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Abstract

Directed edge path graphs are the intersection graphs of directed paths in a directed tree,
viewed as sets of edges. They were studied by Monma and Wei (J. Comb. Theory B 41 (1986)
141–181) who also gave a polynomial time recognition algorithm. In this work, we show that
the clique graphs of these graphs are exactly the two sections of the same kind of path families,
and give a polynomial time recognition algorithm for them.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1986, Monma and Wei published a thorough study of several classes of intersec-
tion graphs of path families of trees [7]. A total of six classes were studied, according
to whether the underlying tree was undirected, directed, or directed and rooted, and
also to whether the paths were seen as vertex- or edge-sets for the purposes of forming
the intersection graph. Over the last decade, many papers appeared characterizing and
solving the recognition problem for clique graphs of all of these path intersection graph
classes except UE and DE (see Table 1).

The purpose of this work is to characterize and provide a polynomial time recognition
algorithm for the clique graphs of the DE graphs, which are intersection graphs of
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Table 1
Results on the recognition of clique graphs of path graphs

Graph class Clique class Recognition solved by

UV DuallyChordal SwarcFter and Bornstein [10]
DV DuallyDV Prisner and SwarcFter [8]
RDV DuallyRDV Prisner and SwarcFter [8]
UE
DE DuallyDE This paper
RDE= RDV DuallyRDV Prisner and SwarcFter [8]

directed tree paths, viewed as sets of edges. We simplify the techniques used by
Prisner and SzwarcFter [8], and show that they can be used for other classes of graphs
as well. Unfortunately, the techniques do not work for UE because those graphs are
not clique-Helly.

The rest of the paper is organized as follows. Section 2 contains the basic deFnitions
and provides the basis to apply these tools to other classes of graphs. Section 3 deFnes
the path intersection graphs we will be using. Important properties needed in Section 4
are proved here as well. Finally, Section 4 contains the main results: characterization
and polynomial time recognition algorithm for clique graphs of DE graphs.

2. De�nitions

In this note, all graphs are simple, i.e., without loops or multiple edges. A graph is a
pair (V; E) where V and E are the vertex set and edge set of G, respectively. An edge
with u and v as extremes is noted by uv or vu. Two graphs are isomorphic when they
diIer only by the names of their vertices. We will not distinguish isomorphic graphs
and will generally write G = H when G and H are isomorphic. A set C of vertices
of a graph (V; E) is complete when any two vertices of C are adjacent. A maximal
complete subset of V is called a clique. A class of graphs is a subset of graphs closed
under isomorphism. We denote by Graph the class of all graphs.

A family is a pair (I; F), where I is a Fnite, nonempty set and F is a mapping
from I to the class of all sets such that F(i) is a Fnite, nonempty set for all i∈ I . We
denote F(i) by Fi and a family (I; F) by (Fi)i∈I , or simply by F . We call elements
the elements of

⋃
i∈I Fi and members the sets Fi.

Two families (Fi)i∈I and (Aj)j∈J are isomorphic when there are two bijections a :
I �→ J and b :

⋃
i∈I Fi �→

⋃
j∈J Aj such that b(Fi)=Aa(i) for all i∈ I . We will write F=A

when F and A are isomorphic. Families as deFned here are analogous to hypergraphs
[1,2,4]. A class of families is a subset of families closed under isomorphism. We denote
by Family the class of all families. We use boldface for graph classes and slanted for
family classes.

We deFne the intersection operator L : Family �→ Graph as follows. Given a family
F = (Fi)i∈I , deFne L(F) as the graph (V; E), where V = I and E = {ij | i �= j and
Fi ∩ Fj �= ∅}.
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We deFne the family-of-cliques operator C : Graph �→ Family as follows. Given a
graph G = (V; E), deFne C(G) as the family (Fi)i∈I , where I is the set of all cliques
of G and Fi = i for all i∈ I .

The composite operator K=LC is the clique operator, and K(G) is the clique graph
of G.

We deFne the dual operator D : Family �→ Family as follows. Given a family
F=(Fi)i∈I , deFne D(F) as the family (Aj)j∈J , where J=

⋃
i∈I Fi and Aj={i∈ I | j∈Fi}.

