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1. Introduction

Among linear topological spaces there are spaces X consisting of sequences or functions such that a natural multipli-
cation is defined on pairs (x1,x2) € X2, however, its result need not necessarily belong to X. It is an interesting question
about the size of the set of such “bad” pairs in a various sense. Such a kind of studies was initiated in [1,4]. Balcerzak and
Wachowicz proved in [1] that {(f, g) € L1[0,1]1 x L1[0,1]: f-g e L1[0, 1]} is a meager subset of L1[0, 1] x L'[0, 1]. They also
proved that

o0

n
(x,y) €co x co: Zx(i)y(i) is bounded
i=1 n=1

is a meager subset of cy x cg. These meagerness results were generalized by Jachymski in the following extension of the
classical Banach-Steinhaus theorem. Recall that a function ¢ : X — Ry is L-subadditive for some L > 1, if ¢(x+ y) <

L(p(x)+ ¢(y)) for any x, y € X.

Theorem 1. (See Jachymski [4].) Given k € N, let X1, ..., Xy be Banach spaces, X = X1 ifk=1,and X = X1 x --- x X ifk > 1.
Assume that L > 1, F, : X — R4 (n € N) are lower semicontinuous and such that all functions x; — Fn(x1,..., %) (i=1,...,k)are
L-subadditive and even. Let E = {x € X: (Fp(x));2 is bounded}. Then the following statements are equivalent:

(i) E is meager;
(i) E#X;
(iii) sup{Fp(x): ne N, |x|| <1} =o0.
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At first, we were interested in a further generalization of this theorem changing meagerness by o -porosity. It turns out
that this is not possible. To see it, consider the following set:

n . o
k!
E= [XGR: ( E M) isbounded}.
n=1

k=1

Using Theorem 1 for F,(x) = Zﬁ:l |sin(k!zr x)|/k (clearly, each F, is subadditive) we obtain that this set is meager (E # R
since it is of measure zero) and is not o -upper porous [5, p. 341]. Hence we could not generalize Jachymski’s theorem in
this manner.

Assume that (X, X, i) is a measure space. In our paper we answer the question about a size of the set (in the following
we will write LP instead of LP (X, X, u)):

{(fiooco, f)elPt x oo x LP: fro- frel™).

We do not restrict our attention only to Banach LP spaces for p € [1, co], but we consider all linear metric LP spaces for
p € (0, oc]. It appears that this set is either LP! x --- x LP» or a o -c-lower porous (for some ¢ > 0) subset of LP1 x ... x LPn,
So, it is either the whole space or a very small set. We determine this dichotomy for every type of a measure space
(X, X, ). Surprisingly it depends on the following parameters (in the sequel the symbol % means 0):

o the sign of the number 1 — ll ..... L-

e inf{i(A): wn(A) > 0} (it is important Whether it is equal or greater than zero);

e sup{u(A): w(A) < oo} (it is important whether it is finite or infinite).

The dichotomy is stated in Proposition 2 and Theorems 9, 10.
Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let ¢ € (0, 1]. We say that
M C X is c-lower porous [6], if
x, M, R
Vxe M, limin f% >

R—0*

’

N O

where
y(x,M,R) =sup{r>0: 3z€ X, B(z,r) C B(x, R)\M}.
Clearly, M is c-lower porous iff
VxeM, VBe(0,c/2), IRy >0, VRe(0,Rp), 3Fze X, B(z,BR)C B(x,R)\M.

The set is o —c-lower porous if it is a countable union of c-lower porous sets. Note that a o -c-lower porous set is meager,
and the notion of o -porosity is essentially stronger than that of meagerness.
Note that the sets investigated in this paper will be c-porous in some stronger sense, namely,

Vxe X, VBe(0,c/2), VR>0, 3zeX, B(z, fR) C B(x, R)\M.

However, we do not want to define any new notion of porosity, so in the formulations of theorems we will deal only with
c-lower porosity.

