescales, to keep the model as simple as

our data allow.

This list of properties of the yet unknown model, narrows

it down to the integro-differential equation

dv~

dt
¼ �K � v~1sðvÞ~hh; (5)

where K is a memory kernel yet to be determined, except

causality demands that K(t)¼ 0 for t, 0: the future must not

affect the present. The asterisk denotes convolution, i.e.,

ðK � v~ÞðtÞ ¼ R t

�N Kðt � t9Þv~ðt9Þdt9: K is a scalar function of

t, as opposed to a tensor of rank two, because the surface on

which the cells move, is isotropic to them. Isotropy means

that all directions are equivalent. When this equivalence

principle is enforced on the theory we wish to find,

mathematics gives that K must transform under spatial

rotations as an invariant tensor, i.e., be a scalar. If the

isotropy of space is broken, as it is in chemotactic and

galvanotactic experiments, K is a tensor of rank two.

HaCaT THEORY

Equations 4 and 5 have only one solution forK; see Appendix
A. Inserted in Eq. 5, it results in the equation of motion

dv~

dt
ðtÞ ¼ �bv~ðtÞ1a

2

Z t

�N

dt9e�gðt�t9Þ
v~ðt9Þ1sðvðtÞÞ~hhðtÞ:

(6)

Here a, b, and g are known functions of P1, P2, and f1/

f2, and satisfy bg. a2, as they must for velocities to remain

finite under the dynamics of Eq. 6; see Appendix A. The term

in Eq. 6 containing b represents ‘‘loss of memory’’ of

velocity at average rate b�1. The term containing a2, on the

other hand, represents ‘‘memory’’ with characteristic time

g�1 and strength a2/g. This combination of memory was an-

ticipated in Dunn and Brown (20). If g is given a sufficiently

large imaginary component, this model has an oscillatory

velocity autocorrelation function similar to the one suggested

in Shenderov and Sheetz (16) for Dictyostelium discoideum.
The experimental data shown in red in Fig. 4 B show

proportionality between velocity and the mean acceleration

at that velocity,

Ædv~=dtæv~ ¼ �beff v~; (7)

like in the OU model. One can prove that Eq. 6 results in the

very same proportionality and find beff(a, b, g) (see

Appendix A). So, apart from the experimental value for

beff, the red data contain no information that is not already

built into the model Eq. 6. But they do, of course, thereby

confirm the choice of Eq. 6 as model.

Although K(t) was determined from f(t), the only infor-

mation about s(v) that is contained in f(t), is the theory’s

‘‘fluctuation-dissipation theorem’’; see Appendix A, Eq. 24.

Thus, we are free to choose

sðvÞ ¼ s0 1s1v; (8)

inspired by the data in Fig. 4 B, as long as the ‘‘fluctuation-

dissipation theorem’’ is respected. This defines our model for

HaCaT cells.

With this choice, one can derive the steady-state dis-

tribution of velocities (see Appendix A),

pHaCaTðv~Þ ¼ ae
a

2pv
2

s

exp

�
� a

11 v=vs

�
ð11 v=vsÞ21a ; (9)

where vs [ s0/s1 and a [ 2beff=s
2
1: The moments Ævkæ are

also known analytically and are finite only for k , a.
Because data show Æs2(v)æ is finite, a. 2 is necessary for the

model to be consistent with the choice in Eq. 8.

Clearly, pHaCaTðv~Þ is not a Gaussian distribution for s1 6¼
0. But it is the same function for all models having the same

values for beff, s0, and s1, including, e.g., the case of no

memory kernel, a ¼ 0. This demonstrates the value of

plotting data as in Fig. 4 B. Experimental results for

pHaCaTðv~Þ and f(t) contain precise, important, but incomplete

information about the dynamics causing these functions. Fig.

4 B presents the experimental information in a manner that

suggests this dynamics more directly.

COMPARING THEORY AND EXPERIMENT:
HaCaT CASE

The theory in Eq. 6 was compared with experimental results

as follows: Eq. 6 was simulated numerically to obtain
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theoretical trajectories of persistent random motions. These

trajectories were sampled with the same time lapse as was

used to record experimental trajectories, to have theoretical

results that can be compared with experimental data. Values

for coordinates obtained by this sampling were rounded to

the nearest-integer multiple of pixel widths, as described in

Appendix B, before results were computed from them with

the purpose of fitting the theory to data. After the theory has

been fitted in this manner, it is more convenient to compare

data with the smoother curves obtained from nonrounded

coordinates, if rounding only makes a theoretical curve

jagged. Direct inspection (Fig. 10 in Appendix B) shows

when this is legitimate (panels B–D), and when not (panel A).
Thus, Fig. 4 F shows pHaCaTðv~Þ—not the distribution

given in Eq. 9—but the distribution of velocities obtained by

time-lapse sampling the theory after it had been fitted to

experimental data. For fitting, the theory was both time-lapse

sampled and rounded to the nearest pixel. The velocity

distribution resulting from the latter procedure was fitted to

the experimental distribution of velocities of HaCaT cells,

while simultaneously the theory’s mean acceleration and the

RMSD of its acceleration were fitted to the experimental data

in Fig. 4 B, and its velocity autocorrelation function was

fitted to the data in Fig. 4 E. As fitting parameters we used a,
b, g, s0, s1—five fitting parameters in a simultaneous fit of

five functions to the experimental data shown in Fig. 4, B, E,
and F. Fig. 4, B–F, shows the resulting fit.

TheHaCaTmodel in Eq. 6 clearly captures the nature of the

data, including the data in Fig. 4C. The latter aspect of the data
was not used when fitting the theory. So the theoretical dis-

tributions that are shown as curves in Fig. 4 C are predictions

made by the theory for this aspect of the experimental data,

after the theory was fitted to other aspects of the same data.

Experimental data and theory both differ from zero in the

same manner for the first few hours in Fig. 4 D1. The same

behavior is seen in Fig. 5D1. This agreement between theory

and experimental data is caused by a property of the theory

that it picked up from other aspects of the data: a~j � Æa~jæ is an
uncorrelated Gaussian noise in the OU model, but in the

HaCaT model it also contains a small term linear in v~because

of the memory kernel. On the differential timescale it reads

ðdv~=dt � Ædv~=dtæÞjv~ ¼ beffv~� K � v~1 sðvÞ~hh: In the OU

model the first two terms on the right-hand side of this

identity cancel, because beff ¼ b and K(t) ¼ bd(t). In the

HaCaT model they don’t cancel, and cause the observed

small correlation.