We deFne the two-section operator S : Family �→ Graph as follows. Given a
family F = (Fi)i∈I , deFne S(F) as the graph (V; E) where V =

⋃
i∈I Fi and E =

{uv | there is i∈ I such that u; v∈Fi}.
A family (Fi)i∈I is called intersecting when Fi∩Fj �= ∅ for all pairs i; j∈ I . A family

(Fi)i∈I is Helly or has the Helly property when all its intersecting subfamilies of the
form (Fi)i∈I ′ , for ∅ �= I ′ ⊆ I , have a non-empty intersection. We write Helly for the
class of all Helly families.

A graph G is clique-Helly when C(G) is a Helly family. We denote by Helly the
class of all clique-Helly graphs.

A family F is conformal when its dual is a Helly family. We call Conformal the
class of all conformal families. It is known that a family (Fi)i∈I is conformal if and
only if for each triple i; j; k ∈ I there is an index l∈ I with

(Fi ∩ Fj) ∪ (Fj ∩ Fk) ∪ (Fk ∩ Fi) ⊆ Fl: (1)

Let F = (Fi)i∈I be a family. We say that u∈⋃
i∈I Fi is separated by the family F

when
⋂

i∈I;u∈Fi
Fi = {u}. In this case we also say that F separates u. A family is

separating when it separates every element in
⋃

i∈I Fi. A family (Fi)i∈I is reduced
when i �= j ⇒ Fi * Fj for all pairs i; j∈ I . A family is reduced if and only if its dual
is separating [1,2,4]. Call Separating (Reduced) the class of all separating (reduced)
families.

It is straightforward to verify that SC = I , the identity (we use the same symbol I
for the identity in graphs and families). We also have DD = I , LD = S, and SD = L.
In addition, CS = I for families that are both conformal and reduced [1,2,4].

We deFne also another operator, called U (for “unit sets”), that acts as follows.
Given a family F=(Fi)i∈I , add members of the form {u} for each u∈⋃

i∈I Fi. This op-
erator separates a family while maintaining its image under S, that is, U (F)∈ Separa−
ting and SU (F) = S(F) for all families F .

For a graph G=(V; E), the size of G is |G|= |V |+ |E|. A family F=(Fi)i∈I has size
|F |=|I |+|⋃i∈I Fi|+

∑
i∈I |Fi|. With these deFnitions, the operators L; D; S, and U are

all polynomially computable. The operator C can be computed with time complexity
O(nkc) by a result of Tsukiyama et al. [11], where n; k, and c are |V |; ( n

2

)−|E|, and
the number of cliques of G = (V; E), respectively.

The operators were deFned for graphs and families, but they can be extended to
classes in the standard way. For instance,

L(Class) = {L(F) |F ∈Class}
and so on. This can be done because all operators are invariant under isomorphisms.
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3. The classes DE and duallyDE

Let DTP-E be the family class deFned as follows. A family F belongs to this class
when there is a directed tree T such that each Fi is the set of edges of a directed path of
T . In this case the tree T is an underlying tree of F . It is known that DTP-E ⊆ Helly
[7, Proof of Theorem 1]. Presently, we will show that DTP-E ⊆ Conformal as well
(Theorem 1). The graph class DE is deFned as L(DTP-E), and DuallyDE is deFned
as S(DTP-E).

Class DTP-V is deFned analogously, with Fi being sets of vertices of directed paths
in a directed tree. We deFne the graph classes DV = L(DTP-V ), and DuallyDV =
S(DTP-V ).

The behavior of K in some classes of intersection graphs appears in a recent paper
[5]. In particular, it is shown that K(DV) =DuallyDV and K(DuallyDV) =DV.

Theorem 1. DTP-E ⊆ Conformal.

Proof. We will use the characterization of conformal families mentioned in Section 2;
Eq. (1). Let F be a family of DTP-E; T an underlying tree of F and Fi; Fj; Fk members
of F . If either Fj ∩ Fk ⊆ Fi; or Fi ∩ Fj ⊆ Fk; or Fi ∩ Fk ⊆ Fj; we are done. Suppose
then that there are edges x∈Fj∩Fk −Fi; y∈Fi∩Fj−Fk; and z ∈Fi∩Fk −Fj. Because
F is Helly; we know that there is an edge w∈Fi ∩ Fj ∩ Fk . But then it is impossible
to arrange the edges so that path Fi contains y; w; z and not x; path Fj contains x; w;
y and not z; and path Fk contains x; w; z and not y. In fact; it is easy to see that edge
w must be between the other mentioned edges (x; y; z) in each of the paths Fi; Fj:Fk .
Removing w from the underlying tree T ; we end up with two connected components
but each of x; y; z would have to lie in a distinct component; which is impossible.