2. Algebraic product of functions from LP! x ... x LP»

Throughout the paper, (X, X, u) is a measure space. If p € (0, 1), then we consider LP as a metric linear space with the
metric

dif o= [1f - gP du.
X
Additionally we put

wm=aﬁm=/uww“
X

If p €[1, 00), then we consider LP as a normed linear space with the norm

1/p
nﬂuz(/uwmQ .
X
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Finally, if p = oo, then we consider L? as a normed linear space with the norm || f||» = supess|f|. Note that in all cases L?
is a complete space.
For every n € N and any p1,..., pn, 7 € (0, 00], we define the set (we allow n to be 1):

EPV P = {(fr, s fa) €LPY oo PR froee fre LT}

In this paper we consider LP! x --- x LPn as a space with the metric defined as the maximum of distances on all coordinates
in LP1, ... LPn,
Using the general Holder inequality [3, p. 10] we obtain that:

Proposition 2. Let p1, ..., pn, 1 € (0, oo] be such that
1 1 1
— = — 4 —,
r o pi Pn

Then EXP1++Pn) — [P1 5 ... x [Pn,
Now we will give some helpful lemmas.
Lemma3.leth>0hell, e >0.Then

(i) ifinf{u(A): Ae X, u(A) >0} =0, thereis A € X with0 < u(A) < € and fAhdu, <¢€;
(ii) if sup{u(A): Ae X, u(A) < oo} =o0, thereis A € X with1/e < u(A) < oo and fAhd,u <e.

Proof. (i) Follows immediately from the absolute continuity of the function B [, hdu (B € X) with respect to .
(ii) Let, for any n € N, A, be such that n < p(Ap) < oco. Set F, = UE:] Ag. Then (Fy) is increasing, w(F,) < oo and
1(Fp) — oo. Put F = J72 | Fq. We have

lim /hd,u:/hd,u<oo.
n—oo
Fn F

Then there is ng € N with

/hdu>/hd,u—£.

Fng F
Hence
/ hdu < e.
F\Fng

On the other hand, limp_, oo (Fn \ Fny) = 00, so there is N € N such that (Fy \ Fpy) > 1/6. Put A=Fn\ Fyy. O

Lemma 4. Let p1,...,pn, T € (0,00), (f1,..., fn) € LP1 x --- x LPn and let A be a measurable subset of X. Suppose that for some
numbers ay, ..., ay and foreachi =1, ..., n, the following holds

/Ifi—llpidﬂéai~
A

Then for any numbers c1, ..., cy € (0, 1), we have

ai Qn

/|f1"'fn|rdl/«2C§"'C;r1<M(A)—7 ———— 7)
A

(1 —cpP (1 —cp)Pn

Proof. Observe that the above assumptions imply that @(A) < oco. Let Aj = {x € A: fi(x) <¢j} for i=1,...,n. Then for
any i, we have

ai>/|fi—1|""du>f|fi—1|""du>/|1—cilp"duz(l — )P (A).
A A A

Hence
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/mmmw» / 1o falldp > f ¢l du
A

AU, A AU, A;
n
> ~--C,Z(M(A)—M<UA,->>
i=1
a an
>Cr oo A)— —— — ... — — . O
! "(“() (I —cpp (1—CMW)

Lemma 5. Let A, A1, ..., Ap be measurable with A; C A and u(A;) > (1 — %)//L(A) foranyi=1,...,n. Then

M(ﬂA)>O

Proof. Using the induction principle, it is easy to show that

k
M(ﬂAi) > (1 —-k/nu(A) foranyk=1,...,n.

i=1

In particular, for k =n, we get that u(}_; A;)) >0. O

The next theorem is a main result of the paper. It is rather technical, but it shows when Eﬁp‘ """ Pn) can be o-porous and
how good are porosity estimations in each of the considered cases. For any n € N and any p1, ..., pn, put ¢(p1,...,Pn) =
2/(1 + m) if there is at least one finite p;, where m is the number of finite p;’s, and put c(pq,...,pn) =1 if p; = oo for
everyi=1,...,n.