NHDF THEORY

Fig. 5 shows results for NHDF cells. They move approx-

imately twice as fast, on average, and are also in other ways

more dynamic than keratinocytes. Their mean acceleration

parallel to their velocity, e.g., decreases somewhat faster than

proportional to v (red data points in Fig. 5 B. Fig. 12 in

Appendix B shows this with maximal clarity, while fully

accounting for the time-lapse nature of the data.) Also, the

RMSD of the acceleration differs for the two directions: its

component orthogonal to the direction of motion is almost

constant as in the OU model. But its component parallel to

the direction of motion increases with v and doubles its value
in the window shown. This behavior is captured by two

modifications of Eq. 6: firstly, we replace the constant b with

an increasing function b(v). A first-degree polynomial, b(v)
¼ b0 1 b1v, turns out to do the job, whereas a second degree
polynomial does not further improve the agreement between

theory and data. Secondly, we replace the scalar function

s(v) with the tensor ��ss�ssðv~Þ [ skðvÞv̂5v̂1s?ðvÞv̌5v̌: Here
v̂ ¼ v~=v; v̌ is a unit vector orthogonal to v~; and sk(v) and
s?(v) are the RMSDs of the random components of the

acceleration, parallel and orthogonal to the velocity, re-

spectively. The data in Fig. 5 B suggest that sk(v) and s?(v)
are different first-degree polynomials in v, but with sk(0) ¼
s?(0), so ��ss�ssðv~Þ contains a total of three free parameters to be

fitted, where s(v) contained two. This defines our motility

model for NHDF cells.

Like the HaCaT model, this NHDF model has a non-

Gaussian velocity distribution, shown in Fig. 5F, but it cannot
be found analytically. Neither can the correlation function

f(t), shown in Fig. 5 E, though its simple exponential

behavior for t . 1 h indicates that good analytical ap-

proximations might be found there. The result of a simulta-

neous fit of this NHDF model to all experimental data shown

in Fig. 5, B, E, and F, is shown in all panels in Fig. 5.

COMPARING THEORY AND EXPERIMENT:
NHDF CASE

Equation 6 was simulated numerically in its NHDF variant

and fitted to theNHDFdata shown in Fig. 5,B,E, andF, using
a, b0, b1, g, s0, s1k, s1? as fitting parameters. The curves

shown in Fig. 5, C and D, are the theory’s predictions for the
aspect of the experimental data that are also shown there.

We tested the possibility that ambiguity in the choice of

pixel that marks a cell’s position might play a role. This was

tested by introducing this ambiguity in the theory, and then

fitting the theory to the data with the ambiguity as a pa-

rameter. That resulted in a slightly better fit, but there is little

ambiguity: only 1.5% of the times that a pixel is chosen,

should one of its four nearest neighbors be chosen at random

instead. So the data confirm that the round-off error asso-

ciated with using a pixel as coordinate is larger than the

ambiguity of this coordinate.

The NHDFmodel’s agreement with data could be better in

Fig. 5 B. The data could also be richer, however, and a theory
should not be built on a single data set. The NHDF theory is

not. Below, where we compare the model to data taken on

different surfaces, we find better agreement between fitted

theory and data for the average acceleration as function of

speed. There is room for improvement of the NHDF model.

We just don’t know a systematic way of going about it,
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except to suggest that more and better data are studied, since

it is a nonlinear theory that is called for.

RESULTS FOR MODEL PARAMETERS

Table 1 shows values for parameters in the HaCaT and

NHDF models, obtained by fitting these models to data as

just described. The table also gives values for some quan-

tities that characterize experimental data more directly. The

values given are those that resulted from the fits, i.e., those

corresponding to the listed model-parameter values. In the

HaCaT case, the model parameters a, b, g, s0, s1 were

determined by fitting. Then P0, P1, P2, g1, g2, beff, f1, f2,

Ævæ, Æv2æ, Æs2(v)æ were calculated from Eqs. 34–39. In the

NHDF case, a, b0, b1, g, s0, s1k, s1? were determined by

fitting. Then the values of Ævæ, Æv2æ were measured in

a simulation of the fitted model, and Æs2
kðvÞæ; Æs2

?ðvÞæ were
computed from these values.

As a test of the computer algorithm used in the fitting

procedure, Ævæ and Æv2æ were also measured in a computer

simulation of the HaCaT model. The validity of Eq. 39 was

verified for the measured values.

SAME CELLS ON DIFFERENT SURFACES

So far, we have studied HaCaT cells crawling on substrates

of collagen and NHDF cells crawling on TCPS. The quali-

tative differences between the two models we have found,

reflect qualitative differences between the two data sets they

were found from. These differences may be due to differ-

ences between the cell types, or between the surfaces, or

both. We now demonstrate that the differences are associated

with the cells, and not with the surfaces, by varying the

surfaces.

Fig. 6 shows motility data for NHDF cells on four differ-

ent surfaces: glass, TCPS, fibrillar collagen, and molecular

FIGURE 5 Same as Fig. 4, but for NHDF cells and NHDF model. (C1) The asymmetry of the distribution for NHDF cells is more pronounced than is the

case for HaCaT cells. The NHDF model’s prediction for this distribution and that in panel C2 is shown as red lines. It is not a fit. The model was fitted only to

data in panels B, E, and F1. (D1) Red curve is the NHDF model’s prediction for the autocorrelation function for the acceleration’s scatter about its mean in

direction parallel to the velocity. Like the experimental data, it is small, but nonvanishing, though the model’s noise term is uncorrelated Gaussian. (E) Velocity
autocorrelation function. See caption to Fig. 4 E. (F panels) Distribution of speeds; see caption to Fig. 4 F.
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collagen. Fig. 8 shows motility data for HaCaT cells on the

two collagen substrates. HaCaT cells did not show mea-

surable motility on glass and TCPS during the first 24 h of

the experiment.

Comparing the A panels in Figs. 6 and 8 we note a

qualitative difference: for HaCaT cells, the RMSD of the

acceleration’s two components are virtually identical func-

tions of speed. For NHDF cells, on the other hand, the

RMSD of the acceleration’s component orthogonal to the

velocity is almost independent of speed, whereas the RMSD

of the component parallel to the velocity is strongly speed

dependent. No theory is needed to tell which cell type pro-

duced the data in any one of the six A panels in the two

figures. We have identified a cell-type-specific pattern in the

data that persists across all the different surfaces we have

data for. This pattern is reflected in the two models we found

above, and Figs. 6 and 8 show that the two models describe

the data in all six cases. It follows that the two models are

cell-type specific. Only their parameter values vary between

surfaces. These parameter values can then be used to char-

acterize the surfaces.

SCALING ANALYSIS, DATA COLLAPSE,
AND PARAMETERIZATION OF
SURFACE DIFFERENCES

In principle, the two models put five, respectively seven,

parameters at our disposal for the characterization of sur-

faces. In practice, these parameters may not all parameterize

independent properties of surfaces. Also, even if they do, we

need at least eight different surfaces to demonstrate this for

the seven parameters of the NHDF model, and six different

surfaces for the five parameters of the HaCaT model. Finally,

even if we had data for a sufficient number of surfaces, finite

statistics might blur subtle differences. For these reasons,

a phenomenological analysis of the actual information con-

tent of our data is a healthier approach. It has the additional

advantage of being model independent. Thus, it is a practical

tool that can describe how motile cells and microorganisms

experience different surfaces without requiring a model for

their motility.

NHDF data collapse

Fig. 6 shows motility data for NHDF cells on glass, on TCPS,

on substrate ofmolecular collagen, and on substrate of fibrillar

collagen. Compared to the other three surfaces, glass results in

elevated scatter in the acceleration’s components (panel A), in
shorter correlations (panel C), and in higher velocities (panel
D). However, the two distributions describing the acceler-

ation’s scatter about its average (panel B) do not differ

between surfaces when measured as here, in units of the

scatter’s RMSD. The speed distribution looks like it may have

the same property: invariant if rescaled to give the distribution

of speeds in units of the average speed. Fig. 7 B shows quite

convincingly that this is the case. So the mean speed is the

only aspect of the velocity distribution ofNHDF cells that will

distinguish surfaces. Other aspects of the distribution is

invariant between surfaces, at least with our experimental

resolution and for the four surfaces studied here.