In the following result we prove that every family of edge sets of a directed path
can be made separating or reduced without modifying its image under S or L.

Theorem 2.

L(DTP-E) = L(DTP-E ∩ Separating);
L(DTP-E) = L(DTP-E ∩ Reduced);
S(DTP-E) = S(DTP-E ∩ Separating);
S(DTP-E) = S(DTP-E ∩ Reduced):

Proof. The Frst equality L(DTP-E)= L(DTP-E ∩ Separating) is a consequence of the
Clique-Tree Theorem [7; Theorem 1]; which states: if a graph G ∈DE; then there is
a tree where each vertex corresponds to a clique of G such that the family DC(G)
belongs to DTP-E with this tree as an underlying tree. Since DC(G) is a separating
family the result follows.

For the second statement suppose that F is a family that belongs to DTP-E, T is an
underlying tree of F and Fi, Fj are two members of F such that Fi ⊆ Fj. Suppose that
the set Fi corresponds to a path ending in a vertex u in T . Construct a tree T ′ adding
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clique-Helly DE

DV

Fig. 1. Class containment relations between Helly, DE, and DV graphs.

a new vertex v to T and an edge uv. Construct also a family F ′ which is equal to F
except that Fi is replaced by F ′

i = Fi ∪ {uv}. Notice that F ′
i is not contained in any

other Fj of F and that L(F ′) = L(F). Repeating a similar operation for any member
contained in another in F we obtain a reduced family in DTP-E with the same image
under L as F .

The last two statements are true because DTP-E is closed under U and under removal
of contained members, respectively.

Theorem 3. K(DE) =DuallyDE; and K(DuallyDE) =DE.

Proof.

K(DE) = KL(DTP-E) by deFnition
= KL(DTP-E ∩ Separating) by Theorem 2
= LCSD(DTP-E ∩ Separating) because K = LC; L= SD
= LD(DTP-E ∩ Separating) because DTP-E ⊆ Helly and

CS = I for conformal and
reduced families

= S(DTP-E ∩ Separating) because LD = S
= S(DTP-E) by Theorem 2
= DuallyDE by deFnition:

Analogously; we can prove the other equality; as follows: K(DuallyDE)=LCS(DTP-E)
= LCS(DTP-E ∩ Reduced) = L(DTP-E) =DE.

Class DE is properly sandwiched between DV and Helly, as shown in Fig. 1.
Since the K operator alternates between: DV and DuallyDV; DE and DuallyDE;

but leaves Helly Fxed [6], it follows that DuallyDE is properly sandwiched between
DuallyDV and Helly (Fig. 2).

On the other hand, notice that DE is diIerent from DuallyDE because K3;3 ∈
DuallyDE \ DE, and the cage K(K3;3) is in DE but not in DuallyDE. Indeed, the
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clique-Helly DuallyDE

DuallyDV

Fig. 2. Class containment relations between Helly; DuallyDE, and DuallyDV graphs.

Fig. 3. Underlying tree for K(K3;3).

cage is the intersection graph of the nine distinct two-edge directed paths of the di-
rected tree of Fig. 3, so it is in DE.

Since K2(K3;3) = K3;3, K3;3 is in the K-image of DE, then it is in DuallyDE. In
addition, K3;3 cannot be a DE graph because DE graphs with n¿ 4 vertices have at
most �3(n−4)=2� cliques [7, Theorem 5]. Observe that this proves that K(K3;3) cannot
be in DuallyDE, because K2(K3;3) = K3;3.
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4. Characterization and algorithm

Inspired by the techniques of Prisner and SzwarcFter [8], we rephrase them in terms
of operators and apply them to a diIerent class: DE. For instance, Prisner and Szwar-
cFter deFne the graph G′ obtained from G by adding a new vertex v′ and an edge vv′

for each v∈V (G); in operator notation, K(G′) is LUC(G). We feel that the operator
notation has the advantage of highlighting the important properties of the classes that
make the theorems work (properties such being separated, reduced, and so on [see
Section 2]). Applications to other graph classes readily follow [3].

