
Tubulin Superfamily: Giving Birth to
Triplets

Wallace F. Marshall and Joel L. Rosenbaum

Two new studies show that e tubulin is required for
centriole/basal body duplication in both Chlamy-
domonas and Paramecium, adding to the list of new
tubulin family members specifically involved in
forming the centriole triplet microtubules. The func-
tion of these triplets, and the precise role of e tubulin
in triplet formation, remains unclear.

Centrioles are cylinders containing nine triplet micro-
tubules. During mitosis, centrioles recruit microtubule-
nucleating material to form microtubule organizing
centers (MTOCs) called centrosomes, which eventually
become the spindle poles. During interphase, centrioles
can give rise to cilia and flagella, at which point the cen-
trioles are referred to as basal bodies. Centrioles are
absolutely essential for the assembly of cilia and fla-
gella, but they are dispensable for spindle formation in
certain cell types, for example in higher plants. It thus
seems likely that centrioles first evolved to allow for-
mation of cilia/flagella (we use the terms interchange-
ably here), with obvious adaptive benefits, and that
subsequently they were co-opted to perform additional
functions during cell division. As flagella are made of a
nine-fold array of microtubule doublets, templated by
the triplets of the basal body, this almost certainly
explains why centrioles are microtubule-based struc-
tures. But how are the microtubule triplets formed?

The microtubule triplets are made of αα and ββ tubulin,
which in centrioles and flagellar axonemes are subject
to extensive post-translational modification, particu-
larly acetylation and polyglutamylation. Antibodies
specific for polyglutamylated tubulin cause centrioles
to disappear in vivo, suggesting a possible role for this
modification in maintaining centriole structure [1]. Cen-
triole microtubules are probably nucleated by γγ tubulin,
which is found within the centriole at the end contain-
ing the ‘minus’ ends of the microtubules [2], and is
required for centriole duplication [3,4]. More recent
work has revealed additional tubulin family members
(reviewed in [5]), namely δδ, ηη and ζζ tubulin, all of which
localize to centrioles. As one example, Chlamy-
domonas mutants lacking δδ tubulin form centrioles that
contain doublet, rather than triplet, microtubules [6].

A pair of recent papers [7,8] have now reported that
another new tubulin, εε tubulin, is required for centriole
duplication. εε tubulin was first identified molecularly by
genome sequence analysis as a tubulin family member
localizing to centrioles [9], but in fact the first εε tubulin
mutant was obtained decades ago in a Chlamy-
domonas screen for cells that cannot mate because

they lack flagella. The flagella-less phenotype of these
‘bld2’ mutants was shown to be caused by their having
defective centrioles which do not contain microtubule
triplets, or even doublets, but which are composed
rather of a ring of nine singlet microtubules [10]. A
more severe bld2 allele is lethal, possibly because cen-
triole duplication is completely blocked [11]. It has now
been shown that BLD2 encodes εε tubulin [7]. High-res-
olution immunofluorescence indicated that εε tubulin
localizes in a ring around the centrioles. Similar results
were recently obtained using reverse genetics in Para-
mecium: when εε tubulin production was repressed,
centriole duplication was blocked [8]. Immuno-electron
microscopy in Paramecium showed that εε tubulin
localizes within and around the centriole barrel at both
the proximal and distal ends.

The centriole duplication defect in εε tubulin-defi-
cient cells suggests a role for triplet microtubules in
centriole duplication. New centriole assembly does
not begin with microtubule polymerization, however,
but rather with assembly of an amorphous disc-like
structure containing no discernable microtubule
structures [12]. This is most dramatically seen during
differentiation of ciliated epithelial cells, in which a
large spherical structure forms first and later gives rise
to multiple microtubule-containing centrioles [13]. At
least one component of the amorphous precursor is
centrin, a protein that localizes to the site of future
centriole assembly long before the microtubule
structures begin to form [14,15]. Centrin plays an
important role in centriole duplication [15–17] consis-
tent with this early localization. Only after this precur-
sor is formed, do microtubules begin to appear, first
as a ring of nine short singlet microtubules, which are
subsequently converted into doublets and then into
triplets [12]. Presumably γγ tubulin is recruited to the
centrin-based precursor to nucleate the initial singlet
microtubules, after which εε and δδ tubulins are required
sequentially to form doublets and then triplets.