Maybe the mean speed exhausts differences between other

quantities of dimension speed and acceleration. To find out,

we rescaled all velocities so they are measured in units of

their corresponding mean speed. Fig. 7 A shows how the

accelerations of these dimensionless velocities average and

scatter as functions of dimensionless speed. The figure shows

data collapse: the mean speed captures the whole difference

between surfaces as far as this plot is concerned.

Fig. 7 C shows the velocity autocorrelation functions in

Fig. 6 C, but in units of mean-squared velocity, Æv~2æ: This
normalization, rather than Ævæ2, is conventional because it

is more practical, as f(t)/f(0) ¼ 1 for t ¼ 0. These func-

tions discriminate between surfaces in a manner that is not

captured by the mean speed. This was to be expected, be-

cause another physical dimension, time, is involved.

Apart from the initial rapid decrease, the velocity auto-

correlation functions in Fig. 7 C show a slower, exponential

decrease over most of the times where they can be measured.

This exponential decrease has a different characteristic time,

t0, for glass, TCPS, and collagen, whereas the two kinds of

collagen cannot be distinguished. So t0 discriminates be-

tween surfaces in a manner that might be independent of the

mean speed Ævæ.
To test for this independence, we form their product,

a length. The theories presented here do not contain any

natural length scales, but cells do, e.g., their size. A theory

TABLE 1 Values for parameters in HaCaT and NHDF models

fitted to data

HaCaT NHDF

a (1/h) 1.5 2.9

b, respectively b0 (1/h) 4.1 2.1

b1 (1/mm) – 0.06

g (1/h) 1.0 2.1

s0 (mm/h3/2) 11 7.3

s1k (1/h
1/2) 1.3 2.8

s1? (1/h1/2) 1.3 0.9

beff (1/h) 3.4 –

P0 (h) 0.51 –

P1 (h) 0.21 –

P2 (h) 2.4 –

g1 (dimensionless) 0.86 –

g2 (dimensionless) 0.14 –

f1 ((mm/h)2) 209 –

f2 ((mm/h)2) 94 –

Ævæ (mm/h) 11 15

Æv2æ ((mm/h)2) 260 614

Æs2
kðvÞæ1=2ðmm=h3=2Þ 31 74

Æs2
?ðvÞæ1=2ðmm=h3=2Þ 31 28

Values above the line are for parameters in theHaCaT andNHDFmodels fitted

to data in Figs. 4 and 5. Below the line are corresponding values for some

quantities that characterize experimental data, but cannot be compared directly

with data in figures above because the latter are finite-difference results.
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might resolve such a length scale in motility data, and if it is

the same on different surfaces, t0 is just the inverse of Ævæ up
to a constant, hence no independent discriminator. Table 2

lists t0, Ævæ, and their product. The product is not constant for
a given cell type, so t0 is an independent characteristic of

compatible cell-and-surface combinations. We note that the

product has a value similar to the cells’ size. Any radically

different value would have been surprising.

Fig. 7 D shows the same velocity autocorrelation func-

tions as in Fig. 7 C, but as functions of dimensionless relative

FIGURE 6 Motility data for NHDF cells on four different surfaces, from 30-min time-lapse records. (Rows from top) Glass, TCPS, molecular collagen, and

fibrillar collagen. (A panels) Average acceleration and RMSD of acceleration, both as functions of speed, for directions parallel and orthogonal to velocity.

Compare Fig. 5 B. (B panels) Distribution of acceleration minus mean acceleration. Panels B1/B2 show distribution of component parallel/orthogonal to the

velocity, in units of its RMSD. Compare Fig. 5 C. (C panels) Velocity autocorrelation function fðtÞ ¼ Æv~ðtÞ � v~ð0Þæ: Compare Fig. 5 E. (D panels) Speed

distribution 2p v pðv~Þ against speed v. Compare Fig. 5 F1.
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time: time in units of the characteristic time for the ex-

ponential decrease. Plotted this way, the correlation func-

tions are guaranteed to have the same slope, except during

their rapid initial decrease. We see a data collapse within

underestimated error bars. Our resolution of time could be

better at earlier times, especially for glass and TCPS. But for

this 30-min time-lapse data, we must conclude that the data

collapse leaves no other discriminator of dimension time to

be found in the velocity autocorrelation functions.

HaCaT data collapse

In the HaCaT theory, t0 is identical to P2. Table 1 lists a 12-

times-smaller value for P1, the shortest characteristic time

FIGURE 7 Same data as in Fig. 6, but with

all velocities and accelerations given in units

of the mean velocity on a given surface. (A)

Average and RMSD of acceleration’s compo-

nents, as function of speed/(mean speed). (B)

Velocity distribution as function of speed/(mean

speed). (C) Dimensionless velocity autocorre-

lation functions f(t)/f(0). They clearly distin-

guish three kinds of surfaces, the discriminator

being the characteristic time of their long, ex-

ponentially decreasing tails, and clearly cannot

distinguish substrates of molecular collagen

from fibrillar ditto. (D) Same as in panel C, but
as function of reduced time, i.e., time divided

by characteristic time of tail. Plotted this way,

the tails all have slope 1. The data collapse is an

additional result. The normalized correlation

function of reduced time cannot distinguish

surfaces.

TABLE 2 Experimental values and parameter values

HaCaT NHDF

Molecular Fibrillar Glass TCPS Molecular Fibrillar

Ævæ (mm/h) 11 11 25 16 14 13

t0 (h) 3.1 1.8 2 3.6 1.1 1.1

Ævæ t0 (mm) 34 20 49 56 15 14

a (1/h) 1.7 1.6 2.2 1.9 2.3 1.8

b, respectively b0 (1/h) 4.7 4.8 1.5 2.1 6.8 3.5

b1 (1/mm) – – 0.043 0.073 0.015 0.057

g (1/h) 1.0 1.3 1.6 0.8 0.8 0.7

s0 (mm/h3/2) 11 14 33 25 24 21

s1k (1/h
1/2) 1.4 1.3 3.0 3.0 2.6 2.8

s1? (1/h1/2) 1.4 1.3 �0.02 0.006 0.29 �0.12

Values above the line are experimental values. Below the line are parameter values from fit of models to experimental data. HaCaT data obtained with 15-min

time lapse; NHDF data with 30-min time lapse.
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inf(t). Its product with Ævæ listed in the same place, is 2.3mm,

much shorter than HaCaT cells’ size, and consistent with

the idea that when we resolve finer timescales, we resolve

smaller spatial properties of the cells, in this case possibly

their pseudopodia. Cells do move in an uneven manner, as

they haul themselves forward on their pseudopodia (10).

Fig. 8 shows motility data for HaCaT cells on substrate of

fibrillar collagen, and on substrate of molecular collagen.

They look indistinguishable, except for the velocity auto-

correlation functions. The mean speed is the same on the two

surfaces, to within 4%, an insignificant difference. So no

significant rescaling was done to check for data collapse. Fig.