Theorem 6. Let n € N and let p1, ..., pn, 1 € (0, 00]. Assume that one of the following conditions holds:

(i) 5- +--+ 5> 1 and inf{u(A): u(A) >0} =0;
(ii) pl—l 4+ 4 % < % and sup{jt(A): u(A) < oo} = 0.

Then for any u > 0, the set

Eu={(fireees f) €17 oo LP0: | fy - fullr < u)

is c-lower porous, where ¢ = c(p1, ..., pn). In particular, the set Eﬁp‘ reeP)

is o —c-lower porous.
Proof. We will consider two cases.
Casel. py=---=py=o00.

Then our assumptions imply that r < co and sup{u(A): ®(A) < oo} =o0. Let (f1,..., fn) € L® x--- x L, R >0,
a e (0, %) (note that in this case c(p1,..., pn) = 1). Fix a measurable set A of finite measure such that

(A)> ——.
= =Ry
For any i =1, ...,n, we define
fi®)+ 3R, fix) = 0;
fix)— IR, fix) <0,

Clearly, for any i =1,...,n, |Ifi — filoo = R/2 and B((f1,..., fn),aR) C B((f1,..., fa), R). Now if (h1,...,hy) €
B((f1,--., fn),aR), then for any i =1, ...,n and for p-almost every x € A, we have

lhi(x)| > G —oc)R.

ﬁm={

Hence
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1 rn
f|h1"'hn|r><<i—0{)R) (A >u',
A

lhy---hnlly > u.

and

This ends the proof in Case 1.
Case 2. For some i=1,...,n, pj < oo.

Without loss of generality, we assume that p; € (0,1) fori=1,...,m, 1<pj<oofori=m+1,...,m+k and p; = o0
fori=m+k+1,...,m+k+ j, where j is such that m+k+ j=n (clearly, m, k or j can be equal to zero, but m + k # 0).
Additionally define g; = pp; for i =1, ..., k. Then the product space LP! x --- x LPr» can be written in the following way:

LPU oo X LPm s L9 oo LTk % [ % - o x L,

Let (f1...., fm.&1,..., & l1,...,1j) be a member of that space, and let R > 0, § € (0, ﬁ) (note that in this case
c(p1,...,Pn) =2/(m + k + 1)). Then, clearly, 1 —§ > (m + k)6 and hence we can take 1 € ((m + k)§,1 — §). Since
8/n <1/(m+k) and hence (§/n)% <1/(m+k) fori=1,...,k, there exist c € (0,1) and & > 0 such that

B 1—c)Pi
—gg foreveryi=1,...,m (M
n m+k+e
and
S\ (-0
— <¥ foreveryi=1,...,k. (2)
n m+k+e
Now we will define a positive number B. To define 8 consider three cases.
1 1 1 11 1_1 1 1 1
Ifr<oo,p—1+-~-+p7+q—l+-~-+a>;,thenr(;—p—]—~-~—p—m—q—]—~-~—a)<0,sowecanﬁnd/3>0besuch
that for any 8’ € (0, 8], we have
-1
' dgp L e 2 S IS H SR B
u (R = 28)) R Tt em) cmbor =) ()" G T T e T T < o, 3
((ra -2 ) <) ®
1 1 1 11 11 1 1 1
Ifr<oo,p—1+-~-+p—m+q—l+---+ﬁ<;,thenr(;—p—l—-~-—p—m—q—1—-~—ﬁ)>0,sowecanﬁndﬂ>0besuchthat
for any B’ € (0, B], we have
1 1 r(l- L L_1_ Ly
i kT+T(L+“'+L) Kk & rop Pm 1 Ak
u( (R —28))" (R P ) embr __— ) o — < 0. 4
((ra-29) ) <(3 @
If r = 0o, then our assumptions imply pl—1 +-- ~+pim+ % +-- ~+i >0=1, 50 we can find g > 0 such that for any ' € (0, 8],
we have
i [ IR B (L4 gyt 41
u((R(]—28))]Cm+k~(nR)k+P1+ +Pm) 1<(,3/) Gy ttpmta T +qk)<oo. (5)
Using Lemma 3 with h = max{| f1|P', ..., | fm|P™, |21]7, ..., |2k|%} (note that h € L) and