But are these tubulins really required to build
centriole microtubule triplets? A Chlamydomonas bld2
null mutant that completely lacks εε tubulin could be
rescued by an extragenic suppressor mutation rgn1,
forming centrioles that contain a mixture of singlet,
doublet and triplet microtubules [11], implying that the
need for εε tubulin can be circumvented. Also, the basal
bodies of Drosophila sperm contain triplet micro-
tubules even though Drosophila does not contain δδ or
εε tubulin [18]. The function of εε tubulin in making
triplets thus remains unclear.

Nor is it clear what function the microtubule triplets
play in centriole duplication. Chlamydomonas mutants
such as bld2-1 (reduced εε tubulin) or uni3 (missing 
δδ tubulin) make centrioles containing singlets or
doublets instead of triplets, and yet these defective
centrioles duplicate at the wild-type rate. Centrioles in
nematodes and Drosophila embryos contain only
singlet microtubules [18,19], but nevertheless duplicate 
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efficiently. Triplets are, however, important for making
flagella. The singlet centrioles of worms and flies do
not template flagella, and when flies need to make fla-
gella during spermiogenesis, the centrioles are con-
verted into a form that contains triplets. Similarly, the
bld2-1 and uni3 Chlamydomonas mutants, which have
centrioles containing singlets or doublets, also show
defects in flagellar assembly [6,10]. Evidently, centriole
microtubule triplets are important for making flagella
but are not essential for centriole duplication.

However, εε tubulin deficiency can in fact cause
centriole duplication defects — as evidenced by the
bld2 null allele and by the Paramecium experiments —
depending on the cell type and the extent of the εε
tubulin deficiency, so these tubulins and the triplets
they produce must play some secondary role in cen-
triole assembly, perhaps by stabilizing the centriole.
This could account for differences in effect depending
on the severity of the mutation: a hypomorphic εε
tubulin allele may stabilize centriole microtubules just
enough to support centriole assembly, whereas
complete loss of function may destabilize the nascent
centriole microtubules to the point that centrioles
cannot form.

Centriole microtubule triplets, like flagellar axoneme
doublets, are extremely stable in vitro compared to
singlet microtubules and do not fall apart sponta-
neously, for example after cold or colchicine treat-
ment. In vivo pulse-label experiments indicated cen-
triole microtubules turn over slowly, exchanging at
most 10% of their tubulin per cell-cycle [20]. Injection
of antibodies to glutamylated tubulin [1], as well as
removal of γγ tubulin [4], cause centrioles to disappear
gradually over a period of time equivalent to many cell
cycles. Triplet microtubule turnover is thus orders of
magnitude slower than turnover in ordinary cyto-
plasmic microtubules or even in axonemes, implying
triplets are significantly more stable than singlet or
doublet microtubules.

The increased stability of triplets may explain an
interesting correlation between centriole structure and
length. Centrioles in the bld2-1 εε tubulin mutation that
has singlets instead of triplets, are much shorter than
normal centrioles. Likewise, the singlet containing
centrioles of Drosophila embryos and nematodes are
much shorter than those seen in other animals whose
centrioles contain triplets [18]. Drosophila sperm basal
bodies, which have microtubule triplets, are much
longer than the singlet-based embryonic centrioles,
again suggesting triplets may be stabler than singlets
or doublets.

The identification of centriole-specific tubulins is
clearly just the starting point for understanding their
function. At the same time, we should avoid concen-
trating exclusively on tubulins when the majority of
centriole proteins remain to be discovered.
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