9 A seems to show a collapse. The average acceleration as

function of speed seems smaller on molecular collagen, but

this may be a coincidence due to limited statistics and the fact

that the data are correlated. Fig. 9 B shows a very convincing

identity of pHaCaT on the two surfaces.

Fig. 9 C shows the normalized velocity autocorrelation

functions. They are the only aspect of data from the two

surfaces that seem to distinguish the surfaces. But the sta-

tistics are poor, the data correlated, and we have less than

three correlation-times worth of data, so, as indicated by the

theoretical standard deviation, the two functions may not be

significantly different. For this reason we merged these data

to obtain better statistics in the HaCaT analysis presented

in the first part of this article. If we nevertheless attempt to

extract a characteristic time from each of the tails in Fig. 9 C,

and replot the correlation functions as functions of reduced

time, we get the data collapse shown in Fig. 9 D.
Different or not, the HaCaT model captures the nature

of these data in Figs. 8 and 4. We have also reanalyzed the

15-min time-lapse trajectories on which Fig. 4 is based, but

using only every second data point, as if we did 30-min time-

lapse recording. The velocity autocorrelation function is then

less well resolved, but the qualitative features that distin-

guish the HaCaT model from the NHDF model become

more manifest (not shown here): the average acceleration is

distinctly linear in its speed dependence, and the RMSD of

the acceleration’s two components is more clearly the same

function s(v) of the speed.

DISCUSSION

All those parameters. . .

With enough parameters one can fit anything. Have we

sufficiently justified the five-parameter HaCaT model and

the seven-parameter NHDF model? Or will other models

with less (as many) parameters do as well (better)? How

many parameters are really needed?

Any model that is a mathematical relationship between

velocity and time, must contain at least one dimensionful

parameter, because velocity and time have different dimen-

sions. The previous section’s phenomenological analysis

FIGURE 8 Motility data for HaCaT cells on two different surfaces, from 15-min time-lapse records. (Rows from top) Molecular collagen, fibrillar collagen.

(A panels) Average acceleration and RMSD of acceleration, both as functions of speed, for directions parallel and orthogonal to velocity. Compare Fig. 4 B. (B

panels) Distribution of acceleration minus mean acceleration. Panels B1/B2 show distribution of component parallel/orthogonal to the velocity, in units of its

RMSD. Compare Fig. 4 C. (C panels) Velocity autocorrelation function f(t). Compare Fig. 4 E. (D panels) Speed distribution 2p v pðv~Þ against speed v.

Compare Fig. 4 F1.
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revealed that NHDF data require at least two independent

dimensionful parameters from a model that is to describe

the data on different surfaces. The data collapse achieved

in the previous section indicates that no more than two

parameters are needed, because in mathematical terms the

data collapse means that any relation between the variables

can be written Fðv~=Ævæ; t=t0Þ ¼ 0; where F is a dimension-

less functional of dimensionless variables. (The relation-

ship F may involve differentiation and integration w.r.t.

time, as it does in Eq. 6 and the NHDF version of it, and it

may depend only on v/Ævæ, as in p(v), or only on t/t0, as in
f(t).) The collapse of the HaCaT data leads to the same

conclusion, except there is no experimental proof that the

two dimensionful parameters are independent of each

other. So a single parameter might in principle do.

If there were no data collapse, F would depend on the

surface under consideration, and that would introduce addi-

tional, dimensionless parameters in F. But our 30-min time-

lapse data do collapse, so we do not need such extra

dimensionless parameters to model them. Data taken with

better time resolution can resolve the initial rapid decrease in

the velocity autocorrelation that we found in our 15-min

time-lapse data. This initial decrease contains another time-

scale, and another amplitude of dimension (velocity). Divided

by t0, respectively Ævæ2, this additional timescale and amplitude

make up two dimensionless parameters that probably will

vary with surfaces. We have yet to address this question

experimentally.

So when we here refer to the HaCaT model as being a five-

parameter model, most of the parameters we refer to, were

not forced upon us by experiments that prove the need for

them by proving that they change with some external con-

dition, such as choice of surface. They are parameters of

a different, less absolute status. They parameterize the func-

tion space in which we find F, and their number may depend

on our choice of basis functions in that abstract space.

Suppose, e.g., that a feature is described by an exponential

function, but we have not realized this, and use a polynomial

description in the interval in which we observe this feature.

An exponential function has an amplitude and a characteristic

range, i.e., two parameters. A polynomial of degree higher

than one contains more than two parameters—unnecessary

extra parameters in this example, as they can be expressed as

functions of the first two parameters if one is aware of the

exponential nature of the feature. So when we parameterize

features in the data that we model, this potential ambiguity

FIGURE 9 Same data as in Fig. 8, but with

all velocities and accelerations given in units

of the mean velocity on a given surface. (A)

Average and RMSD of acceleration’s com-

ponents, as function of speed/(mean speed).

(B) Velocity distribution as function of speed/
(mean speed). (C) Dimensionless velocity

autocorrelation functions f(t)/f(0). They

maybe distinguish two kinds of surfaces,

the discriminator being the characteristic time

of the exponentially decreasing tails. (D)

Same as in panel C, but as function of

reduced time, i.e., time divided by character-

istic time of tail. Plotted this way, the tails all

have slope 1. The data collapse is an

additional result: the normalized correlation

function of reduced time cannot distinguish

surfaces.
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must be borne in mind when we count the number of

parameters introduced. We do, and find an unambiguous

result.

The power of symmetry

If an unknown theory must possess certain symmetry pro-

perties, the enforcement of these properties is an extremely

powerful tool for narrowing down the search for this theory

and for defining remaining properties that must be deter-

mined experimentally.

The heuristic, data-driven derivation of the motility models

presented above may not have done justice to the symmetry

properties that guided us through their derivation. So we

briefly repeat them here: we demanded that theories must be

covariant under spatial rotations and invariant under trans-

lations in space and time.We first checked consistency of these

assumptionswith data. That done, these symmetries permeated

our phenomenological approach. Data were averaged and

plotted in manners based on the assumption of these symme-

tries. Only then did we identify parameters to be fitted. In this

process, it turned out that HaCaT data were consistent with

isotropic noise amplitude, so that further reduction in the

number of parameters was achieved with the assumption that
��ss�ssðv~Þ ¼ sðvÞ��11�11: Our NHDF data do not demonstrate this

isotropy of noise amplitudes, so in this case isotropy of space

only simplifies ��ss�ssðv~Þ to skðvÞv̂5v̂1s?ðvÞv̌5v̌:

Parameter counting

In the HaCaT case, space-time symmetries and the choice of

simple, uncorrelated noise narrowed down potential models

to those of the form given by Eq. 5. This form also assumes

that the cell population studied is made up of a single kind of

cells, as opposed to several subpopulations of different kinds

of cells. The latter possibility is discussed below and elim-

inated with Occam’s razor after some rigorous math.

Parameterization of the experimental result for f(t)
required four parameters, two for each of the two exponential

functions with which wemodeledf(t). Exponential functions
are the natural choice of basis functions for f(t), and leave no
room for further simplification: Four parameters are required.

From this assumption and Eq. 5 followed with mathemat-

ical rigor explicit expressions for K and for Æs2(v)æ. The latter
expression is the ‘‘fluctuation-dissipation theorem’’ for the

theory, and a constraint on the choice of the otherwise un-

determined function s(v). That function was chosen to be

a first-degree polynomial inspired by the RMSD data in Fig.