e=min{, 1 -8R, (1-5-mR)",.... (1 -8-mR)™},

we infer that there is A € ¥ with 0 < u(A) < ¢ if inf{(A): w(A) >0} =0, or with 1/e < ((A) < oo if sup{i(A): w(A) <
oo} = oo, such that the following conditions hold

/lf,-|p"dug(1—8—n)R foreveryi=1,...,m; (6)
A

1/qi
</|gﬂ‘“du) <(1—-8-nR foreveryi=1,..., k. (7)
A

Next, let M1, ..., Mp, N1, ..., Ni be such that
MPiu(A)=nR foreveryi=1,...,m; (8)
Ni(pL(A))l/qi =nR foreveryi=1,... k. (9)
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Now, let us define ]ﬁfm g1y 8l L,...,Tj by formulas:

~ M;, xeA; N
fix) = {fi(x), xd A gi(X)=[
T,-(x) _ {li(x) + @1 -8R, ifli(x) >0
lix)y — (1 =98)R, iflj(x) <O.
Using (6)-(9) we obtain

N;i, xeA;
gi(x), x¢A,

d(fi,fi)Z/lMi—filpidu</Mfidﬂ+/|fi|pidu
A A A

<NR+(1—-8—n)R=R—$R,

_ 1/ai ) 1/ai 1/ai
IIgi—gfllq,-=(/|Ni—gi|‘“du> < (/N?’du> +</|gi|""du>
A A A

<NR+(1—8—n)R=R—$R,

and

Il —lilloo = (1 = $)R.
Hence B((]ﬂ,...,]‘m,gl ..... gk,fl,...jj),éR) C B((f1,---, fm.81,-.., & l1,...,1j),R). It is enough to show that
B((f1,--.., fm, &1, ..., gl 1}),6R)NE, =0. Let

(htvoshmosty oo Sk Wi wy) € B((Fro ooy fna 810 B e 1)), 8R).

Clearly, since ||f1~||OO > (1 — )R, for p-almost every x € A, we have

lwix)| > R(1 - 28). (10)

Assume now that r < oco. For any i =1, ..., m, we have

- : h; p
R>/|hi—f,-|Pfdu=/|hi—Mi|Pfdu=M,Pl/‘M'—1
i
A A

Using (1) and (8) we obtain

fli- i

Similarly for any i =1,..., k,

~ \a: i S
(BR)% >/|si—gi|q’ du=Nf”/ ﬁ'
A A

<R < A - o
M{"’_n“ Smrkrel :

qi

—1| du,

i

and using (2) and (9) we have

qi R di S qi 1 0
/ dp < ( Nz) = (5) H(A) < mM(A)(l — o
A

By (3), (4), (8)-(10) and Lemma 4 used for c; = ¢, we obtain the following

Si
— -1
N;j

/|h1~--hm-51-~-5k-W1-"Wj|rdM
2(R(1—25))rj/|h1~-~hm~51--~sk|rdu

= (R —28))" M} ... ML, - N} - Nk/
A




388 S. Glab, E Strobin /J. Math. Anal. Appl. 368 (2010) 382-390

: 1
> (R(1—28))"M}---Mb, - Ny ---NL - c(m+")’<,u(A) —(m+ k)mu(f\)>

j &
= (R —28))"M} - M, - Ny - Np - MO —— i (A)

m+k+e¢
I 1 1
= (R(1=28) M2 ()] 71 - [MEP (A ] [N (AT [Niga(A) i ] b
) A Tl R S
H m+k+¢
= (R —28)) R)PT -~ (R) P - (R)" - (R)” - "
i1 1 _1_ .. 1 &
. A r(r P1 pm 1 qk).i
() m+k+¢
i ,_L_..._L_L ..... 1 &
= (R(1 = 28)) (RNt F o) cmbr (1 T e )
( ( )) (MR) C (M( )) m+k+g>u