Theorem 4. G ∈DuallyDE⇔ G is clique-Helly and LUC(G)∈DE.

Proof. (⇒) G is clique-Helly because all DE graphs are clique-Helly [7] and
K(Helly) =Helly [6]. If G ∈DuallyDE; we can write G= S(F); where F ∈DTP-E is
conformal and reduced (Theorems 1 and 2). Then LUC(G)=LUCS(F)=LU (F)∈DE;
since DTP-E is closed under U .

(⇐=) We will prove that K(LUC(G))=G and thus G will be a graph in DuallyDE
by Theorem 3:

K(LUC(G)) = LCSDUC(G) because K = LC; L= SD

= LDUC(G) because C(G)∈Helly then

UC(G)∈Helly ∩ Separating and CS = I

for conformal and reduced families

= SUC(G) LD = S

= SC(G) because SU = S

= G since SC = I:

Theorem 5. If G ∈DuallyDE and n=V (G) then there are at most n(n+1)=2 cliques
in G.

Proof. By Theorems 1 and 2; G can be written as S(F); where F ∈DTP-E is conformal
and reduced. Then each clique of G is a member of F . Since there are at most n(n+1)=2
paths in the underlying tree of F; the result follows.

The recognition algorithm we propose for DuallyDE consists in verifying if G is
clique-Helly, then computing LUC(G) and verifying whether LUC(G)∈DE. Theorem
4 guarantees the correctness of this procedure. Since recognizing clique-Helly graphs
and DE graphs can be done in polynomial time [7,9], and the number of cliques
of a duallyDE graph is also polynomial by Theorem 5, the entire procedure takes
polynomial time. Of course, one has to stop the algorithm and give a negative answer
in case G fails to be clique-Helly, or if more than n(n+1)=2 cliques are generated while
computing C(G). The actual complexity depends on the complexity of recognizing DE,
which, as far as we know, has not been studied in detail so far.



304 M. Gutierrez, J. Meidanis / Discrete Applied Mathematics 126 (2003) 297–304

Acknowledgements

We thank Jayme SzwarcFter for making available to us a copy of the manuscript [8]
prior to publication. We thank Vitae, FOMEC, FAPESP, and PRONEX=CNPq (Project
PRONEX 664107=1997-4)) for Fnancial support. The sponsors do not necessarily share
the concepts or opinions expressed in this work, for which the authors are solely
responsible.

References

[1] H.J. Bandelt, E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory B 51 (1991) 34–45.
[2] C. Berge, Hypergraphes, Gauthier-Villars, Paris, 1987.
[3] P. Dobson, M. Gutierrez, Grafos de comparabilidad y el operador clique. XLIL ReuniOon Anual de

Comunicaciones CientOPFcas de la UniOon MatemOatica Argentina, Argentina, 1999 (unpublished).
[4] P. Duchet, Hypergraphs, in: R. Graham, M. GrQotcshel, L. Lovasz (Eds.), Handbook of Combinatorics,

Vol. 7, Elsevier Science, Amsterdam, 1995, pp. 381–432.
[5] M. Gutierrez, Intersection graphs and clique operator, Graphs and Combinatorics 17(2) (2001) 237–244.
[6] R.C. Hamelink, A partial characterization of clique graphs, J. Combin. Theory 5 (1968) 192–197.
[7] C.L. Monma, V.K. Wei, Intersection graphs of paths in a tree, J. Combin. Theory B 41 (1986) 141–181.
[8] E. Prisner, J.L. SzwarcFter, Recognizing clique graphs of directed and rooted path graphs, Disc. Appl.

Math. 94 (1999) 321–328.
[9] J.L. SzwarcFter, Recognizing clique-helly graphs, Ars Combin. 45 (1997) 29–32.

[10] J.L. SzwarcFter, C.F. Bornstein, Clique graphs of chordal and path graphs, SIAM. J. Disc. Math. 7
(1994) 331–336.

[11] S. Tsukiyama, M. Ide, H. Arioshi, I. Shirakawa, A new algorithm for generating all the maximal
independent sets, SIAM, J. Comput. 6 (1977) 505–517.


	Recognizing clique graphs of directed edge path graphs
	Introduction
	Definitions
	The classes DE and duallyDE
	Characterization and algorithm
	Acknowledgements
	References