4 B. A first-degree polynomial contains two parameters. So

does any other nonconstant function that one might choose to

describe the RMSD data in Fig. 4 B with. This follows from

dimensional arguments alone: the two axes in Fig. 4 B have

different dimensions, and both slope and intercept of the

RMSD data are nonzero, hence must be parameterized. So

no less than two parameters will do. We have already one

constraint between them. Consequently, one additional

parameter must be introduced here. No more parameters

are introduced in the HaCaT model, so it is a bona fide five-

parameter model, and the only such model that describes

the data, given the assumptions we have made: These were

assumptions of maximum simplicity: symmetry, uncorre-

lated noise, and only one type of cell. Our HaCaT model

cannot be replaced by a simpler model, nor with a model

with fewer parameters—not with our HaCaT data. The only

possibility that we have not considered is whether a mixed

population of cells with a simpler dynamics will describe the

data with better intellectual economy. This is the subject of

the next subsection.

As for the NHDFmodel, its deterministic part is nonlinear,

so no similar mathematical rigor can be achieved for it. The

nonlinearity itself, b’s dependence on v, is modeled with

a first-degree polynomial, which introduces one additional

parameter, b1. Any other function basis will also require two

parameters to describe b(v), for dimensional reasons and

because both slope and intercept of b(v) are nonvanishing.
But the choice to make b v-dependent, while leaving a and

g constant, was ad hoc, and not based on any mathematical

rigor, only mathematical simplicity and the fact that it works.

The data themselves only tell us that beff is not a constant. We

did try to give a, b, and g the same dependence on v, that
which beff has according to the data in Fig. 5 B. According to
the ‘‘equivalent theory’’ in Appendix A, this is a mathemat-

ically symmetric manner to introduce v-dependence in these

coefficients, and would, to the extent the definition of beff in

Eq. 37 remained true also for this nonlinear theory, result in

a theoretical beff(v) that by construction agrees with the data.
Unfortunately, Eq. 37 does not remain true, we found, and

choosing only b v-dependent results in a model that agrees

with experimental data, whereas this more elegant attempt

does not. Ad hoc or not, another parameter has been

introduced in the model, which now contains a total of four

parameters in its deterministic part.

The two noise amplitudes sk(v) and s?(v) were modeled

with two first-degree polynomials having the same value at

v ¼ 0, i.e., a total of three parameters describe the model’s

stochastic part. Fewer parameters will not do, also not in

a different function basis. We conclude that despite space-

time symmetries, the richer structure of the NHDF data

forces us to use seven parameters in the NHDF model, and,

worse, one of them was introduced in an ad hoc manner.

Other models may describe the same data as well or better,

but will hardly need fewer parameters to do that.

Why ‘‘two simpler subpopulations’’ is not
a simpler explanation

Obviously, a cell population consisting of two subpopula-

tions, 1 and 2, having simple exponential velocity autocor-

relation functions fi(t) ¼ fi(0) exp(�jtj/Pi), i ¼ 1, 2, would

also result in Eq. 4: let wi denote the fraction of cells in

subpopulation i. Then w1 1 w2 ¼ 1 and
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fðtÞ ¼ w1f1ð0Þe�jtj=P1 1w2f2ð0Þe�jtj=P2 : (10)

So how can we tell whether we have two subpopulations

or not? That could easily be done if we had enough data

in individual cell trajectories to calculate velocity autocor-

relation functions for individual trajectories. If trajectory-

specific autocorrelation functions all are simple exponentials

with one of two persistence times, then we have two

subpopulation. Cells could then be classified by the value of

their individual persistence time, as computed from each

cell’s trajectory. On the other hand, if we have only one

population, velocity autocorrelation functions computed

from individual trajectories should all be identical, and

each be a sum of the same two exponentials. Unfortunately,

our data are far from rich enough to support this approach.

We need to average over the cell population to get sufficient

statistics.

Doing that, we ask whether two simpler motility models,

one for each subpopulation, will describe the HaCaT data as

well as the HaCaT model does. To answer this question, we

must consider all motility models that result in a velocity

autocorrelation function that is just a simple exponential.

Then we limit the search to the subset of such models which

have uncorrelated noise term, because the HaCaT model has

that, and we are looking for simpler models. For this subset

of models, we can reuse the derivation given in Appendix A.

It proves that motility models with these properties are

differential equations of the form

dv~

dt
¼ �v~=Pi 1siðvÞ~hhi: (11)

So we use one such model for each subpopulation, each

model having its own persistence time Pi and speed-

dependent noise siðvÞ~hhi:
The two steady-state velocity distributions piðv~Þ that result

from these two equations, must add up to pHaCaTðv~Þ ¼
w1p1ðv~Þ 1 w2p2ðv~Þ that agrees with the experimental distri-

bution in Fig. 4 D. But from two subpopulations it is very

difficult to get the property Ædv~=dtæv~ } v~demonstrated by the

experimental data in Fig. 4 C. Equation 11 yields�
dv~

dt

�
v~

¼ �v~=Pi; (12)

for expectation values within a single subpopulation, hence

for the full population�
dv~

dt

�
v~

¼ �beffðvÞv~; (13)

with

beffðvÞ [
+

i¼1;2
wipiðv~Þ=Pi

+
i¼1;2

wipiðv~Þ : (14)

This expression for beff(v) is only constant, as in the

HaCaT data, if p1ðv~Þ ¼ p2ðv~Þ for all values of v~: This is

a very special condition with precise consequences: Eq. 11,

like the HaCaT model, leads to Eqs. 42 and 43 with bi¼ 1/Pi

in place of beff. So we know that piðv~Þ ¼ pðvÞ given in

Eq. 45 for i ¼ 1, 2. From these two identities follows thatffiffiffiffiffi
P1

p
s1ðvÞ ¼

ffiffiffiffiffi
P2

p
s2ðvÞ for all values of v. Using this in Eq.

11, we see that the two subpopulations obey identical

equations of motion, when time t is measured in units of

characteristic time Pi: the two subpopulations move in

identical manners, except to clocks that move with different

speeds, one being a factor P1/P2 slower than the other.
If we assume that this very special property of the cell

population is satisfied and assume the simplest possible

form for s(v) that is allowed by the data, Eq. 8, then we are

still left with a five-parameter model: P1, P2, s0, s1, and the

ratio between the two subpopulations’ sizes, are to be

determined by fitting.

We could not fit this model to the data. We could fit it

perfectly well to some of the data sets plotted in Fig. 4. We

knew that before trying from the built-in properties of this

model. But, surprisingly, we could not fit it to all of the data

that we fitted the HaCaT model so well to.

Thus, we appear to have excluded those two-population

models that à priori seemed able to describe the HaCaT

data with five parameters. This is not a rigorous proof, but

it does exclude the obvious. Because we also have no reason

to believe that we have two subpopulations, Occam’s razor

favors the explanation that the HaCaT cell population is

a single population described by the HaCaT model with

memory in Eq. 6, as this model is simple, generic, and em-

bodies only assumptions that were read off the data.