For the last inequality, observe that 1f AR o + Tt + — > - then by hypothesis, we infer that w(A) <& <8, so

,.
we may use (3) with g’ = u(A). lf + +—+ + +—<—then (A)<g</3 and we may use (4) with 8’ = —
Hence

||hl...hm.g]...sk.w1.‘.wj||r>u.

Assume now that r = co. As was mentioned, this case is possible only if inf{it(A): w(A) >0}=0.Foranyi=1,...,m,
we define

Al ={xe A hix) >cM;},  A?=A\Al
and for any i =1,...,k, we define
B! ={xeA:si(x) >cN;} and B?=A\B].
Then
8R>/|h— iPidp > /|h — M;|Pidp > MPI(1 — )P ju(AD).
AZ

Hence by (1) and (8), we have

) SR s 1
I'L(Al) < Di . = Di
MPi(1—cpi (1 —o)Pi

Then w(A}) > (1 -

1
n(A) < m——l—kM(A).

m+k),u(A) for each i =1, ..., m. The same estimations (by (2) and (9)) hold for s;:

BRI > / Isi — Nil% dp > / Isi — Nl e > NI (1 — )% 14 (B?).
BZ

Then

B2 __OR qi< d ! A <71 A
a ")<<Ni<1—c>> (n(l >) WA S G-

Hence u(B}) > (1 - m+k)/L(A) for each i=1,...,k. Now by Lemma 5 we obtain that x(A] N---N AL NB{N---NB})>0.
Also, for p-almost every xe Aln.--NnALN B} -N B}, using (8)-(10) and (5) we have
110G - h (%) - 51(X) - 51 (X) - W1 (X) -+ Wj(X) |
> (R(1 = 28)) ™ My - My - Ny - Ny
1
=(RQ - 28))j ’"‘H‘(nR)m ot o R (1 (A)) st tartta) o u,
and hence
||hl...hm.s]...sk.w]...wj||r>U.

This ends the proof. O
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Lemma 7. Assume that

inf{/4(A): n(A) >0} >0.
Then:

(i) foreveryre (1,00), L1 C L;
(ii) for every p > 0, LP C L*°.

The proof of Lemma 7 is known (see, e.g. [2, 224X(e)]).

Proposition 8. Let p1, ..., pn, r € (0, oo]. If one of the following conditions holds:

(i) sup{(A): n(A) < oo} <ooand0 < pi]+...+pi" <%

(ii) inf{u(A): u(A)>0}>0and 5o+ + 5= > 1,
then E(P1P0) — [P1 5 ... x [Pn,

Proof. Assume (i). Then r is finite and at least one p; < co.

Let M = sup{u(A): w(A) < oo}. For any k € N, let Dy, be a measurable set with M —1/k < u(Dy) < M. Set D = U,fil Dy.
Since ,u(U’s‘:] Ds) < M for any k, then (D) =M and for a measurable F € X\ D we have @ (F) =0 or i (F) = co. Hence if
p <ooand f e€LP, then u({xe X\ D: f(x)#0})=0.

Assume that for some 1 <m <n, we have p1,...,pm <00 and pmp+1,..., pn are equal to co. Let M > 0 be such that
|fil <M p-ae. on X fori=m+1,...,n, and set h =max{|f1|P',...,|fm|P"}. Then h € L'. Since f; € LP! and p; < oo, we
have that

n({xe X\ D: fi(x)--- fa(x) #0}) =0.