CONCLUSIONS

We recommend that motility data are plotted like we have

done repeatedly above. Even if one has no intention of

modeling the data, these plots are useful. As we have seen,

they may expose qualitative features in the data that can be

associated with the motile organism, here, cell type.

They may also point to quantitative phenomenological

features in the data that may be extracted and used, both to

characterize the data quantitatively, and to bring out the

qualitative features that are invariant, we saw, in a data

collapse. This is much sounder than blindly fitting Eq. 1 to

the mean-squared displacement.

Finally, plotting as we did revealed the models that do

capture the nature of the data. The manner in which these

models were found is readily applied to other cells and

other motile organisms. As illustrated here, it may capture

qualitative aspects of motility specific to a given organism.

It may also capture quantitative differences in a given

organism’s motility in different environments. More gener-

ally, the cell-specific nature of models found with this

approach may help to distinguish intrinsic differences in cell

behavior from effects caused by surroundings.
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Biological origins of motility patterns are not revealed by

our top-down approach. But because our approach does

capture motility patterns, its models are natural targets for

bottom-up explanations in terms of biological processes in

the cell (30,31). These models also invite reflection over

possible origins and purposes of the features they describe.

For example the two different timescales of the velocity

autocorrelation function beg an explanation. Does the shorter

of the two timescales, e.g., describe a short-lived component

in the cell’s motion associated with actions of individual

pseudopodia? Or the relative motion of the nucleus within

the cell? Or is there a third explanation?

Also, the HaCaTmodel’s random changes in velocity occur

with almost the same amplitude in all directions. This matches

the facts that keratinocytes move to find—in any direction—

other, similar cells with which they connect to form sheets. In

contrast, the NHDF model has stronger accelerations at low

speeds and stronger decelerations at high speeds than the

HaCaTmodel has. Thus, speeds near the mean speed are more

favored in the NHDF model. Motion is also more persistent in

the NHDF model, because random changes of direction occur

with much lower amplitude than random changes of speed.

This may relate to the fact that fibroblasts in tissue synthesize

and arrange collagen fibers into oriented bundles. This activity

requires the cells to move with orientational persistence, and

may be optimized at a specific speed.

APPENDIX A: SOME MATHEMATICAL DETAILS

Deriving a motility model from the
experimental data

Figs. 4 D and 5 D show the correlation functions for fluctuations in

experimental accelerations a~j about their speed-dependent averages in Figs.

4 B and 5 B. One sees that all correlations are zero, except a few that are

fairly negligible, at least in a first attempt to model the data. We consequently

model these fluctuations with an uncorrelated noise ~hhðtÞ [ dW~ ðtÞ=dt;
where the components of W~ ðtÞ are uncorrelated Wiener processes (32), so

Æ~hhðtÞæ ¼ 0
/

; ÆhjðtÞhkðt9Þæ ¼ dj;k dðt � t9Þ; (15)

for all times t and t9, with dj,k and d(t � t9) Kronecker’s and Dirac’s

d-functions, respectively.

Equation 5 is formally solved by

v~¼ g � ðsðvÞ~hhÞ; (16)

where the propagator g satisfies

dg

dt
¼ �K � g1 d: (17)

Here d(t) is Dirac’s d-function, and the retarded solution must be chosen to

ensure causality, i.e., g(t) ¼ 0 for t , 0 so that

v~ðtÞ ¼
Z t

�N

dt9 gðt � t9Þsðvðt9ÞÞ~hhðt9Þ: (18)

The future must not affect the present, so v~ðtÞ depends only on the noise

sðvðt9ÞÞ~hhðt9Þ at times t9, t.

After Fourier transformation, Eq. 17 gives

g̃ðvÞ ¼ 1

K̃ðvÞ � iv
; (19)

where

g̃ðvÞ ¼
Z N

�N

dt e
ivt
gðtÞ ¼

Z N

0

dt e
ivt
gðtÞ; (20)

and a similar expression for K. By Cauchy’s theorem, causality of g(t) and

K(t) is synonymous with g̃ðvÞ and K̃ðvÞ being analytical in the upper

complex v-half-plane where Im v . 0.

K is found by determining g̃ðvÞ from the Fourier transformed version of

Eq. 4,

f̃ðvÞ ¼ 2f1=P1

P�2

1 1v
2 1

2f2=P2

P�2

2 1v
2; (21)

and Wiener-Khintchine theorem, which states what we find if we insert Eq.

16 in the definition of f(t):

f̃ðvÞ ¼ nÆs2ðvÞæg̃ðvÞg̃�ðvÞ: (22)

Equation 19 shows that

g̃ðvÞ; 1

�iv
forv/N (23)

because we expect and demand that K̃ðvÞ is bounded for v/N: This we

do because K̃ðvÞ } vk asymptotically will make the kth time derivative of

v~ðtÞ appear on the right-hand side of Eq. 5, whereas K should be an

integral kernel, at most as singular as a Dirac d-function. Inserting Eq. 23 in

Eq. 22 and comparing with Eq. 21, one finds the only information about

s(v) contained in f(t):

nÆs2ðvÞæ ¼ 2ðf1=P1 1f2=P2Þ; (24)

which is the theory’s ‘‘fluctuation-dissipation theorem’’. See also Eq. 36

below.

Fluctuation-dissipation theorems occur in statistical mechanical models

quite similar in form to the one derived here. Quotation marks are

nevertheless necessary when using that name here, because of differences of

content: Eq. 6 is not Newton’s second law, its right-hand side does not

describe forces, and there is no kinetic energy to dissipate. The mathematics

is the same, however, except there is no Boltzmann equilibrium statistical

mechanics with a temperature that must be matched in equilibrium, so it is

somewhat natural to use the name in quotation marks.

Equation 21 shows that f̃ is a rational function of v, and the only rational

function g̃ that reproduces f̃’s singularities and asymptotic behavior at

v/N while being analytical for Im v . 0, is

g̃ðvÞ ¼ g1

P
�1

1 � iv
1

g2

P
�1

2 � iv
; (25)

where g1 and g2 are constants satisfying g1 1 g2 ¼ 1 because of Eq. 23.

Inserting Eq. 25 in Eq. 22 and comparing with Eq. 21 gives

g1 ¼ P2 � P0

P2 � P1

; g2 ¼ P0 � P1

P2 � P1

; (26)

Cell Motility as Persistent Random Motion 927

Biophysical Journal 89(2) 912–931



where we have introduced the notation

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1P1 1f2P2

f1=P1 1f2=P2

s
: (27)

With g̃ thus known, we solve Eq. 19 for K̃; finding

K̃ðvÞ ¼ iv1
1

g̃ðvÞ ¼ b� a
2

g � iv
; (28)

where we have introduced the notation

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP2 � P0ÞðP0 � P1Þ

p
P1P2

b ¼ P1 1P2 � P0

P1P2

g ¼ P0

P1P2

: (29)

Fourier transforming this result, we have

KðtÞ ¼ bdðtÞ � a
2
uðtÞe�gt

; (30)

which, inserted in Eq. 5 gives Eq. 6.

Obviously, a, b, and g are independent functions of P1, P2, and, through

P0, of f1/f2. They satisfy the inequality bg . a2. This ensures that the

deterministic part of Eq. 6 on the average diminishes velocities. This is

necessary in order for velocities to remain finite under the influence of the

noise term. When this inequality is satisfied, one can invert the relationship,

and find P1, P2, and f1/f2 as functions of a, b, and g. Thus, a, b, g, s0, and

s1 can be chosen as a more natural set of independent parameters for the

motility model.