Hence

/lfl"'fnlrdﬂzfm"'f”|rd“<Mn_m/|f1--~fm|rd,u
X D 2

gM”—m/h’(ﬁ+"'+v%>du.
D

LI
We only have to observe that [, T +Pm)d,u < 00, but this follows from the fact that u(D) < co and

1 1
rl—+-4+—) <1
D1 Dm
Now assume (ii). We have to consider two cases:
Case 1. r < co. Then at least one of p1,...,pn is finite. Assume again, that for some 1 <m <n, we have p1,...,pm < 00

and pmy1=---=ppn=o0.Let (f1,..., fa) € LP1 x --- x LPn, Set h = max{| f1|P', ..., |fm|P"}. Then h € L!. Let M > 0 be such
that |fil| <M p-a.e.on X foralli=m+1,...,n. Then by Lemma 7, we obtain

1 1
[ i fal dp < M”"”fhr(ﬂ+"'+ﬁ)d,u oo
X X

: 1 1
since r(p—1+~-~+p—n)>1.

Case 2. r = oo. By Case 1, we obtain that for r’ < co with

1 1 1
—<—+t+—,
r D1 DPn

if (fi,..., fa) €LP1 x -+~ x LPn then fq--- f, € L. Hence by Lemma 7, we have || f1 - falloo <00. O
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Note that Proposition 8 is not valid if each p; is infinite. Indeed, if we consider the following measure
u(A)=0 ifA=0 and w(A)=oc0 ifA#0,
and we set f =g=1, then (f, g) € L® x L™, but (f, g) ¢ EL*°.

Now we can summarize our results in the two following theorems. We write c¢ instead of c(p1,..., pn), where
c(p1, ..., pn) was defined before the statement of Theorem 6.

Theorem 9. Let (X, X', u) be a measure space. The following conditions are equivalent:

i) foranyneNand p1, ..., pn, 7 > Osuch that — + ---+ — > -, theset E;"""™” is o —c-lower porous;
(i) N and 0 such that - L > 1 the set EP' P is o —c-l
(ii) foranyneNandm,...,pn,r>05uchthat%+~~-+i > %,thesetEﬁp1 """ Pn) is not equal to LP1 x - -- x LPn;
iii) therearen e Nand p1, ..., pn, v > Osuch that L + ...+ L > 1 and the set EP1Pn) g o —-c-lower porous;
P1 Pn r r
iv) therearen €e Nand p1, ..., pn, v > O such that —— +---+ — > ~ and the set E;""""""" is not equal to X oo X LPn;
iv) th N and 0 such that - L > L and the set EP"+ P i lto LP1 LP
(v) inf{e(A): w(A) >0} =0.

Proof. The following implications are trivial: (i) = (ii), (i) = (iii), (ii) = (iv) and (iii) = (iv). Implication (iv) = (v) follows
from Proposition 8. Finally, (v) = (i) follows from Theorem 6. O

Theorem 10. Let (X, X, ) be a measure space. The following conditions are equivalent:

(i) foranyn e Nand p, ..., pn, 1 > 0 such that 0 < p]? 4o pl—n <1 the set EP"P") is o —c-lower porous;
(i) foranyn e Nand p1, ..., pn, 7 > Osuch that 0 < - + ...+ L < 1 the set EP1P") is not equal to LP' x --- x LPn;
p1 Pn r
(iii) therearen € Nand p1, ..., pn,r> Osuchthat0 < L + ...+ L < 1 and the set E1P") is o —c-lower porous;
DP1 Pn r
iv) therearen € Nand pq, ..., pn, 7 > Osuchthat 0 < L + ...+ L < 1 and the set Eﬁpl’“"p") is not equal to LP1 x ... x LPn;
b1 Pn r

(v) sup{p(A): p(A) < oo} =oo.

Proof. The following implications are trivial: (i) = (ii), (i) = (iii), (ii) = (iv) and (iii) = (iv). Implication (iv) = (v) follows
from Proposition 8. Finally, (v) = (i) follows from Theorem 6. O
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