Equivalent theory

A small trick simplifies numerical integration of Eq. 6 as well as some

analytical considerations. Rather than doing the convolution integral in Eq. 6

at each time step of its integration, we introduce the auxiliary velocity

V~ðtÞ ¼ a

Z t

�N

dt9 e�gðt�t9Þ
v~ðt9Þ; (31)

and solve a mathematically equivalent problem of two coupled, but ordinary,

differential equations,

dv~

dt
ðtÞ ¼ �bv~ðtÞ1aV~ðtÞ1sðvðtÞÞ~hhðtÞ

dV~

dt
ðtÞ ¼ av~ðtÞ � gV~ðtÞ: (32)

Analytical solution of HaCaT model

The speed-dependent noise amplitude s(v) makes the HaCaT model

nonlinear. Some of its properties can nevertheless be determined analytically.

Its velocity autocorrelation function, f(t) in Eq. 4, is one example. Because

the theory was constructed over f(t)’s known form, Eq. 4, this result is not

surprising. First one finds the propagator as function of a, b, g,

gðtÞ ¼ uðtÞðg1e
�t=P1 1 g2e

�t=P2Þ; (33)

where

1

P0

¼ b� a
2
=g

1

P1

¼ 1

2
ðb1 g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� gÞ2 1 4a

2

q
Þ

1

P2

¼ 1

2
ðb1 g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� gÞ2 1 4a

2

q
Þ

g1 ¼ 1

2
11

b� gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� gÞ2 1 4a

2

q
0
B@

1
CA

g2 ¼ 1

2
1� b� gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� gÞ2 1 4a
2

q
0
B@

1
CA: (34)

Then one has f1 and f2 as function of a, b, g through

fj ¼ nÆsðvÞ2æ g
2

j tj=21 g1g2P1P2=ðP1 1P2Þ
� �

; (35)

for j ¼ 1, 2. Here, in general

nÆsðvÞ2æ ¼ 2beffÆv~
2æ; (36)

where we have introduced the notation

beff ¼
ðb1 gÞðbg � a

2Þ
bg � a

2 1 g
2 ; (37)

and thereby obtained a more recognizable form for the theory’s ‘‘fluctuation-

dissipation theorem’’. Equation 36 follows from Eq. 24 combined with

fð0Þ ¼ Æv~2æ and the definitions of a, b, and g.

Both sides of Eq. 36 depend on our choice for s(v), however, as well as

on a, b, g. With our choice, Eq. 8,

ÆsðvÞ2æ ¼ s
2

0 1 2s0s1Ævæ1s
2

1Æv
2æ; (38)

where

Ævæ ¼ 2Mð3; a1 2; aÞ
ða1 1Þða� 1Þ vs

Æv2æ ¼ 6Mð4; a1 2; aÞ
ða1 1Þða� 1Þða� 2Þ v

2

s; (39)

where M is Kummer’s function. These two moments are special cases of

Ævkæ ¼ a Bðk1 2; a� kÞMðk1 2; a1 2; aÞvks; (40)

for k any real number satisfying�2, k, a, which follows from Eq. 9. Here

B is Euler’s integral of the first kind.

Isotropy and linearity of Eq. 32 ensures

ÆV~ðtÞæv~ðtÞ ¼ jv~ðtÞ; (41)

where j is a constant of proportionality and the subscripted brackets denote

‘‘expectation value for given value of subscript’’, here v~ðtÞ: By taking the

vector product with v~ðtÞ on both sides of this equation, and then averaging

over v~ðtÞ; one obtains Æv~ � V~æ ¼ jÆv~2æ; fromwhich follows that j¼ ag/(bg�
a21g2), henceEq. 7. This and other useful relations are obtainedby using the

fact that Æv~ðtÞ2æ; Æv~ðtÞ � V~ðtÞæ; and ÆV~ðtÞ2æ are independent of time. Taking

their time derivatives and using Eq. 32, one obtains a closed, linear set of

equations for these second moments with Æs2(v)æ as inhomogeneous term.

Equation 41 also has as consequence that the Fokker-Planck equation

(33) for pðv~;V~; tÞ; the probability distribution at time t on the space of

velocities ðv~;V~Þ; can be integrated over all velocities V~ to obtain a closed
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equation for pðv~; tÞ[ R
dnV pðv~;V~; tÞ: Closure depends decisively on the fact

that the first moment
R
dn V pðv~;V~; tÞV~= R dn V pðv~;V~; tÞ ¼ ÆV~ðtÞæv~ðtÞ is

proportional to v~: The resulting equation reads

@pðv~; tÞ=@t ¼ �@j~ðv~; tÞ=@v~; (42)

where

j~ðv~; tÞ ¼ �beffv~pðv~; tÞ � @
1

2
sðvÞ2 pðv~; tÞ

� �
=@v~: (43)

Its stationary solution is rotation invariant, pðv~Þ ¼ pðvÞ; so the

corresponding current j~ðv~Þ is radial, hence must vanish because of the

reflecting boundary condition at v ¼ 0. Thus,

0 ¼ �beff v pðvÞ � d
1

2
sðvÞ2 pðvÞ

� �
=dv; (44)

which is solved by

pðvÞ ¼ beff

ps
2ðvÞ exp �

Z v

0

dv9
2beff v9

s
2ðv9Þ

� �
; (45)

where the normalization chosen corresponds to our case of interest, n ¼ 2,Z N

0

dv 2p v pðvÞ ¼ 1: (46)

Insertion of s(v)¼ s01 s1v yields pHaCaTðv~Þ in Eq. 9, whereas only s(v)
constant, independent of v, yields a Gaussian distribution of velocities.

Note that Eq. 44 can be rearranged as

sðvÞ2=beff ¼ pðvÞ�1

Z N

v
2

dðv92Þpðv9ÞÞ: (47)

Here, the right-hand side is known experimentally from the histogram in Fig.

4 D. This equation shows how far the red data (‘‘parallel mean’’) take us

towards finding the appropriate model. The simple proportionality between

speed and mean acceleration that these data demonstrate, leads to the

assumption of a linear equation of the form Eq. 5. The latter immediately

gives the relationship in Eq. 7, which both confirms that the form Eq. 5 is

appropriate and tells us how to determine beff experimentally. That done,

s(v) can then be determined experimentally from the histogram in Fig. 4 D.

The noise term assumed in Eq. 5 can be as general in form as allowed by

symmetries, i.e., it can be of the form used in the NHDFmodel. In that case it

is sk(v) that is determined in Eq. 47, whereas s?(v) still must be chosen from

a plot like Fig. 5 C.

APPENDIX B: SOME TECHNICAL DETAILS

The importance of being discrete

The effect of rounding experimental cell coordinates to the nearest pixel

coordinates was accounted for by doing the same to the models’ cell

coordinates: cell coordinates were modeled with real-valued numbers that

evolved continuously in real-valued time, when trajectories were simulated.

But simulated trajectories were time-lapse sampled exactly as in experi-

ments. The sampled coordinate values were rounded to the nearest-integer

multiple of the pixel width used in the experiment with which we wanted to

compare.

FIGURE 10 Relative importance of finite pixel width in HaCaT theory,

demonstrated by comparing various functions measured with pixel width

0.85 mm (gray curves) with the same functions measured with vanishing

pixel width (black curves) in the exact same HaCaT theory. (A) Same

quantities as in Fig. 4 B. The values shown for the RMSD of the scatter

orthogonal to the velocity were shifted down to prevent collapse with RMSD

of scatter orthogonal to velocity. (B panels) Same quantities as in Fig. 4 C.

(C) Same quantity f(t) as in Fig. 4 E. (D) Same quantity p(v) as in Fig. 4 F.
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The relative importance of round-off errors varies, depending on which

quantity one considers. We determined this importance for all quantities

considered by recomputing all results for the fitted theories, using coor-

dinates that had not been rounded off. Both types of results were plotted on

top of each other for easy comparison; see Figs. 10 and 11.

Fig. 10 demonstrates the relative importance of round-off errors for the

HaCaT data. Results for the HaCaT theory ‘‘observed’’ with finite pixel

width are replotted on top of the same results for the very same theory,

observed with vanishing pixel width. Finite pixel width is seen to matter

most at low speeds, where round-off by a fixed amount causes the largest

relative change. It does not affect the velocity autocorrelation function

discernibly. It affects the average acceleration as function of speed, as well

FIGURE 11 Relative importance of finite pixel width in NHDF data (gray

curves), demonstrated by comparison with exact same NHDF theory with

vanishing pixel width (black curves). (A) Same quantities as in Fig. 5 B. No

curves were shifted here. They are well separated by nature. (B panels) Same

quantities as in Fig. 5 C. (C) Same quantity f(t) as in Fig. 5 E. (D) Same

quantity p(v) as in Fig. 5 F.

FIGURE 12 Expectation value of v~j11 for given v~j; projected onto the

latter, and measured in units of the latter’s length, i.e., Æv~j11æv~j � v~j=v~
2
j as

function of jv~jj: Here v~j and v~j11 are consecutive velocities computed from

positions measured with 15-min time lapses; see Appendix A. In the OU

model, the quantity plotted here is constant, independent of speed. (A) Data

points are experimental values from HaCaT cell trajectories. Their

consistency with a constant value suggests a linear velocity dependence of

the noise-averaged acceleration in a HaCaT model. Thick curve surrounded

by two thin curves is the theoretical result for same quantity, 6 1 SD,

computed from HaCaT model in Eq. 6 fitted to data shown in Fig. 4, B, E,
and F, and here. It’s small, but nonvanishing dependence on speed, is due to

a combination of time-lapse sampling and speed dependence of the model’s

noise term. (B) Data points are experimental values from NHDF cell

trajectories. Their distinct speed dependence suggests a nonlinear velocity

dependence of the acceleration in an NHDF model. Thick curve surrounded

by two thin curves is the theoretical result for same quantity, 6 1 SD,

computed from the NHDF model fitted to data shown in Fig. 5, B, E, and F,

and here.
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as the two RMSDs of the acceleration’s components, as functions of speed.

The pattern seen in p(v) in panel D is the same as the pattern of vertical

stripes seen in Fig. 4 A.

Fig. 11 demonstrates the relative importance of finite pixel width in the

NHDF data. Compare with Fig. 10. We see the same dependence in the

importance here on the function considered and at which speed. But we

note that the mean acceleration of the theory observed unhampered by finite

pixel width actually is positive for speeds below 12 mm/h: NHDF cells

accelerate in a deterministic manner if moving slower than that, if we are to

believe this result. An indication that we are, is that we found the same

acceleration when the same trajectories were analyzed with 30-min time

lapse (not shown). By doing that, we reduced pixel round-off effects to

a negligible level.

A better window on b

The speed dependence of the mean acceleration Ædv~=dtæv~ can be exhibited

better than done in Figs. 4 B and 5 B. The acceleration plotted there is

ðv~j11 � v~jÞ=Dt as function of vj ¼ jv~jj: Thus, the component parallel to v~j is

ðv~j11 � v~j= vj � vjÞ=Dt; and its average value for given value of vj is

ðÆv~j11 � v~jævj=vj � vjÞ=Dt: Because the second term in this expression always

is proportional to vj, only the first term is of real interest. Its speed

dependence is brought out clearly in a plot of Æv~j11 � v~jævj=v
2
j against vj. If this

quantity is constant, as the case is for the HaCaT data shown in Fig. 12 A, we

limit our search for a model to models with acceleration proportional to the

velocity, a great simplification. If it is not, as the case is for the NHDF data

shown in Fig. 12 B, we cannot make this simplifying assumption. Instead,

we must assume a more complex speed dependence of the acceleration in an

NHDF model. The less-than-perfect agreement between theory and data in

Fig. 12 B shows that there is room for improvement in the NHDF model we

landed on when we assumed that b(v) is not a constant, but a low-degree

polynomial in v, and demonstrated that a first-degree polynomial describes

data as well as a second-degree polynomial does.
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Thordal-Christensen, and S. Tolić-Nørrelykke for comments on the

manuscript at various stages. H.F. thanks S. F. Edwards for a pertinent

remark and Isaac Newton Institute for Mathematical Sciences for

hospitality. D.S. thanks RISØ for hospitality.

D.S. thanks the Danish Research Agency’s Graduate School of Biophysics

and Tamás Vicsek for support. S.M. thanks the Graduate School of

Biophysics for support. N.B.L. thanks the Danish Technical Research

Council for support.

REFERENCES

1. Langer, R. S., and J. P. Vacanti. 1999. Tissue engineering: the
challenges ahead. Sci. Am. 280:86–89.

2. Hench, L. L., and J. M. Polak. 2002. Third-generation biomedical
materials. Science. 295:1014–1017.

3. Davis, M. E. 2002. Ordered porous materials for emerging applica-
tions. Nature. 417:813–821.

4. Magnani, A., A. Priamo, D. Pasqui, and R. Barbucci. 2003. Cell
behaviour on chemically microstructured surfaces. Mater. Sci. Eng. C.
23:315–328.

5. Sarikaya, M., C. Tamerler, A. K. Jen, K. Schulten, and F. Baneyx.
2003. Molecular biomimetics: nanotechnology through biology. Nat.
Mater. 2:577–585.

6. Verrier, S., J. J. Blaker, V. Maquet, L. L. Hench, and A. R. Boccaccini.
2004. PDLLA/Bioglass composites for soft-tissue and hard-tissue
engineering: an in vitro cell biology assessment. Biomaterials. 25:
3013–3021.

7. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H.
Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. 2003.

Cell migration: integrating signals from front to back. Science. 302:
1704–1709.

8. Gaudet, C., W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M.
Dembo, and J. Y. Wong. 2003. Influence of type I collagen surface
density on fibroblast spreading, motility, and contractility. Biophys. J.
85:3329–3335.

9. Ponti, A., M. Machacek, S. L. Gupton, C. M. Waterman-Storer, and G.
Danuser. 2004. Two distinct actin networks drive the protrusion of
migrating cells. Science. 305:1782–1786.

10. Lauffenburger, D. A., and A. F. Horwitz. 1996. Cell migration: a
physically integrated molecular process. Cell. 84:359–369.
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